首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amyloid fibrils elongate seed dependently, with preformed fibrils providing a template for propagation of amyloidogenic conformation. Most seeding experiments use relatively few seed fibrils in comparison with monomers, resembling steady-state enzyme kinetics. Pre-steady-state kinetics should also be useful for characterizing the elongation process. With β2-microglobulin (β2-m), a protein responsible for dialysis-related amyloidosis, we measured the pre-steady-state kinetics of fibril elongation at pH 2.5, conditions under which the monomer is largely unfolded. β2-m has Trp residues at positions 60 and 95. We used three single Trp mutants and fluorescence spectroscopy to study structural change upon fibril elongation. To focus on conformational change in monomers, we prepared seeds with a mutant without a Trp residue. At a fixed concentration of monomeric β2-m, the apparent rate of fibril elongation increased with an increase in the concentration of seeds and then saturated, suggesting the accumulation of a rate-limiting intermediate. Importantly, saturation occurred at a seed/monomer ratio of around 10, as expressed by the concentration of the monomer. Because the number of monomers constituting the seed fibrils is much larger than 10, the results suggest that the elongation process is limited by “non-active-site binding.” Spectral analysis indicated that, upon this non-active-site binding, both Trp60 and Trp95 are exposed to the solvent, and then only Trp60 is buried upon transition to the fibrils. We propose a new model of fibril elongation in which non-active-site binding plays a major role.  相似文献   

2.
Amyloid is a highly ordered form of aggregate comprising long, straight and unbranched proteinaceous fibrils that are formed with characteristic nucleation-dependent kinetics in vitro. Currently, the structural molecular mechanism of fibril nucleation and elongation is poorly understood. Here, we investigate the role of the sequence and structure of the initial monomeric precursor in determining the rates of nucleation and elongation of human β2-microglobulin (β2m). We describe the kinetics of seeded and spontaneous (unseeded) fibril growth of wild-type β2m and 12 variants at pH 2.5, targeting specifically an aromatic-rich region of the polypeptide chain (residues 62-70) that has been predicted to be highly amyloidogenic. The results reveal the importance of aromatic residues in this part of the β2m sequence in fibril formation under the conditions explored and show that this region of the polypeptide chain is involved in both the nucleation and the elongation phases of fibril formation. Structural analysis of the conformational properties of the unfolded monomer for each variant using NMR relaxation methods revealed that all variants contain significant non-random structure involving two hydrophobic clusters comprising regions 29-51 and 58-79, the extent of which is critically dependent on the sequence. No direct correlation was observed, however, between the extent of non-random structure in the unfolded state and the rates of fibril nucleation and elongation, suggesting that the early stages of aggregation involve significant conformational changes from the initial unfolded state. Together, the data suggest a model for β2m amyloid formation in which structurally specific interactions involving the highly hydrophobic and aromatic-rich region comprising residues 62-70 provide a complementary interface that is key to the generation of amyloid fibrils for this protein at acidic pH.  相似文献   

3.
Amyloid plaques in brain tissue are a hallmark of Alzheimer's disease. Primary components of these plaques are 40- and 42-residue peptides, denoted A beta(1-40) and A beta(1-42), that are derived by proteolysis of cellular amyloid precursor protein. Synthetic A beta(1-40) and A beta(1-42) form amyloid fibrils in vitro that share many features with the amyloid in plaques. Soluble intermediates in A beta fibrillogenesis, termed protofibrils, have been identified previously, and here we describe the in vitro formation and isolation of A beta(1-40) protofibrils by size exclusion chromatography. In some experiments, the A beta(1-40) was radiomethylated to better quantify various A beta species. Mechanistic studies clarified two separate modes of protofibril growth, elongation by monomer deposition and protofibril-protofibril association, that could be resolved by varying the NaCl concentration. Small isolated protofibrils in dilute Tris-HCl buffers were directed along the elongation pathway by addition of A beta(1-40) monomer or along the association pathway by addition of NaCl. Multi-angle light scattering analysis revealed that protofibrils with initial molecular masses M(w) of (7-30) x 10(3) kDa grew to M(w) values of up to 250 x 10(3) kDa by these two growth processes. However, the mass per unit length of the associated protofibrils was about 2-3 times that of the elongated protofibrils. Rate constants for further elongation by monomer deposition with the elongated, associated, and initial protofibril pools were identical when equal number concentrations of original protofibrils were compared, indicating that the original number of protofibril ends had not been altered by the elongation or association processes. Atomic force microscopy revealed heterogeneous initial protofibrils that became more rodlike following the elongation reaction. Our data indicate that protofibril elongation in the absence of NaCl results from monomer deposition only at the ends of protofibrils and proceeds without an increase in protofibril diameter. In contrast, protofibril association occurs in the absence of monomer when NaCl is introduced, but this association involves lateral interactions that result in a relatively disordered fibril structure.  相似文献   

4.
Formation of fibrillar structures of proteins that deposit into aggregates has been suggested to play a key role in various neurodegenerative diseases. However mechanisms and dynamics of fibrillization remains to be elucidated. We have previously established that lithostathine, a protein overexpressed in the pre-clinical stages of Alzheimer''s disease and present in the pathognomonic lesions associated with this disease, form fibrillar aggregates after its N-terminal truncation. In this paper we visualized, using high-speed atomic force microscopy (HS-AFM), growth and assembly of lithostathine protofibrils under physiological conditions with a time resolution of one image/s. Real-time imaging highlighted a very high velocity of elongation. Formation of fibrils via protofibril lateral association and stacking was also monitored revealing a zipper-like mechanism of association. We also demonstrate that, like other amyloid ß peptides, two lithostathine protofibrils can associate to form helical fibrils. Another striking finding is the propensity of the end of a growing protofibril or fibril to associate with the edge of a second fibril, forming false branching point. Taken together this study provides new clues about fibrillization mechanism of amyloid proteins.  相似文献   

5.
Amyloid fibrils and their oligomeric intermediates accumulate in several age-related diseases where their presence is considered to play an active role in disease progression. A common characteristic of amyloid fibril formation is an initial lag phase indicative of a nucleation-elongation mechanism for fibril assembly. We have investigated fibril formation by human apolipoprotein (apo) C-II. ApoC-II readily forms amyloid fibrils in a lipid-dependent manner via an initial nucleation step followed by fibril elongation, breaking, and joining. We used fluorescence techniques and stopped-flow analysis to identify the individual kinetic steps involved in the activation of apoC-II fibril formation by the short-chain phospholipid dihexanoyl phosphatidylcholine (DHPC). Submicellar DHPC activates fibril formation by promoting the rapid formation of a tetrameric species followed by a slow isomerisation that precedes monomer addition and fibril growth. Global fitting of the concentration dependence of apoC-II fibril formation showed that DHPC increased the overall tetramerisation constant from 7.5 × 10− 13 to 1.2 × 10− 6 μM− 3 without significantly affecting the rate of fibril elongation, breaking, or joining. Studies on the effect of DHPC on the free pool of apoC-II monomer and on fibril formation by cross-linked apoC-II dimers further demonstrate that DHPC affects nucleation but not elongation. These studies demonstrate the capacity of small lipid compounds to selectively target individual steps in the amyloid fibril forming pathway.  相似文献   

6.
Aggregation of amyloid-β (Aβ) peptide, a 39- to 43-residue fragment of the amyloid precursor protein, is associated with Alzheimer's disease, the most common form of dementia in the elderly population. Several experimental studies have tried to characterize the atomic details of amyloid fibrils, which are the final product of Aβ aggregation. Much less is known about species forming during the early stages of aggregation, in particular about the monomeric state of the Aβ peptide that may be viewed as the product of the very first step in the hypothesized amyloid cascade. Here, the equilibrium ensembles of monomeric Aβ alloforms Aβ1-40 and Aβ1-42 are investigated by Monte Carlo simulations using an atomistic force field and implicit solvent model that have been shown previously to correctly reproduce the ensemble properties of other intrinsically disordered polypeptides.Our simulation results indicate that at physiological temperatures, both alloforms of Aβ assume a largely collapsed globular structure. Conformations feature a fluid hydrophobic core formed, on average, by contacts both within and between the two segments comprising residues 12-21 and 24-40/42, respectively. Furthermore, the 11 N-terminal residues are completely unstructured, and all charged side chains, in particular those of Glu22 and Asp23, remain exposed to solvent. Taken together, these observations indicate a micelle-like† architecture at the monomer level whose implications for oligomerization, as well as fibril formation and elongation, are discussed. We establish quantitatively the intrinsic disorder of Aβ and find the propensity to form regular secondary structure to be low but sequence specific. In the presence of a global and unspecific bias for backbone conformations to populate the β-basin, the β-sheet propensity along the sequence is consistent with the arrangement of the monomer within the fibril, as derived from solid-state NMR data. These observations indicate that the primary sequence partially encodes fibril structure, but that fibril elongation must be thought of as a templated assembly step.  相似文献   

7.
The growth mechanism of β-amyloid (Aβ) peptide fibrils was studied by a physics-based coarse-grained united-residue model and molecular dynamics (MD) simulations. To identify the mechanism of monomer addition to an Aβ1-40 fibril, we placed an unstructured monomer at a distance of 20 Å from a fibril template and allowed it to interact freely with the latter. The monomer was not biased towards fibril conformation by either the force field or the MD algorithm. With the use of a coarse-grained model with replica-exchange molecular dynamics, a longer timescale was accessible, making it possible to observe how the monomers probe different binding modes during their search for the fibril conformation. Although different assembly pathways were seen, they all follow a dock-lock mechanism with two distinct locking stages, consistent with experimental data on fibril elongation. Whereas these experiments have not been able to characterize the conformations populating the different stages, we have been able to describe these different stages explicitly by following free monomers as they dock onto a fibril template and to adopt the fibril conformation (i.e., we describe fibril elongation step by step at the molecular level). During the first stage of the assembly (“docking”), the monomer tries different conformations. After docking, the monomer is locked into the fibril through two different locking stages. In the first stage, the monomer forms hydrogen bonds with the fibril template along one of the strands in a two-stranded β-hairpin; in the second stage, hydrogen bonds are formed along the second strand, locking the monomer into the fibril structure. The data reveal a free-energy barrier separating the two locking stages. The importance of hydrophobic interactions and hydrogen bonds in the stability of the Aβ fibril structure was examined by carrying out additional canonical MD simulations of oligomers with different numbers of chains (4-16 chains), with the fibril structure as the initial conformation. The data confirm that the structures are stabilized largely by hydrophobic interactions and show that intermolecular hydrogen bonds are highly stable and contribute to the stability of the oligomers as well.  相似文献   

8.
9.
A method for separation and detection of major and minor components in complex mixtures has been developed, utilising two-dimensional high-performance liquid chromatography (2D-HPLC) combined with electrospray ionisation ion-trap multiple-stage mass spectrometry (ESI-ITMSn). Chromatographic conditions were matched with mass spectrometric detection to maximise the number of components that could be separated. The described procedure has proven useful to discern several hundreds of saponin components when applied to Quillaja saponaria Molina bark extracts. The discrimination of each saponin component relies on the fact that three coordinates (x, y, z) for each component can be derived from the retention time of the two chromatographic steps (x, y) and the m/z-values from the multiple-stage mass spectrometry (zn, n = 1, 2, …). Thus an improved graphical representation was obtained by combining retention times from the two-stage separation with +MS1 (z1) and the additional structural information from the second mass stage +MS2 (z2, z3) corresponding to the main fragment ions. By this approach three-dimensional plots can be made that reveal both the chromatographic and structural properties of a specific mixture which can be useful in fingerprinting of complex mixtures.  相似文献   

10.
β-淀粉样蛋白(β-amyloid peptide, Aβ)与神经细胞膜的相互作用是阿尔茨海默症(Alzheimer’s disease, AD)发病的重要事件,但不同寡聚形式的Aβ与细胞膜相互作用的差异仍缺乏直接比较。本文通过膜天平、透射电子显微镜、Thioflavin T(ThT)和细胞毒性实验等方法,检测Aβ42单体、ADDL、原纤维等形式的β-淀粉样蛋白与磷脂膜的作用方式,分析不同形式淀粉样蛋白对细胞的毒性作用。结果显示,(1)单层膜的实验数据可以判断Aβ42单体和寡聚体插膜能力存在差异,Aβ42单体能插入磷脂单层膜内,而Aβ42 ADDL不具备插膜能力;(2)透射电镜和ThT荧光检测,定性定量地分析出不同聚集形式的Aβ42具有不同的纤维化能力,Aβ42单体纤维化能力最强,而Aβ42原纤维的纤维化能力次之,Aβ42ADDL很难形成纤维;(3)Aβ42单体细胞毒性较弱,而Aβ42 ADDL和原纤维的细胞毒性较强。由以上结果可以得出结论:在磷脂膜存在的条件下,Aβ42单体可以插入膜内并迅速形成无毒性的Aβ42纤维,因此,细胞毒性较弱。而ADDL及原纤维不能插入膜内,纤维化能力较弱,从而以寡聚体的形式发挥细胞毒性。将单体、ADDL及原纤维形式的Aβ42与细胞膜相互作用进行分析,将为Aβ42在AD中的毒性机制研究提供一定的参考。但各种寡聚体入胞的方式及毒性机制仍需要进一步研究。  相似文献   

11.
Amyloid fibrils can be generated from proteins with diverse sequences and folds. Although amyloid fibrils assembled in vitro commonly involve a single protein precursor, fibrils formed in vivo can contain more than one protein sequence. How fibril structure and stability differ in fibrils composed of single proteins (homopolymeric fibrils) from those generated by co-polymerization of more than one protein sequence (heteropolymeric fibrils) is poorly understood. Here we compare the structure and stability of homo and heteropolymeric fibrils formed from human β2-microglobulin and its truncated variant ΔN6. We use an array of approaches (limited proteolysis, magic angle spinning NMR, Fourier transform infrared spectroscopy, and fluorescence) combined with measurements of thermodynamic stability to characterize the different fibril types. The results reveal fibrils with different structural properties, different side-chain packing, and strikingly different stabilities. These findings demonstrate how co-polymerization of related precursor sequences can expand the repertoire of structural and thermodynamic polymorphism in amyloid fibrils to an extent that is greater than that obtained by polymerization of a single precursor alone.  相似文献   

12.
《Insect Biochemistry》1990,20(2):149-156
The precursors and directionality of synthesis of the methyl branched cuticular hydrocarbons and the female contact sex pheromone, 3,11-dimethyl-2-nonacosanone, of the German cockroach, Blattella germanica, were investigated by radiotracer and carbon-13 NMR techniques. The amino acids [G-3H]valine, [4,5-3H]isoleucine and [3,4-14C2]methionine labeled the hydrocarbon fraction in a manner indicating that the carbon skeletons of all three amino acids serve as the methyl branch group donor. The incorporation of [1,4-14C2]- and [2,3-14C2]succinates into the hydrocarbon and acylglycerol/polar lipid fractions indicated that succinate also served as a precursor to methylmalonyl-CoA. Carbon-13 NMR analyses showed that [1-13C]propionate labeled the carbon adjacent to the tertiary carbon, and, for the 3,x-dimethylalkanes, that carbon-4 and not carbon-2 was enriched. [1-13C]Acetate labeled carbon-2 of these hydrocarbons. This indicates that the methyl branching groups of the 3,x-dimethylalkanes were inserted early in the chain elongation process. [3,4,5-13C3]Valine labeled the methyl, tertiary and carbon adjacent to the tertiary carbon of the methyl branched alkanes. Thus, the methyl branched hydrocarbon was formed by the insertion of methylmalonyl units derived from propionate, isoleucine, valine, methionine and succinate early in chain elongation.  相似文献   

13.
Systemic amyloid light-chain (LC) amyloidosis is a disease process characterized by the pathological deposition of monoclonal LCs in tissue. All LC subtypes are capable of fibril formation although λ chains, particularly those belonging to the λ6 type, are overrepresented. Here, we report the thermodynamic and in vitro fibrillogenic properties of several mutants of the λ6 protein 6aJL2 in which Pro7 and/or His8 was substituted by Ser or Pro. The H8P and H8S mutants were almost as stable as the wild-type protein and were poorly fibrillogenic. In contrast, the P7S mutation decreased the thermodynamic stability of 6aJL2 and greatly enhanced its capacity to form amyloid-like fibrils in vitro. The crystal structure of the P7S mutant showed that the substitution induced both local and long-distance effects, such as the rearrangement of the VL (variable region of the light chain)-VL interface. This mutant crystallized in two orthorhombic polymorphs, P212121 and C2221. In the latter, a monomer that was not arranged in the typical Bence-Jones dimer was observed for the first time. Crystal-packing analysis of the C2221 lattice showed the establishment of intermolecular β-β interactions that involved the N-terminus and β-strand B and that these could be relevant in the mechanism of LC fibril formation. Our results strongly suggest that Pro7 is a key residue in the conformation of the N-terminal sheet switch motif and, through long-distance interactions, is also critically involved in the contacts that stabilized the VL interface in λ6 LCs.  相似文献   

14.
It has been established that the enzyme susceptibility of collagen, the predominant load-bearing protein in vertebrates, is altered by applied tension. However, whether tensile force increases or decreases the susceptibility to enzyme is a matter of contention. It is critical to establish a definitive understanding of the direction and magnitude of the force versus catalysis rate (k C ) relationship if we are to properly interpret connective tissue development, growth, remodeling, repair, and degeneration. In this investigation, we examine collagen/enzyme mechanochemistry at the smallest scale structurally relevant to connective tissue: the native collagen fibril. A single-fibril mechanochemical erosion assay with nN force resolution was developed which permits detection of the loss of a few layers of monomer from the fibril surface. Native type I fibrils (bovine) held at three levels of tension were exposed to Clostridium histolyticum collagenase A. Fibrils held at zero-load failed rapidly and consistently (20 min) while fibrils at 1.8 pN/monomer failed more slowly (35–55 min). Strikingly, fibrils at 23.9 pN/monomer did not exhibit detectable degradation. The extracted force versus k C data were combined with previous single-molecule results to produce a “master curve” which suggests that collagen degradation is governed by an extremely sensitive mechanochemical switch.  相似文献   

15.
DNA intercalators that have high affinity and slow kinetics are developed for potential DNA-targeted therapeutics. Although many natural intercalators contain multiple chiral subunits, only intercalators with a single chiral unit have been quantitatively probed. Dumbbell-shaped DNA threading intercalators represent the next order of structural complexity relative to simple intercalators, and can provide significant insights into the stereoselectivity of DNA-ligand intercalation. We investigated DNA threading intercalation by binuclear ruthenium complex [μ-dppzip(phen)4Ru2]4+ (Piz). Four Piz stereoisomers are defined by the chirality of the intercalating subunit (Ru(phen)2dppz) and the distal subunit (Ru(phen)2ip), respectively, each of which can be either right-handed (Δ) or left-handed (Λ). We used optical tweezers to measure single DNA molecule elongation due to threading intercalation, revealing force-dependent DNA intercalation rates and equilibrium dissociation constants. The force spectroscopy analysis provided the zero-force DNA binding affinity, the equilibrium DNA-ligand elongation Δxeq, and the dynamic DNA structural deformations during ligand association xon and dissociation xoff. We found that Piz stereoisomers exhibit over 20-fold differences in DNA binding affinity, from a Kd of 27 ± 3 nM for (Δ,Λ)-Piz to a Kd of 622 ± 55 nM for (Λ,Δ)-Piz. The striking affinity decrease is correlated with increasing Δxeq from 0.30 ± 0.02 to 0.48 ± 0.02 nm and xon from 0.25 ± 0.01 to 0.46 ± 0.02 nm, but limited xoff changes. Notably, the affinity and threading kinetics is 10-fold enhanced for right-handed intercalating subunits, and 2- to 5-fold enhanced for left-handed distal subunits. These findings demonstrate sterically dispersed transition pathways and robust DNA structural recognition of chiral intercalators, which are critical for optimizing DNA binding affinity and kinetics.  相似文献   

16.
The ability of a single polypeptide sequence to grow into multiple stable amyloid fibrils sets these aggregates apart from most native globular proteins. The existence of multiple amyloid forms is the basis for strain effects in yeast prion biology, and might contribute to variations in Alzheimer's disease pathology. However, the structural basis for amyloid polymorphism is poorly understood. We report here five structurally distinct fibrillar aggregates of the Alzheimer's plaque peptide Aβ(1-40), as well as a non-fibrillar aggregate induced by Zn2+. Each of these conformational forms exhibits a unique profile of physical properties, and all the fibrillar forms breed true in elongation reactions under a common set of growth conditions. Consistent with their defining cross-β structure, we find that in this series the amyloid fibrils containing more extensive β-sheet exhibit greater stability. At the same time, side chain packing outside of the β-sheet regions contributes to stability, and to differences of stability between polymorphic forms. Stability comparison is facilitated by the unique feature that the free energy of the monomer (equivalent to the unfolded state in a protein folding reaction) does not vary, and hence can be ignored, in the comparison of ΔG° of elongation values for each polymorphic fibril obtained under a single set of conditions.  相似文献   

17.
Light chain amyloidosis is a devastating disease where immunoglobulin light chains form amyloid fibrils, resulting in organ dysfunction and death. Previous studies have shown a direct correlation between the protein thermodynamic stability and the propensity for amyloid formation for some proteins involved in light chain amyloidosis. Here we investigate the effect of somatic mutations on protein stability and in vitro fibril formation of single and double restorative mutants of the protein AL-103 compared to the wild-type germline control protein. A scan rate dependence and hysteresis in the thermal unfolding and refolding was observed for all proteins. This indicates that the unfolding/refolding reaction is kinetically determined with different kinetic constants for unfolding and refolding even though the process remains experimentally reversible. Our structural analysis of AL-103 and AL-103 delP95aIns suggests a kinetic coupling of the unfolding/refolding process with cistrans prolyl isomerization. Our data reveal that the deletion of proline 95a (AL-103 delP95aIns), which removes the transcis di-proline motif present in the patient protein AL-103, results in a dramatic increment in the thermodynamic stability and a significant delay in fibril formation kinetics with respect to AL-103. Fibril formation is pH dependent; all proteins form fibrils at pH 2; reactions become slower and more stochastic as the pH increases up to pH 7. Based on these results, we propose that, in addition to thermodynamic stability, kinetic stability (possibly influenced by the presence of cis proline 95a) plays a major role in the AL-103 amyloid fibril formation process.  相似文献   

18.
Parkinson's disease (PD) is a movement disorder characterized by the loss of dopaminergic neurons in the substantia nigra and the formation of intraneuronal inclusions called Lewy bodies, which are composed mainly of α-synuclein (α-syn). Selegiline (Sel) is a noncompetitive monoamino oxidase B inhibitor that has neuroprotective effects and has been administered to PD patients as monotherapy or in combination with l-dopa. Besides its known effect of increasing the level of dopamine (DA) by monoamino oxidase B inhibition, Sel induces other effects that contribute to its action against PD. We evaluated the effects of Sel on the in vitro aggregation of A30P and wild-type α-syn. Sel delays fibril formation by extending the lag phase of aggregation. In the presence of Sel, electron microscopy reveals amorphous heterogeneous aggregates, including large annular species, which are innocuous to a primary culture enriched in dopaminergic neurons, while their age-matched counterparts are toxic. The inhibitory effect displayed by Sel is abolished when seeds (small fibril pieces) are added to the aggregation reaction, reinforcing the hypothesis that Sel interferes with early nuclei formation and, to a lesser extent, with fibril elongation. NMR experiments indicate that Sel does not interact with monomeric α-syn. Interestingly, when added in combination with DA (which favors the formation of toxic protofibrils), Sel overrides the inhibitory effect of DA and favors fibrillation. Additionally, Sel blocks the formation of smaller toxic aggregates by perturbing DA-dependent fibril disaggregation. These effects might be beneficial for PD patients, since the sequestration of protofibrils into fibrils or the inhibition of fibril dissociation could alleviate the toxic effects of protofibrils on dopaminergic neurons. In nondopaminergic neurons, Sel might slow the fibrillation, giving rise to the formation of large nontoxic aggregates.  相似文献   

19.
Light chain amyloidosis is one of the most common systemic amyloidosis, characterized by the deposition of immunoglobulin light variable domain as insoluble amyloid fibrils in vital organs, leading to the death of patients. Germline λ6a is closely related with this disease and has been reported that 25% of proteins encoded by this germline have a change at position 24 where an Arg is replaced by a Gly (R24G). This germline variant reduces protein stability and increases the propensity to form amyloid fibrils. In this work, the crystal structure of 6aJL2-R24G has been determined to 2.0 Å resolution by molecular replacement. Crystal belongs to space group I212121 (PDB ID 5JPJ) and there are two molecules in the asymmetric unit. This 6aJL2-R24G structure as several related in PDB (PDB entries: 5C9K, 2W0K, 5IR3 and 1PW3) presents by crystal packing the formation of an octameric assembly in a helicoidal arrangement, which has been proposed as an important early stage in amyloid fibril aggregation. However, other structures of other protein variants in PDB (PDB entries: 3B5G, 3BDX, 2W0L, 1CD0 and 2CD0) do not make the octameric assembly, regardless their capacity to form fibers in vitro or in vivo. The analysis presented here shows that the ability to form the octameric assembly in a helicoidal arrangement in crystallized light chain immunoglobulin proteins is not required for amyloid fibril formation in vitro. In addition, the fundamental role of partially folded states in the amyloid fibril formation in vitro, is not described in any crystallographic structure published or analyzed here, being those structures, in any case examples of proteins in their native states. Those partially folded states have been recently described by cryo-EM studies, showing the necessity of structural changes in the variants before the amyloid fiber formation process starts.  相似文献   

20.
Transmissible spongiform encephalopathies are fatal neurodegenerative disorders thought to be transmitted by self-perpetuating conformational conversion of a neuronal membrane glycoprotein (PrPC, for “cellular prion protein”) into an abnormal state (PrPSc, for “scrapie prion protein”). Doppel (Dpl) is a protein that shares significant biochemical and structural homology with PrPC. In contrast to its homologue PrPC, Dpl is unable to participate in prion disease progression or to achieve an abnormal PrPSc-like state. We have constructed a chimeric mouse protein, composed of the N-terminal domain of PrPC (residues 23-125) and the C-terminal part of Dpl (residues 58-157). This chimeric protein displays PrP-like biochemical and structural features; when incubated in presence of NaCl, the α-helical monomer forms soluble β-sheet-rich oligomers which acquire partial resistance to pepsin proteolysis in vitro, as do PrP oligomers. Moreover, the presence of aggregates akin to protofibrils is observed in soluble oligomeric species by electron microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号