In extension to previously applied techniques like yeast two-hybrid and GST pull-down assays, we successfully established a FACS-based FRET analysis to investigate the interaction of the Mint3 adaptor protein and the small Rab GTPase Rab6A in living mammalian cells. A Mint3 mutant containing only the PTB domain (Mint3Δ6) is able to interact with the constitutively active form of Rab6A. Mint3Δ4, a mutant lacking part of the PTB domain was unable to interact with Rab6A in GST pull-down analysis and did not produce FRET signals, when co-expressed with active Rab6A.We demonstrate that this FACS-based FRET analysis is a suitable method for interaction studies between two proteins in living cells. 相似文献
Alzheimer's disease is associated with typical brain deposits (senile plaques) consisting mainly of neurotoxic amyloid β‐peptides. These are proteolytically derived from the large type I transmembrane protein amyloid precursor protein (APP), which is possibly involved in signal transduction. The large C‐terminal domain CAPPD of the human APP ectodomain has been cloned, expressed in large amounts in Escherichia coli and purified to homogeneity. Well diffracting tetragonal crystals have been obtained and native data have been collected to 2.1 Å. Initial experimental phases from a three‐wavelength MAD experiment using (NH4)2OsCl6‐derivatized crystals are of good quality and show mostly α‐helical conformations. 相似文献
Cleavage of the amyloid precursor protein (APP) is a crucial event in Alzheimer disease pathogenesis that creates the amyloid-beta peptide (Abeta) and liberates the carboxy-terminal APP intracellular domain (AICD) into the cytosol. The interaction of the APP C terminus with the adaptor protein Fe65 mediates APP trafficking and signalling, and is thought to regulate APP processing and Abeta generation. We determined the crystal structure of the AICD in complex with the C-terminal phosphotyrosine-binding (PTB) domain of Fe65. The unique interface involves the NPxY PTB-binding motif and two alpha helices. The amino-terminal helix of the AICD is capped by threonine T(668), an Alzheimer disease-relevant phosphorylation site involved in Fe65-binding regulation. The structure together with mutational studies, isothermal titration calorimetry and nuclear magnetic resonance experiments sets the stage for understanding T(668) phosphorylation-dependent complex regulation at a molecular level. A molecular switch model is proposed. 相似文献
Rhomboids are a remarkable class of serine proteases that are embedded in lipid membranes. These membrane-bound enzymes play key roles in cellular signaling events, and disruptions in these events can result in numerous disease pathologies, including hereditary blindness, type 2 diabetes, Parkinson's disease, and epithelial cancers. Recent crystal structures of rhomboids from Escherichia coli have focused on how membrane-bound substrates gain access to a buried active site. In E. coli, it has been shown that movements of loop 5, with smaller movements in helix 5 and loop 4, act as substrate gate, facilitating inhibitor access to rhomboid catalytic residues. Herein we present a new structure of the Haemophilus influenzae rhomboid hiGlpG, which reveals disorder in loop 5, helix 5, and loop 4, indicating that, together, they represent mobile elements of the substrate gate. Substrate cleavage assays by hiGlpG with amino acid substitutions in these mobile regions demonstrate that the flexibilities of both loop 5 and helix 5 are important for access of the substrates to the catalytic residues. Mutagenesis indicates that less mobility by loop 4 is required for substrate cleavage. A reexamination of the reaction mechanism of rhomboid substrates, whereby cleavage of the scissile bond occurs on the si-face of the peptide bond, is discussed. 相似文献
A balance between the proteolytic processing of amyloid precursor protein APP through the amyloidogenic and the non-amyloidogenic pathways controls the production and release of amyloid β-protein, whose accumulation in the brain is associated to the onset of Alzheimer Disease. APP is also expressed on circulating platelets. The regulation of APP processing in these cells is poorly understood. In this work we show that platelets store considerable amounts of APP fragments, including sAPPα, that can be released upon stimulation of platelets. Moreover, platelet stimulation also promotes the proteolysis of intact APP expressed on the cell surface. This process is supported by an ADAM metalloproteinase, and causes the release of sAPPα. Processing of intact platelet APP is promoted also by treatment with calmodulin antagonist W7. W7-induced APP proteolysis occurs through the non-amyloidogenic pathway, is mediated by a metalloproteinase, and causes the release of sAPPα. Co-immunoprecipitation and pull-down experiments revealed a physical association between calmodulin and APP. These results document a novel role of calmodulin in the regulation of non-amyloidogenic processing of APP. 相似文献
J. Neurochem. (2012) 122, 1010-1022. ABSTRACT: Amyloid precursor protein (APP) is involved in the pathogenesis of Alzheimer's disease. It is axonally transported, endocytosed and sorted to different cellular compartments where amyloid beta (Aβ) is produced. However, the mechanism of APP trafficking remains unclear. We present evidence that huntingtin associated protein 1 (HAP1) may reduce Aβ production by regulating APP trafficking to the non-amyloidogenic pathway. HAP1 and APP are highly colocalized in a number of brain regions, with similar distribution patterns in both mouse and human brains. They are associated with each other, the interacting site is the 371-599 of HAP1. APP is more retained in cis-Golgi, trans-Golgi complex, early endosome and ER-Golgi intermediate compartment in HAP1-/- neurons. HAP1 deletion significantly alters APP endocytosis and reduces the re-insertion of APP into the cytoplasmic membrane. Amyloid precursor protein-YFP(APP-YFP) vesicles in HAP1-/- neurons reveal a decreased trafficking rate and an increased number of motionless vesicles. Knock-down of HAP1 protein in cultured cortical neurons of Alzheimer's disease mouse model increases Aβ levels. Our data suggest that HAP1 regulates APP subcellular trafficking to the non-amyloidogenic pathway and may negatively regulate Aβ production in neurons. 相似文献
The amyloid precursor protein (APP) belongs to a conserved gene family, also including the amyloid precursor-like proteins, APLP1 and APLP2. We have previously shown that all members of the APP protein family are up-regulated upon retinoic acid (RA)-induced neuronal differentiation of SH-SY5Y neuroblastoma cells. Here, we demonstrate that RA also affects the processing of APLP2 and APP, as shown by increased shedding of both sAPLP2 and sAPPalpha, as well as elevated levels of the APP intracellular domains (AICDs). Brain-derived neurotrophic factor (BDNF) has been reported to induce APP promoter activity and RA induces expression of the tyrosine kinase receptor B (TrkB) in neuroblastoma cells. We show that the increase in shedding of both APLP2 and APP in response to RA is not mediated through the TrkB receptor. However, BDNF concomitant with RA increased the expression of APP even further. In addition, the secretion of sAPLP2 and sAPPalpha as well as the levels of AICDs were increased in response to BDNF. In contrast, the levels of membrane-bound APP C-terminal fragment C99 significantly decreased. Our results suggest that RA and BDNF shifts APP processing towards the alpha-secretase pathway. In addition, we show that RA and BDNF regulate N-linked glycosylation of APLP1. 相似文献
Amyloid beta (Aβ) precursor protein (APP) is a key protein in the pathogenesis of Alzheimer’s disease (AD). Both APP and its paralogue APLP1 (amyloid beta precursor-like protein 1) have multiple functions in cell adhesion and proliferation. Previously it was thought that autophagy is a novel beta-amyloid peptide (Aβ)-generating pathway activated in AD. However, the protein proteolysis of APLP1 is still largely unknown. The present study shows that APLP1 is rapidly degraded in neuronal cells in response to stresses, such as proteasome inhibition. Activation of the endoplasmic reticulum (ER) stress by proteasome inhibitors induces autophagy, causing reduction of mature APLP1/APP. Blocking autophagy or JNK stress kinase rescues the protein expression for both APP and APLP1. Therefore, our results suggest that APP/APLP1 is degraded through autophagy and the APLP1 proteolysis is mainly mediated by autophagy-lysosome pathway. 相似文献
Hyperammonemia is known to cause various neurological dysfunctions such as seizures and cognitive impairment. Several studies have suggested that hyperammonemia may also be linked to the development of Alzheimer’s disease (AD). However, the direct evidence for a role of ammonia in the pathophysiology of AD remains to be discovered. Herein, we report that hyperammonemia increases the amount of mature amyloid precursor protein (mAPP) in astrocytes, the largest and most prevalent type of glial cells in the central nervous system that are capable of metabolizing glutamate and ammonia, and promotes amyloid beta (Aβ) production. We demonstrate the accumulation of mAPP in astrocytes was primarily due to enhanced endocytosis of mAPP from the plasma membrane. A large proportion of internalized mAPP was targeted not to the lysosome, but to the endoplasmic reticulum, where processing enzymes β-secretase BACE1 (beta-site APP cleaving enzyme 1) and γ-secretase presenilin-1 are expressed, and mAPP is cleaved to produce Aβ. Finally, we show the ammonia-induced production of Aβ in astrocytic endoplasmic reticulum was specific to Aβ42, a principal component of senile plaques in AD patients. Our studies uncover a novel mechanism of Aβ42 production in astrocytes and also provide the first evidence that ammonia induces the pathogenesis of AD by regulating astrocyte function. 相似文献
The accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) is known to activate the ER, which is termed ER stress. Here, we demonstrated that amyloid precursor protein (APP) is a novel mediator of ER stress-induced apoptosis through the C/EBP homologous protein (CHOP) pathway. Expression of APP mRNA was elevated by tunicamycin- or dithiothreitol-induced ER stress. The levels of C83 and APP intracellular domain (AICD) fragments, which are cleaved from APP, were significantly increased under ER stress, although the protein level of full-length APP was decreased. Cellular viability was reduced in APP-over-expressing cells, which was attenuated by treatment with a γ-secretase inhibitor, N -[ N -(3,5-difluorophenacetyl)-L-alanyl]- S -phenylglycine t -butyl ester (DAPT). Cellular viability was also reduced in AICD-FLAG-over-expressing cells. The mRNA and protein levels of CHOP, an ER stress-responsive gene, were remarkably increased by APP over-expression, which was attenuated by treatment with DAPT. CHOP mRNA induction was also found in AICD-FLAG-over-expressing cells. Cell death and CHOP up-regulation by ER stress were attenuated by APP knockdown. Data obtained with a luciferase assay and chromatin immunoprecipitation assay indicated that AICD associates with the promoter region of the CHOP gene. In conclusion, ER stress-induced APP undergoes α- and γ-secretase cleavage and subsequently induces CHOP-mediated cell death. 相似文献
The function of amyloid precursor protein (APP) is unknown, although the discovery that it contributes to the regulation of surface expression of N‐methyl‐d ‐aspartate (NMDA) receptors has afforded new insights into its functional significance. Since APP is a member of a gene family that contains two other members, amyloid precursor‐like proteins 1 and 2 (APLP1 and APLP2), it is important to determine if the related APP proteins possess the same properties as APP with respect to their interactions with NMDA receptors. Following expression in mammalian cells, both APLP1 and APLP2 behaved similarly to APP in that they both co‐immunoprecipitated with the two major NMDA receptor subtypes, GluN1/GluN2A and GluN1/GluN2B, via interaction with the obligatory GluN1 subunit. Immunoprecipitations from detergent extracts of adult mammalian brain showed co‐immunoprecipitation of APLP1 and APLP2 with GluN2A‐ and GluN2B‐containing NMDA receptors. Furthermore, similarly to APP, APLP1 and APLP2 both enhanced GluN1/GluN2A and GluN1/GluN2B cell surface expression. Thus, all the three members of the APP gene family behave similarly in that they each contribute to the regulation of cell surface NMDA receptor homoeostasis.
To better understand amyloid-beta (Abeta) metabolism in vivo, we assessed the concentration of Abeta in the CSF and plasma of APP(V717F) (PDAPP) transgenic mice, a model that develops age-dependent Alzheimer's disease (AD)-like pathology. In 3-month-old mice, prior to the development of Abeta deposition in the brain, there was a highly significant correlation between Abeta levels in CSF and plasma. In 9-month-old-mice, an age at which some but not all mice have developed Abeta deposition, there was also a significant correlation between CSF and plasma Abeta; however, the correlation was not as strong as that present in young mice. In further exploring CSF and plasma Abeta levels in 9-month-old mice, levels of CSF Abeta were found to correlate highly with Abeta burden. Analysis of the CSF: plasma Abeta ratio revealed a selective two-fold increase in plaque versus non-plaque bearing mice, strongly suggesting a plaque-mediated sequestration of soluble Abeta in brain. Interestingly, in 9-month-old mice, a significant correlation between CNS and plasma Abeta was limited to mice lacking Abeta deposition. These findings suggest that there is a dynamic equilibrium between CNS and plasma Abeta, and that plaques create a new equilibrium because soluble CNS Abeta not only enters the plasma but also deposits onto amyloid plaques in the CNS. 相似文献
Overwhelming evidence supports the amyloid hypothesis of Alzheimer's disease that stipulates that the relative level of the 42 amino acid beta-amyloid peptide (Abeta(42)) in relationship to Abeta(40) is critical to the pathogenesis of the disease. While it is clear that the multi-subunit gamma secretase is responsible for cleavage of the amyloid precursor protein (APP) into Abeta(42) and Abeta(40), the exact molecular mechanisms regulating the production of the various Abeta species remain elusive. To elucidate the underlying mechanisms, we replaced individual amino acid residues from positions 43 to 52 of Abeta with phenylalanine to examine the effects on the production of Abeta(40) and Abeta(42). All mutants, except for V50F, resulted in a decrease in total Abeta with a more prominent reduction in Abeta for residues 45, 48, and 51, following an every three residue repetition pattern. In addition, the mutations with the strongest reductions in total Abeta had the largest increases in the ratio of Abeta(42)/Abeta(40). Curiously, the T43F, V44F, and T48F mutations caused a striking decrease in the accumulation of membrane bound Abeta(46), albeit by a different mechanism. Our data suggest that initial cleavage of APP at the epsilon site is crucial in the generation of Abeta. The implicated sequential cleavage and an alpha-helical model may lead to a better understanding of the gamma-secretase-mediated APP processing and may also provide useful information for therapy and drug design aimed at altering Abeta production. 相似文献
Amyloid β proteins extracted from the amyloid cores of neuritic plaques are considerably racemized at their Asp residues. To assess the impact of d-Asp on amyloid β1-42 conformation and on initiation of amyloid fibril formation, we used wild-type amyloid β1-42 and analogs in which d-Asp was substituted for l-Asp at residues 1, 7, 23, and all combinations of these residues. Amyloid fibril formation was enhanced by d-Asp23; modulation of Asp chirality at N-terminal position 1 blocked this enhancement and modulation at position 7 augmented it. Knowledge of such chirality modifications may help to develop potent inhibitors of amyloid fibril formation. 相似文献
Anterograde transport of herpes simplex virus (HSV) from its site of synthesis in the neuronal cell body out the neuronal process to the mucosal membrane is crucial for transmission of the virus from one person to another, yet the molecular mechanism is not known. By injecting GFP-labeled HSV into the giant axon of the squid, we reconstitute fast anterograde transport of human HSV and use this as an assay to uncover the underlying molecular mechanism. HSV travels by fast axonal transport at velocities four-fold faster (0.9 µm/sec average, 1.2 µm/sec maximal) than that of mitochondria moving in the same axon (0.2 µm/sec) and ten-fold faster than negatively charged beads (0.08 µm/sec). Transport of HSV utilizes cellular transport mechanisms because it appears to be driven from inside cellular membranes as revealed by negative stain electron microscopy and by the association of TGN46, a component of the cellular secretory pathway, with GFP-labeled viral particles. Finally, we show that amyloid precursor protein (APP), a putative receptor for the microtubule motor, kinesin, is a major component of viral particles, at least as abundant as any viral encoded protein, while another putative motor receptor, JIP 1/2, is not detected. Conventional kinesin is also associated with viral particles. This work links fast anterograde transport of the common pathogen, HSV, with the neurodegenerative Alzheimer\"s disease. This novel connection should prompt new ideas for treatment and prevention strategies. 相似文献
Animal models of human diseases that accurately recapitulate clinical pathology are indispensable for understanding molecular mechanisms and advancing preclinical studies. The Alzheimer's disease (AD) research community has historically used first‐generation transgenic (Tg) mouse models that overexpress proteins linked to familial AD (FAD), mutant amyloid precursor protein (APP), or APP and presenilin (PS). These mice exhibit AD pathology, but the overexpression paradigm may cause additional phenotypes unrelated to AD. Second‐generation mouse models contain humanized sequences and clinical mutations in the endogenous mouse App gene. These mice show Aβ accumulation without phenotypes related to overexpression but are not yet a clinical recapitulation of human AD. In this review, we evaluate different APP mouse models of AD, and review recent studies using the second‐generation mice. We advise AD researchers to consider the comparative strengths and limitations of each model against the scientific and therapeutic goal of a prospective preclinical study. 相似文献
Senescence-accelerated mouse strains have proved to be an accelerated-aging model, which mimics numerous features with Alzheimer's disease (AD). Three, six, and nine-month senescence-accelerated resistant 1 and senescence-accelerated prone 8 (SAMP8) mice were used in the current study, to unravel potential mechanisms for dementia and explore new diagnostic approaches for AD. The amyloid-β (Aβ40) and Aβ42 levels were elevated in hippocampi and platelets from SAMP8, along with a reduced α-secretase expression and an enhanced β-secretase expression extent with age, compared to control mice. Furthermore, hippocampal Aβ40 and Aβ42 of SAMP8 were positively correlated with platelet of these mice with aging progression. In addition, β-γ-secretase-modulated proteolytic proceeding of amyloid precursor protein in platelet might work through the PI3K/Akt/GSK3β pathway. These results indicate that platelet could be a potential early marker in the periphery to study the age-correlative aggregation of the amyloid-β peptide in patients with AD, while still requiring the considerable study. 相似文献