首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We consider a modified energy depot model in the overdamped limit using an asymmetric energy conversion rate, which consists of linear and quadratic terms in an active particle’s velocity. In order to analyze our model, we adopt a system of molecular motors on a microtubule and employ a flashing ratchet potential synchronized to a stochastic energy supply. By performing an active Brownian dynamics simulation, we investigate effects of the active force, thermal noise, external load, and energy-supply rate. Our model yields the stepping and stalling behaviors of the conventional molecular motor. The active force is found to facilitate the forwardly processive stepping motion, while the thermal noise reduces the stall force by enhancing relatively the backward stepping motion under external loads. The stall force in our model decreases as the energy-supply rate is decreased. Hence, assuming the Michaelis–Menten relation between the energy-supply rate and the an ATP concentration, our model describes ATP-dependent stall force in contrast to kinesin-1.  相似文献   

2.
《Biophysical journal》2020,118(8):1930-1945
Cytoplasmic dynein is a two-headed molecular motor that moves to the minus end of a microtubule by ATP hydrolysis free energy. By employing its two heads (motor domains), cytoplasmic dynein exhibits various bipedal stepping motions: inchworm and hand-over-hand motions, as well as nonalternating steps of one head. However, the molecular basis to achieve such diverse stepping manners remains unclear because of the lack of an experimental method to observe stepping and the ATPase reaction of dynein simultaneously. Here, we propose a kinetic model for bipedal motions of cytoplasmic dynein and perform Gillespie Monte Carlo simulations that qualitatively reproduce most experimental data obtained to date. The model represents the status of each motor domain as five states according to conformation and nucleotide- and microtubule-binding conditions of the domain. In addition, the relative positions of the two domains were approximated by three discrete states. Accompanied by ATP hydrolysis cycles, the model dynein stochastically and processively moved forward in multiple steps via diverse pathways, including inchworm and hand-over-hand motions, similarly to experimental data. The model reproduced key experimental motility-related properties, including velocity and run length, as functions of the ATP concentration and external force, therefore providing a plausible explanation of how dynein achieves various stepping manners with explicit characterization of nucleotide states. Our model highlights the uniqueness of dynein in the coupling of ATPase with its movement during both inchworm and hand-over-hand stepping.  相似文献   

3.
《Biophysical journal》2020,118(7):1537-1551
Processive molecular motors enable cargo transportation by assembling into dimers capable of taking several consecutive steps along a cytoskeletal filament. In the well-accepted hand-over-hand stepping mechanism, the trailing motor detaches from the track and binds the filament again in the leading position. This requires fuel consumption in the form of ATP hydrolysis and coordination of the catalytic cycles between the leading and the trailing heads. Alternate stepping pathways also exist, including inchworm-like movements, backward steps, and foot stomps. Whether all the pathways are coupled to ATP hydrolysis remains to be determined. Here, to establish the principles governing the dynamics of processive movement, we present a theoretical framework that includes all of the alternative stepping mechanisms. Our theory bridges the gap between the elemental rates describing the biochemical and structural transitions in each head and the experimentally measurable quantities such as velocity, processivity, and probability of backward stepping. Our results, obtained under the assumption that the track is periodic and infinite, provide expressions that hold regardless of the topology of the network connecting the intermediate states, and are therefore capable of describing the function of any molecular motor. We apply the theory to myosin VI, a motor that takes frequent backward steps and moves forward with a combination of hand-over-hand and inchworm-like steps. Our model quantitatively reproduces various observables of myosin VI motility reported by four experimental groups. The theory is used to predict the gating mechanism, the pathway for backward stepping, and the energy consumption as a function of ATP concentration.  相似文献   

4.
Three phase model of the processive motor protein kinesin   总被引:1,自引:0,他引:1  
Kinesin is a stepping motor that successively produces forward and backward 8-nm steps along microtubules. Under physiological conditions, the steps powering kinesin's motility are biased in one direction and drive various biological motile processes. So far, the physical mechanism underlying the unidirectional bias of the kinesin is not fully understood. Recently, Martin Bier have provided a stepper model [Martin Bier, 2003, Processive motor protein as an overdamped Brownian stepper, Phys. Rev. Lett. 91, 148104], in which the stepping cycle of kinesin includes two distinguished phases: (i) a power stroke phase and (ii) a ratcheted diffusion phase which is characterized as a "random diffusional search". At saturating ATP level, this model can fit the experimental results accurately. In this paper, we'll provide a modified Brownian stepper model, in which the dependence of ATP concentration is considered. In our model, the stepping cycle of kinesin is distinguished into three phases: an ATP-binding phase, a power stroke phase and a ratcheted diffusion phase. This modified model can reconstruct most of the experimental results accurately.  相似文献   

5.
Motor proteins are essential components of intracellular transport inside eukaryotic cells. These protein molecules use chemical energy obtained from hydrolysis of ATP to produce mechanical forces required for transporting cargos inside cells, from one location to another, in a directed manner. Of these motors, cytoplasmic dynein is structurally more complex than other motor proteins involved in intracellular transport, as it shows force and fuel (ATP) concentration dependent step‐size. Cytoplasmic dynein motors are known to work in a team during cargo transport and force generation. Here, we use a complete Monte‐Carlo model of single dynein constrained by in vitro experiments, which includes the effect of both force and ATP on stepping as well as detachment of motors under force. We then use our complete Monte‐Carlo model of single dynein motor to understand collective cargo transport by a team of dynein motors, such as dependence of cargo travel distance and velocity on applied force and fuel concentration. In our model, cargos pulled by a team of dynein motors do not detach rapidly under higher forces, confirming the experimental observation of longer persistence time of dynein team on microtubule under higher forces.  相似文献   

6.
The molecular motor protein Kinesin-1 drives intracellular transport of vesicles, by binding to microtubules and making hundreds of consecutive 8-nm steps along them. Three important parameters define the motility of such a linear motor: velocity, run length (the average distance traveled), and the randomness (a measure of the stochasticity of stepping). We used total internal reflection fluorescence microscopy to measure these parameters under conditions without external load acting on the motor. First, we tracked the motility of single motor proteins at different adenosine triphosphate (ATP) concentrations and determined both velocity and (for the first time, to our knowledge, by using single-molecule fluorescence assays) randomness. We show that the rate of Kinesin-1 at zero load is limited by two or more exponentially distributed processes at high ATP concentrations, but that an additional, ATP-dependent process becomes the sole rate-limiting process at low ATP concentrations. Next, we measured the density profile of moving Kinesin-1 along a microtubule. This allowed us to determine the average run length in a new way, without the need to resolve single-molecules and to correct for photobleaching. At saturating ATP concentration, we measured a run length of 1070 ± 30 nm. This value did not significantly change for different ATP concentrations.  相似文献   

7.
Force-induced bidirectional stepping of cytoplasmic dynein   总被引:4,自引:0,他引:4  
Cytoplasmic dynein is a minus-end-directed microtubule motor whose mechanism of movement remains poorly understood. Here, we use optical tweezers to examine the force-dependent stepping behavior of yeast cytoplasmic dynein. We find that dynein primarily advances in 8 nm increments but takes other sized steps (4-24 nm) as well. An opposing force induces more frequent backward stepping by dynein, and the motor walks backward toward the microtubule plus end at loads above its stall force of 7 pN. Remarkably, in the absence of ATP, dynein steps processively along microtubules under an external load, with less force required for minus-end- than for plus-end-directed movement. This nucleotide-independent walking reveals that force alone can drive repetitive microtubule detachment-attachment cycles of dynein's motor domains. These results suggest a model for how dynein's two motor domains coordinate their activities during normal processive motility and provide new clues for understanding dynein-based motility in living cells.  相似文献   

8.
Kawaguchi K 《FEBS letters》2008,582(27):3719-3722
Kinesin-1 is a dimeric motor protein that transports cellular cargo along microtubules by using the energy released from ATP hydrolysis and moving processively in 8-nm steps. Recent novel studies at the single molecular level have provided extensive knowledge on how kinesin-1 converts the free energy of ATP hydrolysis and uses it for “walking” along microtubules. In this review, I have discussed the important topics pertaining to the energetics of kinesin-1 stepping mechanism and the consensus walking model.  相似文献   

9.
Our simple kinetic model, based on the classic “binding change mechanism”, describes the stepping kinetics for the rotary enzyme motors. The model shows that the cooperative interactions between active sites in the motor enzyme F1-ATPase induce the stepping product release. This phenomenon results from non-harmonic oscillations in the enzyme forms. The found rate constants, corresponding to the stepping phenomenon, are close to the rate constants known for the F1-ATPase. The duration of dwells during the product release is shown to depend on the ATP concentration in accordance with the known experimental data.  相似文献   

10.
Meacci G  Lan G  Tu Y 《Biophysical journal》2011,(8):1986-1995
The rotation of a bacterial flagellar motor (BFM) is driven by multiple stators tethered to the cell wall. Here, we extend a recently proposed power-stroke model to study the BFM dynamics under different biophysical conditions. Our model explains several key experimental observations and reveals their underlying mechanisms. 1), The observed independence of the speed at low load on the number of stators is explained by a force-dependent stepping mechanism that is independent of the strength of the stator tethering spring. Conversely, without force-dependent stepping, an unrealistically weak stator spring is required. 2), Our model with back-stepping naturally explains the observed absence of a barrier to backward rotation. Using the same set of parameters, it also explains BFM behaviors in the high-speed negative-torque regime. 3), From the measured temperature dependence of the maximum speed, our model shows that stator-stepping is a thermally activated process with an energy barrier. 4), The recently observed asymmetry in the torque-speed curve between counterclockwise- and clockwise-rotating BFMs can be quantitatively explained by the asymmetry in the stator-rotor interaction potentials, i.e., a quasilinear form for the counterclockwise motor and a quadratic form for the clockwise motor.  相似文献   

11.
Kinesin-1 motor proteins move along microtubules in repetitive steps of 8 nm at the expense of ATP. To determine nucleotide dwell times during these processive runs, we used a Förster resonance energy transfer method at the single-molecule level that detects nucleotide binding to kinesin motor heads. We show that the fluorescent ATP analog used produces processive motility with kinetic parameters altered <2.5-fold compared with normal ATP. Using our confocal fluorescence kinesin motility assay, we obtained fluorescence intensity time traces that we then analyzed using autocorrelation techniques, yielding a time resolution of ∼1 ms for the intensity fluctuations due to fluorescent nucleotide binding and release. To compare these experimental autocorrelation curves with kinetic models, we used Monte-Carlo simulations. We find that the experimental data can only be described satisfactorily on the basis of models assuming an alternating-site mechanism, thus supporting the view that kinesin's two motor domains hydrolyze ATP and step in a sequential way.  相似文献   

12.
Yildiz A  Tomishige M  Gennerich A  Vale RD 《Cell》2008,134(6):1030-1041
Kinesin advances 8 nm along a microtubule per ATP hydrolyzed, but the mechanism responsible for coordinating the enzymatic cycles of kinesin's two identical motor domains remains unresolved. Here, we have tested whether such coordination is mediated by intramolecular tension generated by the "neck linkers," mechanical elements that span between the motor domains. When tension is reduced by extending the neck linkers with artificial peptides, the coupling between ATP hydrolysis and forward stepping is impaired and motor's velocity decreases as a consequence. However, speed recovers to nearly normal levels when external tension is applied by an optical trap. Remarkably, external load also induces bidirectional stepping of an immotile kinesin that lacks its mechanical element (neck linker) and fuel (ATP). Our results indicate that the kinesin motor domain senses and responds to strain in a manner that facilitates its plus-end-directed stepping and communication between its two motor domains.  相似文献   

13.
Cytoplasmic dynein play an important role in transporting various intracellular cargos by coupling their ATP hydrolysis cycle with their conformational changes. Recent experimental results showed that the cytoplasmic dynein had a highly variable stepping pattern including “hand-over-hand”, “inchworm” and “nonalternating-inchworm”. Here, we developed a model to describe the coordinated stepping patterns of cytoplasmic dynein, based on its working cycle, construction and the interaction between its leading head and tailing head. The kinetic model showed how change in the distance between the two heads influences the rate of cytoplasmic dynein under different stepping patterns. Numerical simulations of the distribution of step size and striding rate are in good quantitative agreement with experimental observations. Hence, our coordinated stepping model for cytoplasmic dynein successfully explained its diverse stepping patterns as a molecular motor. The cooperative mechanism carried out by the two heads of cytoplasmic dynein shed light on the strategies adopted by the cytoplasmic dynein in executing various functions.  相似文献   

14.
Cytoplasmic dynein moves processively along microtubules, but the mechanism of how its heads use the energy from ATP hydrolysis, coupled to a linker swing, to achieve directed motion, is still unclear. In this article, we present a theoretical model based on the winch mechanism in which the principal direction of the linker stroke is toward the microtubule-binding domain. When mechanically coupling two identical heads (each with postulated elastic properties and a minimal ATPase cycle), the model reproduces stepping with 8-nm steps (even though the motor itself is much larger), interhead coordination, and processivity, as reported for mammalian dyneins. Furthermore, when we loosen the elastic connection between the heads, the model still shows processive directional stepping, but it becomes uncoordinated and the stepping pattern shows a greater variability, which reproduces the properties of yeast dyneins. Their slower chemical kinetics allows processive motility and a high stall force without the need for coordination.  相似文献   

15.
Bier M  Cao FJ 《Bio Systems》2011,103(3):355-359
Fueled by the hydrolysis of ATP, the motor protein kinesin literally walks on two legs along the biopolymer microtubule. The number of accidental backsteps that kinesin takes appears to be much larger than what one would expect given the amount of free energy that ATP hydrolysis makes available. This indicates that backsteps are not simply the forward stepping cycle run backwards. We propose here a simple effective model that consistently includes the backstep transition. Using this model, we show how more backstepping increases the entropy of the final state, and probably also the activation state, thus reducing their free energy. This free energy reduction of the activation state (related to backstepping) speeds up the catalytic cycle of the kinesin, making both forward and backward steps more frequent. As a consequence, maximal net forward speed is achieved at nonzero backstep percentage. In addition, the optimal backstep percentage coincides with the backstep percentage measured for kinesin. This result suggests that, through natural selection, kinesin could have evolved to maximal speed.  相似文献   

16.
Rapid double 8-nm steps by a kinesin mutant   总被引:2,自引:0,他引:2       下载免费PDF全文
The mechanism by which conventional kinesin walks along microtubules is poorly understood, but may involve alternate binding to the microtubule and hydrolysis of ATP by the two heads. Here we report a single amino-acid change that affects stepping by the motor. Under low force or low ATP concentration, the motor moves by successive 8-nm steps in single-motor laser-trap assays, indicating that the mutation does not alter the basic mechanism of kinesin walking. Remarkably, under high force, the mutant motor takes successive 16-nm displacements that can be resolved into rapid double 8-nm steps with a short dwell between steps, followed by a longer dwell. The alternating short and long dwells under high force demonstrate that the motor stepping mechanism is inherently asymmetric, revealing an asymmetric phase in the kinesin walking cycle. Our findings support an asymmetric two-headed walking model for kinesin, with cooperative interactions between the two heads. The sensitivity of the 16-nm displacements to nucleotide and load raises the possibility that ADP release is a force-producing event of the kinesin cycle.  相似文献   

17.
Cytoplasmic dynein moves processively along microtubules, but the mechanism of how its heads use the energy from ATP hydrolysis, coupled to a linker swing, to achieve directed motion, is still unclear. In this article, we present a theoretical model based on the winch mechanism in which the principal direction of the linker stroke is toward the microtubule-binding domain. When mechanically coupling two identical heads (each with postulated elastic properties and a minimal ATPase cycle), the model reproduces stepping with 8-nm steps (even though the motor itself is much larger), interhead coordination, and processivity, as reported for mammalian dyneins. Furthermore, when we loosen the elastic connection between the heads, the model still shows processive directional stepping, but it becomes uncoordinated and the stepping pattern shows a greater variability, which reproduces the properties of yeast dyneins. Their slower chemical kinetics allows processive motility and a high stall force without the need for coordination.  相似文献   

18.
Myosin VI is an ATP driven molecular motor that normally takes forward and processive steps on actin filaments, but also on occasion stochastic backward steps. While a number of models have attempted to explain the backwards steps, none offer an acceptable mechanism for their existence. We therefore performed single molecule imaging of myosin VI and calculated the stepping rates of forward and backward steps at the single molecule level. The forward stepping rate was proportional to the ATP concentration, whereas the backward stepping rate was independent. Using these data, we proposed that spontaneous detachment of the leading head is uncoupled from ATP binding and is responsible for the backward steps of myosin VI.  相似文献   

19.
The currently accepted mechanism for ATP-driven motion of kinesin is called the hand-over-hand model, where some chemical transition during the ATP hydrolysis cycle stretches a spring, and motion and force production result from the subsequent relaxation. It is essential in this mechanism for the moving head of kinesin to dissociate, while the other head remains firmly attached to the microtubule. Here we propose an alternative Brownian motor model where the action of ATP modulates the interaction potential between kinesin and the microtubule rather than a spring internal to the kinesin molecule alone. In this model neither head need dissociate (which predicts that under some circumstances a single-headed kinesin can display processive motion) and the transitions by which the motor moves are best described as thermally activated steps. This model is consistent with a wide range of experimental data on the force-velocity curves, the one ATP to one-step stoichiometry observed at small load, and the stochastic properties of the stepping.  相似文献   

20.
Knowledge about the three-dimensional stepping of motor proteins on the surface of microtubules (MTs) as well as the torsional components in their power strokes can be inferred from longitudinal MT rotations in gliding motility assays. In previous studies, optical detection of these rotations relied on the tracking of rather large optical probes present on the outer MT surface. However, these probes may act as obstacles for motor stepping and may prevent the unhindered rotation of the gliding MTs. To overcome these limitations, we devised a novel, impact-free method to detect MT rotations based on fluorescent speckles within the MT structure in combination with fluorescence-interference contrast microscopy. We (i) confirmed the rotational pitches of MTs gliding on surfaces coated by kinesin-1 and kinesin-8 motors, (ii) demonstrated the superiority of our method over previous approaches on kinesin-8 coated surfaces at low ATP concentration, and (iii) identified MT rotations driven by mammalian cytoplasmic dynein, indicating that during collective motion cytoplasmic dynein side-steps with a bias in one direction. Our novel method is easy to implement on any state-of-the-art fluorescence microscope and allows for high-throughput experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号