首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two important steps of the de novo purine biosynthesis pathway are catalyzed by the 5‐aminoimidazole ribonucleotide carboxylase and the 4‐(N‐succinylcarboxamide)‐5‐aminoimidazole ribonucleotide synthetase enzymes. In most eukaryotic organisms, these two activities are present in the bifunctional enzyme complex known as PAICS. We have determined the 2.8‐Å resolution crystal structure of the 350‐kDa invertebrate PAICS from insect cells (Trichoplusia ni) using single‐wavelength anomalous dispersion methods. Comparison of insect PAICS to human and prokaryotic homologs provides insights into substrate binding and reveals a highly conserved enzymatic framework across divergent species. Proteins 2013; 81:1473–1478. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
O'Donnell AF  Tiong S  Nash D  Clark DV 《Genetics》2000,154(3):1239-1253
Steps 6 and 7 of de novo purine synthesis are performed by 5-aminoimidazole ribonucleotide carboxylase (AIRc) and 4-[(N-succinylamino)carbonyl]-5-aminoimidazole ribonucleotide synthetase (SAICARs), respectively. In vertebrates, a single gene encodes AIRc-SAICARs with domains homologous to Escherichia coli PurE and PurC. We have isolated an AIRc-SAICARs cDNA from Drosophila melanogaster via functional complementation with an E. coli purC purine auxotroph. This cDNA encodes AIRc yet is unable to complement an E. coli purE mutant, suggesting functional differences between Drosophila and E. coli AIRc. In vertebrates, the AIRc-SAICARs gene shares a promoter region with the gene encoding phosphoribosylamidotransferase, which performs the first step in de novo purine synthesis. In Drosophila, the AIRc-SAICARs gene maps to section 11B4-14 of the X chromosome, while the phosphoribosylamidotransferase gene (Prat) maps to chromosome 3; thus, the close linkage of these two genes is not conserved in flies. Three EMS-induced X-linked adenine auxotrophic mutations, ade4(1), ade5(1), and ade5(2), were isolated. Two gamma-radiation-induced (ade5(3) and ade5(4)) and three hybrid dysgenesis-induced (ade5(5), ade5(6), and ade5(8)) alleles were also isolated. Characterization of the auxotrophy and the finding that the hybrid dysgenesis-induced mutations all harbor P transposon sequences within the AIRc-SAICARs gene show that ade5 encodes AIRc-SAICARs.  相似文献   

3.
Nodules of tropical legumes generally export symbiotically fixed nitrogen in the form of ureides that are produced by oxidation of de novo synthesized purines. To investigate the regulation of de novo purine biosynthesis in these nodules, we have isolated cDNA clones encoding 5-aminoimidazole ribonucleotide (AIR) carboxylase and 5-aminoimidazole-4-N-succinocarboxamide ribonucleotide (SAICAR) synthetase from a mothbean (Vigna aconitifolia) nodule cDNA library by complementation of Escherichia coli purE and purC mutants, respectively. Sequencing of these clones revealed that the two enzymes are distinct proteins in mothbean, unlike in animals where both activities are associated with a single bifunctional polypeptide. As is the case in yeast, the mothbean AIR carboxylase has a N-terminal domain homologous to the eubacterial purK gene product. This PurK-like domain appears to facilitate the binding of CO2 and is dispensable in the presence of high CO2 concentrations. Because the expression of the mothbean PurE cDNA clone in E. coli apparently generates a truncated polypeptide lacking at least 140 N-terminal amino acids, this N-terminal region of the enzyme may not be essential for its CO2-binding activity.  相似文献   

4.
Methenyltetrahydrofolate synthetase (MTHFS) expression enhances folate-dependent de novo purine biosynthesis. In this study, the effect of increased MTHFS expression on the efficacy of the glycinamide ribonucleotide formyltransferase (GARFT) inhibitor LY309887 was investigated in SH-SY5Y neuroblastoma. GARFT catalyzes the incorporation of formate, in the form of 10-formyltetrahydrofolate, into the C8 position of the purine ring during de novo purine biosynthesis. SH-SY5Y neuroblastoma with increased MTHFS expression displayed a 4-fold resistance to the GARFT inhibitor LY309887, but did not exhibit resistance to the thymidylate synthase inhibitor Pemetrexed. This finding supports a mechanism whereby MTHFS increases the availability of 10-formyltetrahydrofolate for GARFT. MTHFS expression is elevated in animal tumor tissues compared to surrounding normal tissue, consistent with the dependence of transformed cells on de novo purine biosynthesis. The level of MTHFS expression in tumors may predict the efficacy of antipurine agents that target GARFT.  相似文献   

5.
In cancer, de novo pathway plays an important role in cell proliferation by supplying huge demand of purine nucleotides. Aminoimidazole ribonucleotide synthetase (AIRS) catalyzes the fifth step of de novo purine biosynthesis facilitating in the conversion of formylglycinamidine ribonucleotide to aminoimidazole ribonucleotide. Hence, inhibiting AIRS is crucial due to its involvement in the regulation of uncontrollable cancer cell proliferation. In this study, the three-dimensional structure of AIRS from P. horikoshii OT3 was constructed based on the crystal structure from E. coli and the modeled protein is verified for stability using molecular dynamics for a time frame of 100 ns. Virtual screening and induced fit docking were performed to identify the best antagonists based on their binding mode and affinity. Through mutational studies, the residues necessary for catalytic activity of AIRS were identified and among which the following residues Lys35, Asp103, Glu137, and Thr138 are important in determination of AIRS function. The mutational studies help to understand the structural and energetic characteristics of the specified residues. In addition to Molecular Dynamics, ADME properties, binding free-energy, and density functional theory calculations of the compounds were carried out to find the best lead molecule. Based on these analyses, the compound from the NCI database, NCI_121957 was adjudged as the best molecule and could be suggested as the suitable inhibitor of AIRS. In future studies, experimental validation of these ligands as AIRS inhibitors will be carried out.  相似文献   

6.
Mapping of the bovine genes of the de novo AMP synthesis pathway   总被引:1,自引:0,他引:1  
Summary The purine nucleotides adenosine monophosphate (AMP) and guanosine monophosphate (GMP) are critical for energy metabolism, cell signalling and cell reproduction. Despite their essential function, little is known about the regulation and in vivo expression pattern of the genes involved in the de novo purine synthesis pathway. The complete coding region of the bovine phosphoribosylaminoimidazole carboxylase gene (PAICS), which catalyses steps 6 and 7 of the de novo purine biosynthesis pathway, as well as bovine genomic sequences of the six other genes in the pathway producing inosine monophosphate (IMP) and AMP [phosphoribosyl pyrophosphate amidotransferase (PPAT), phosphoribosylglycinamide formyltransferase (GART), phosphoribosylformylglycinamidine synthase (PFAS), adenylosuccinate lyase (ADSL), 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC) and adenylosuccinate synthase (ADSS)], were identified. The genes were mapped to segments of six different bovine chromosomes using a radiation hybrid (RH) cell panel. The gene PPAT, coding for the presumed rate-limiting enzyme of the purine de novo pathway was closely linked to PAICS on BTA6. These, and the other bovine locations i.e. GART at BTA1, PFAS at BTA19, ADSL at BTA5, ATIC at BTA2 and ADSS at BTA16, are in agreement with published comparative maps of cattle and man. PAICS and PPAT genes are known to be closely linked in human, rat and chicken. Previously, an expressed sequence fragment of PAICS (Bos taurus corpus luteum, BTCL9) was mapped to BTA13. By isolation and characterization of a BAC clone, we have now identified a PAICS processed pseudogene sequence (psiPAICS) on BTA13. Processed pseudogene sequences of PAICS and other genes of the purine biosynthesis pathway were identified in several mammalian species, indicating that the genes of this pathway have been susceptible to retrotransposition. The seven bovine genes are expressed at a higher level in testicular and ovary tissues compared with skeletal muscle.  相似文献   

7.
Enzymes of the de novo purine biosynthetic pathway have been identified as essential for the growth and survival of Mycobacterium tuberculosis and thus have potential for the development of anti-tuberculosis drugs. The final two steps of this pathway are carried out by the bifunctional enzyme 5-aminoimidazole-4-carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase (ATIC), also known as PurH. This enzyme has already been the target of anti-cancer drug development. We have determined the crystal structures of the M. tuberculosis ATIC (Rv0957) both with and without the substrate 5-aminoimidazole-4-carboxamide ribonucleotide, at resolutions of 2.5 and 2.2 Å, respectively. As for other ATIC enzymes, the protein is folded into two domains, the N-terminal domain (residues 1–212) containing the cyclohydrolase active site and the C-terminal domain (residues 222–523) containing the formyltransferase active site. An adventitiously bound nucleotide was found in the cyclohydrolase active site in both structures and was identified by NMR and mass spectral analysis as a novel 5-formyl derivative of an earlier intermediate in the biosynthetic pathway 4-carboxy-5-aminoimidazole ribonucleotide. This result and other studies suggest that this novel nucleotide is a cyclohydrolase inhibitor. The dimer formed by M. tuberculosis ATIC is different from those seen for human and avian ATICs, but it has a similar ∼50-Å separation of the two active sites of the bifunctional enzyme. Evidence in M. tuberculosis ATIC for reactivity of half-the-sites in the cyclohydrolase domains can be attributed to ligand-induced movements that propagate across the dimer interface and may be a common feature of ATIC enzymes.  相似文献   

8.
Enzymes from the de novo purine biosynthetic pathway have been exploited for the development of anti-cancer drugs, and represent novel targets for anti-bacterial drug development. In Mycobacterium tuberculosis, the cause of tuberculosis, this pathway has been identified as essential for growth and survival. The structure of M. tuberculosis PurN (MtPurN) has been determined in complex with magnesium and iodide at 1.30 Å resolution, and with cofactor analogue, 5-methyltetrahydrofolate (5MTHF) at 2.2 Å resolution. The structure shows a Rossmann-type fold that is very similar to the known structures of the human and E. coli PurN proteins. In contrast, MtPurN forms a dimer that is quite different from that formed by the Escherichia coli PurN, and which suggests a mechanism whereby communication could take place between the two active sites. Differences are seen in two active site loops and in the binding mode of the 5MTHF cofactor analogue between the two MtPurN molecules of the dimer. A binding site for halide ions is found in the dimer interface, and bound magnesium and iodide ions in the active site suggest sites that might be exploited in potential drug discovery strategies.  相似文献   

9.
There is growing evidence that mammalian cells deploy a mitochondria-associated metabolon called the purinosome to perform channeled de novo purine biosynthesis (DNPB). However, the molecular mechanisms of this substrate-channeling pathway are not well defined. Here, we present molecular evidence of protein–protein interactions (PPIs) between the human bifunctional phosphoribosylaminoimidazole carboxylase/succinocarboxamide synthetase (PAICS) and other known DNPB enzymes. We employed two orthogonal approaches: bimolecular fluorescence complementation, to probe PPIs inside live, intact cells, and co-immunoprecipitation using StrepTag-labeled PAICS that was reintegrated into the genome of PAICS-knockout HeLa cells (crPAICS). With the exception of amidophosphoribosyltransferase, the first enzyme of the DNPB pathway, we discovered PAICS interacts with all other known DNPB enzymes and with MTHFD1, an enzyme which supplies the 10-formyltetrahydrofolate cofactor essential for DNPB. We show these interactions are present in cells grown in both purine-depleted and purine-rich conditions, suggesting at least a partial assembly of these enzymes may be present regardless of the activity of the DNPB pathway. We also demonstrate that tagging of PAICS on its C terminus disrupts these interactions and that this disruption is correlated with disturbed DNPB activity. Finally, we show that crPAICS cells with reintegrated N-terminally tagged PAICS regained effective DNPB with metabolic signatures of channeled synthesis, whereas crPAICS cells that reintegrated C-terminally tagged PAICS exhibit reduced DNPB intermediate pools and a perturbed partitioning of inosine monophosphate into AMP and GMP. Our results provide molecular evidence in support of purinosomes and suggest perturbing PPIs between DNPB enzymes negatively impact metabolite flux through this important pathway.  相似文献   

10.
11.
The enzyme aminoimidazole ribonucleotide (AIR) carboxylase catalyzes the synthesis of the purine intermediate, 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). Previously, we have shown that the compound 4-nitro-5-aminoimidazole ribonucleotide (NAIR) is a slow, tight binding inhibitor of the enzyme with a Ki of 0.34 nM. The structural attributes and the slow, tight binding characteristics of NAIR implicated this compound as a transition state or reactive intermediate analog. However, it is unclear what molecular features of NAIR contribute to the mimetic properties for either of the two proposed mechanisms of AIR carboxylase. In order to gain additional information regarding the mechanism for the potent inhibition of AIR carboxylase by NAIR, a series of heterocyclic analogs were prepared and evaluated. We find that all compounds are weaker inhibitors than NAIR and that CAIR analogs are not alternative substrates for the enzyme. Surprisingly, rather subtle changes in the structure of NAIR can lead to profound changes in binding affinity. Computational investigations of enzyme intermediates and these inhibitors reveal that NAIR displays an electrostatic potential surface similar to a proposed reaction intermediate. The result indicates that AIR carboxylase is likely sensitive to the electrostatic surface of reaction intermediates and thus compounds which mimic these surfaces should possess tight binding characteristics. Given the evolutionary relationship between AIR carboxylase and N5-CAIR mutase, we believe that this concept extends to the mutase enzyme as well. The implications of this hypothesis for the design of selective inhibitors of the N5-CAIR mutase are discussed.  相似文献   

12.
Studies have been made of the regulation of the synthesis of six purine biosynthetic enzymes: P-ribosyl-PP amidotransferase (I), P-ribosyl glycinamide synthetase (II), P-ribosyl formyl glycinamide amidotransferase (IV), adenylosuccinate lyase (VIII-IIA), adenylosuccinate synthetase (IA), and IMP dehydrogenase (IG). Wild type Aerobacter aerogenes and two purine requiring mutants derived from it, were grown with limiting or excess adenine or guanine, cell extracts prepared, and enzyme activities measured.  相似文献   

13.
Escherichia coli RNA polymerase (RNAP) is the most studied bacterial RNAP and has been used as the model RNAP for screening and evaluating potential RNAP-targeting antibiotics. However, the x-ray crystal structure of E. coli RNAP has been limited to individual domains. Here, I report the x-ray structure of the E. coli RNAP σ70 holoenzyme, which shows σ region 1.1 (σ1.1) and the α subunit C-terminal domain for the first time in the context of an intact RNAP. σ1.1 is positioned at the RNAP DNA-binding channel and completely blocks DNA entry to the RNAP active site. The structure reveals that σ1.1 contains a basic patch on its surface, which may play an important role in DNA interaction to facilitate open promoter complex formation. The α subunit C-terminal domain is positioned next to σ domain 4 with a fully stretched linker between the N- and C-terminal domains. E. coli RNAP crystals can be prepared from a convenient overexpression system, allowing further structural studies of bacterial RNAP mutants, including functionally deficient and antibiotic-resistant RNAPs.  相似文献   

14.
15.
In protein synthesis, threonyl-tRNA synthetase (ThrRS) must recognize threonine (Thr) from the 20 kinds of amino acids and the cognate tRNAThr from different tRNAs in order to generate Thr-tRNAThr. In general, an organism possesses one kind of gene corresponding to ThrRS. However, it has been recently found that some organisms have two different genes for ThrRS in the genome, suggesting that their proteins ThrRS-1 and ThrRS-2 function separately and complement each other in the threonylation of tRNAThr, one for catalysis and the other for trans-editing of misacylated Ser-tRNAThr. In order to clarify their three-dimensional structures, we performed X-ray analyses of two putatively assigned ThrRSs from Aeropyrum pernix (ApThrRS-1 and ApThrRS-2). These proteins were overexpressed in Escherichia coli, purified, and crystallized. The crystal structure of ApThrRS-1 has been successfully determined at 2.3 Å resolution. ApThrRS-1 is a dimeric enzyme composed of two identical subunits, each containing two domains for the catalytic reaction and for anticodon binding. The essential editing domain is completely missing as expected. These structural features reveal that ThrRS-1 catalyzes only the aminoacylation of the cognate tRNA, suggesting the necessity of the second enzyme ThrRS-2 for trans-editing. Since the N-terminal sequence of ApThrRS-2 is similar to the sequence of the editing domain of ThrRS from Pyrococcus abyssi, ApThrRS-2 has been expected to catalyze deaminoacylation of a misacylated serine moiety at the CCA terminus.  相似文献   

16.
Yuichi Oba  Koichiro Iida 《FEBS letters》2009,583(12):2004-10795
We demonstrated that firefly luciferase has a catalytic function of fatty acyl-CoA synthesis [Oba, Y., Ojika, M. and Inouye, S. (2003) Firefly luciferase is a bifunctional enzyme: ATP-dependent monooxygenase and a long chain fatty acyl-CoA synthetase. FEBS Lett. 540, 251-254] and proposed that the evolutionary origin of beetle luciferase is a fatty acyl-CoA synthetase (FACS) in insect. In this study, we performed the functional conversion of FACS to luciferase by replacing a single amino acid to serine. This serine residue is conserved in luciferases and possibly interacts with luciferin. The mutants of FACSs in non-luminous click beetle Agrypnus binodulus (AbLL) and Drosophilamelanogaster (CG6178) gave luminescence enhancement, suggesting that the serine residue is a key substitution responsible for luminescence activity.  相似文献   

17.
18.
Guanosine 5′-monophosphate synthetase(s) (GMPS) catalyzes the final step of the de novo synthetic pathway of purine nucleotides. GMPS consists of two functional units that are present as domains or subunits: glutamine amidotransferase (GATase) and ATP pyrophosphatase (ATPPase). GATase hydrolyzes glutamine to yield glutamate and ammonia, while ATPPase utilizes ammonia to convert adenyl xanthosine 5′-monophosphate (adenyl-XMP) into guanosine 5′-monophosphate. Here we report the crystal structure of PH-ATPPase (the ATPPase subunit of the two-subunit-type GMPS from the hyperthermophilic archaeon Pyrococcus horikoshii OT3). PH-ATPPase consists of two domains (N-domain and C-domain) and exists as a homodimer in the crystal and in solution. The N-domain contains an ATP-binding platform called P-loop, whereas the C-domain contains the xanthosine 5'-monophosphate (XMP)-binding site and also contributes to homodimerization. We have also demonstrated that PH-GATase (the glutamine amidotransferase subunit of the two-subunit-type GMPS from the hyperthermophilic archaeon P. horikoshii OT3) alone is inactive, and that all substrates of PH-ATPPase except for ammonia (Mg2+, ATP and XMP) are required to stabilize the active complex of PH-ATPPase and PH-GATase subunits.  相似文献   

19.
Human purine de novo synthesis pathway contains several multi-functional enzymes, one of which, tri-functional GART, contains three enzymatic activities in a single polypeptide chain. We have solved structures of two domains bearing separate catalytic functions: glycinamide ribonucleotide synthetase and aminoimidazole ribonucleotide synthetase. Structures are compared with those of homologous enzymes from prokaryotes and analyzed in terms of the catalytic mechanism. We also report small angle X-ray scattering models for the full-length protein. These models are consistent with the enzyme forming a dimer through the middle domain. The protein has an approximate seesaw geometry where terminal enzyme units display high mobility owing to flexible linker segments. This resilient seesaw shape may facilitate internal substrate/product transfer or forwarding to other enzymes in the pathway.  相似文献   

20.
Pyrrolysyl-tRNA synthetase (PylRS), an aminoacyl-tRNA synthetase (aaRS) recently found in some methanogenic archaea and bacteria, recognizes an unusually large lysine derivative, l-pyrrolysine, as the substrate, and attaches it to the cognate tRNA (tRNAPyl). The PylRS-tRNAPyl pair interacts with none of the endogenous aaRS-tRNA pairs in Escherichia coli, and thus can be used as a novel aaRS-tRNA pair for genetic code expansion. The crystal structures of the Methanosarcina mazei PylRS revealed that it has a unique, large pocket for amino acid binding, and the wild type M. mazei PylRS recognizes the natural lysine derivative as well as many lysine analogs, including N?-(tert-butoxycarbonyl)-l-lysine (Boc-lysine), with diverse side chain sizes and structures. Moreover, the PylRS only loosely recognizes the α-amino group of the substrate, whereas most aaRSs, including the structurally and genetically related phenylalanyl-tRNA synthetase (PheRS), strictly recognize the main chain groups of the substrate. We report here that wild type PylRS can recognize substrates with a variety of main-chain α-groups: α-hydroxyacid, non-α-amino-carboxylic acid, Nα-methyl-amino acid, and d-amino acid, each with the same side chain as that of Boc-lysine. In contrast, PheRS recognizes none of these amino acid analogs. By expressing the wild type PylRS and its cognate tRNAPyl in E. coli in the presence of the α-hydroxyacid analog of Boc-lysine (Boc-LysOH), the amber codon (UAG) was recoded successfully as Boc-LysOH, and thus an ester bond was site-specifically incorporated into a protein molecule. This PylRS-tRNAPyl pair is expected to expand the backbone diversity of protein molecules produced by both in vivo and in vitro ribosomal translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号