首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Similar to its close relative human herpesvirus 8, rhesus monkey rhadinovirus (RRV) persists predominantly in B cells of its natural host. Rhesus monkey B-cell lines immortalized by the Epstein-Barr-related virus from rhesus monkeys (rhEBV) were used as targets for infection by RRV. These cultured B cells were susceptible to infection by RRV and continued to produce low titers of RRV for months of continuous culture. Infection by RRV did not detectably alter the growth rates of these B-cell lines when it was measured at standard or reduced serum concentrations. Depending on the cell line, 5 to 40% of the B cells stained positive for the RRV genome by fluorescence in situ hybridization (FISH). Most RRV-positive cells showed a fine punctate nuclear staining pattern consistent with latent infection, while a small minority of cells (0.2 to 1%) contained large, intensely staining nuclear foci consistent with productive, replicative infection. Greater than 90% of the cells were rhEBV genome positive in a pattern consistent with latent infection, and again only a small minority of cells showed a productive, replicative staining pattern. Dual, two-color FISH staining revealed coinfection of numerous cells with both RRV and rhEBV, but productive replication of RRV and rhEBV was always observed in separate cells, never in the same cell. Thus, productive replication of RRV is unlinked to that of rhEBV; factors that influence activation to productive replication act separately on RRV and rhEBV, even within the same cell. The percentage of B cells expressing green fluorescent protein (GFP) early after infection with a recombinant RRV containing a GFP reporter gene was dose dependent and at a low multiplicity of infection increased progressively over time until 14 to 17 days after infection. These results establish a naturalistic cell culture system for the study of infection and persistence by RRV in rhesus monkey B cells.  相似文献   

2.
A herpesvirus that is related to but distinct from the Kaposi's sarcoma-associated herpesvirus (KSHV, or human herpesvirus 8) was isolated from rhesus monkeys. The sequence of 10.6 kbp from virion DNA revealed the presence of an interleukin-6 homolog similar to what is present in KSHV and a closer relatedness of the DNA polymerase and glycoprotein B reading frames to those of KSHV than to those of any other herpesvirus. This rhesus monkey herpesvirus replicated lytically and to high titers in cultured rhesus monkey fibroblasts. Antibody testing revealed a high prevalence for at least 10 years in our rhesus monkey colony and a high prevalence in two other colonies that were tested. Thus, rhesus monkeys naturally harbor a virus related to KSHV, which we have called RRV, for rhesus monkey rhadinovirus.  相似文献   

3.
The primary sequence of the long unique region L-DNA (L for low GC) of rhesus monkey rhadinovirus (RRV) isolate 26-95 was determined. The L-DNA consists of 130,733 bp that contain 84 open reading frames (ORFs). The overall organization of the RRV26-95 genome was found to be very similar to that of human Kaposi sarcoma-associated herpesvirus (KSHV). BLAST search analysis revealed that in almost all cases RRV26-95 coding sequences have a greater degree of similarity to corresponding KSHV sequences than to other herpesviruses. All of the ORFs present in KSHV have at least one homologue in RRV26-95 except K3 and K5 (bovine herpesvirus-4 immediate-early protein homologues), K7 (nut-1), and K12 (Kaposin). RRV26-95 contains one MIP-1 and eight interferon regulatory factor (vIRF) homologues compared to three MIP-1 and four vIRF homologues in KSHV. All homologues are correspondingly located in KSHV and RRV with the exception of dihydrofolate reductase (DHFR). DHFR is correspondingly located near the left end of the genome in RRV26-95 and herpesvirus saimiri (HVS), but in KSHV the DHFR gene is displaced 16,069 nucleotides in a rightward direction in the genome. DHFR is also unusual in that the RRV26-95 DHFR more closely resembles HVS DHFR (74% similarity) than KSHV DHFR (55% similarity). Of the 84 ORFs in RRV26-95, 83 contain sequences similar to the recently determined sequences of the independent RRV isolate 17577. RRV26-95 and RRV17577 sequences differ in that ORF 67.5 sequences contained in RRV26-95 were not found in RRV17577. In addition, ORF 4 is significantly shorter in RRV26-95 than was reported for RRV17577 (395 versus 645 amino acids). Only four of the corresponding ORFs between RRV26-95 and RRV17577 exhibited less than 95% sequence identity: glycoproteins H and L, uracil DNA glucosidase, and a tegument protein (ORF 67). Both RRV26-95 and RRV17577 have unique ORFs between positions 21444 to 21752 and 110910 to 114899 in a rightward direction and from positions 116524 to 111082 in a leftward direction that are not found in KSHV. Our analysis indicates that RRV26-95 and RRV17577 are clearly independent isolates of the same virus species and that both are closely related in structural organization and overall sequence to KSHV. The availability of detailed sequence information, the ability to grow RRV lytically in cell culture, and the ability to infect monkeys experimentally with RRV will facilitate the construction of mutant strains of virus for evaluating the contribution of individual genes to biological properties.  相似文献   

4.
CEMx174- and C8166-45-based cell lines which contain a secreted alkaline phosphatase (SEAP) reporter gene under the control of a tat-responsive promoter derived from either SIVmac239 or HIV-1(NL4-3) were constructed. Basal levels of SEAP activity from these cell lines were low but were greatly stimulated upon transfection of tat expression plasmids. Infection of these cell lines with simian immunodeficiency virus (SIV) or human immunodeficiency virus type 1 (HIV-1) resulted in a dramatic increase in SEAP production within 48 to 72 h that directly correlated with the amount of infecting virus. When combined with chemiluminescent measurement of SEAP activity in the cell-free supernatant, these cells formed the basis of a rapid, sensitive, and quantitative assay for SIV and HIV infectivity and neutralization. Eight of eight primary isolates of HIV-1 that were tested induced readily measurable SEAP activity in this system. While serum neutralization of cloned SIVmac239 was difficult to detect with other assays, neutralization of SIVmac239 was readily detected at low titers with this new assay system. The neutralization sensitivities of two stocks of SIVmac251 with different cell culture passage histories were tested by using sera from SIV-infected monkeys. The primary stock of SIVmac251 had been passaged only twice through primary cultures of rhesus monkey peripheral blood mononuclear cells, while the laboratory-adapted stock had been extensively passaged through the MT4 immortalized T-cell line. The primary stock of SIVmac251 was much more resistant to neutralization by a battery of polyclonal sera from SIV-infected monkeys than was the laboratory-adapted virus. Thus, SIVmac appears to be similar to HIV-1 in that extensive laboratory passage through T-cell lines resulted in a virus that is much more sensitive to serum neutralization.  相似文献   

5.
6.
Primate gamma-2 herpesviruses (rhadinoviruses) have so far been found in humans (Kaposi's sarcoma-associated herpesvirus [KSHV], also called human herpesvirus 8), macaques (Macaca spp.) (rhesus rhadinovirus [RRV] and retroperitoneal fibromatosis herpesvirus [RFHV]), squirrel monkeys (Saimiri sciureus) (herpesvirus saimiri), and spider monkeys (Ateles spp.) (herpesvirus ateles). Using serological screening and degenerate consensus primer PCR for the viral DNA polymerase gene, we have detected sequences from two distinct gamma-2 herpesviruses, termed Chlorocebus rhadinovirus 1 (ChRV1) and ChRV2, in African green monkeys. ChRV1 is more closely related to KSHV and RFHV, whereas ChRV2 is closest to RRV. Our findings suggest the existence of two distinct rhadinovirus lineages, represented by the KSHV/RFHV/ChRV1 group and the RRV/ChRV2 group, respectively, in at least two Old World monkey species. Antibodies to members of the RRV/ChRV2 lineage may cross-react in an immunofluorescence assay for early and late KSHV antigens.  相似文献   

7.
Recombinant strains of replication-competent rhesus monkey rhadinovirus (RRV) were constructed in which strong promoter/enhancer elements were used to drive expression of simian immunodeficiency virus (SIV) Env or Gag or a Rev-Tat-Nef fusion protein. Cultured rhesus monkey fibroblasts infected with each recombinant strain were shown to express the expected protein. Three RRV-negative and two RRV-positive rhesus monkeys were inoculated intravenously with a mixture of these three recombinant RRVs. Expression of SIV Gag was readily detected in lymph node biopsy specimens taken at 3 weeks postimmunization. Impressive anti-SIV cellular immune responses were elicited on the basis of major histocompatibility complex (MHC) tetramer staining and gamma interferon enzyme-linked immunospot (ELISPOT) assays. Responses were much greater in magnitude in the monkeys that were initially RRV negative but were still readily detected in the two monkeys that were naturally infected with RRV at the time of immunization. By 3 weeks postimmunization, responses measured by MHC tetramer staining in the two Mamu-A*01(+) RRV-negative monkeys reached 9.3% and 13.1% of all CD8(+) T cells in peripheral blood to the Gag CM9 epitope and 2.3% and 7.3% of all CD8(+) T cells in peripheral blood to the Tat SL8 epitope. Virus-specific CD8(+) T cell responses persisted at high levels up to the time of challenge at 18 weeks postimmunization, and responding cells maintained an effector memory phenotype. Despite the ability of the RRVenv recombinant to express high levels of Env in cultured cells, and despite the appearance of strong anti-RRV antibody responses in immunized monkeys, anti-Env antibody responses were below our ability to detect them. Immunized monkeys, together with three unimmunized controls, were challenged intravenously with 10 monkey infectious doses of SIVmac239. All five immunized monkeys and all three controls became infected with SIV, but peak viral loads were 1.2 to 3.0 log(10) units lower and chronic-phase viral loads were 1.0 to 3.0 log(10) units lower in immunized animals than the geometric mean of unimmunized controls. These differences were statistically significant. Anti-Env antibody responses following challenge indicated an anamnestic response in the vaccinated monkeys. These findings further demonstrate the potential of recombinant herpesviruses as preventive vaccines for AIDS. We hypothesize that this live, replication-competent, persistent herpesvirus vector could match, or come close to matching, live attenuated strains of SIV in the degree of protection if the difficulty with elicitation of anti-Env antibody responses can be overcome.  相似文献   

8.
The rhesus monkey rhadinovirus (RRV), a γ2-herpesvirus of rhesus macaques, shares many biological features with the human pathogenic Kaposi’s sarcoma-associated herpesvirus (KSHV). Both viruses, as well as the more distantly related Epstein-Barr virus, engage cellular receptors from the Eph family of receptor tyrosine kinases (Ephs). However, the importance of the Eph interaction for RRV entry varies between cell types suggesting the existence of Eph-independent entry pathways. We therefore aimed to identify additional cellular receptors for RRV by affinity enrichment and mass spectrometry. We identified an additional receptor family, the Plexin domain containing proteins 1 and 2 (Plxdc1/2) that bind the RRV gH/gL glycoprotein complex. Preincubation of RRV with soluble Plxdc2 decoy receptor reduced infection by ~60%, while overexpression of Plxdc1 and 2 dramatically enhanced RRV susceptibility and cell-cell fusion of otherwise marginally permissive Raji cells. While the Plxdc2 interaction is conserved between two RRV strains, 26–95 and 17577, Plxdc1 specifically interacts with RRV 26–95 gH. The Plxdc interaction is mediated by a short motif at the N-terminus of RRV gH that is partially conserved between isolate 26–95 and isolate 17577, but absent in KSHV gH. Mutation of this motif abrogated the interaction with Plxdc1/2 and reduced RRV infection in a cell type-specific manner. Taken together, our findings characterize Plxdc1/2 as novel interaction partners and entry receptors for RRV and support the concept of the N-terminal domain of the gammaherpesviral gH/gL complex as a multifunctional receptor-binding domain. Further, Plxdc1/2 usage defines an important biological difference between KSHV and RRV.  相似文献   

9.
We previously described the pattern of sequence variation in gp120 following persistent infection of rhesus monkeys with the pathogenic simian immunodeficiency virus SIVmac239 molecular clone (D.P.W. Burns and R.C. Desrosiers, J. Virol. 65:1843, 1991). Sequence changes were confined largely to five variable regions (V1 to V5), four of which correspond to human immunodeficiency virus type 1 (HIV-1) gp120 variable regions. Remarkably, 182 of 186 nucleotide substitutions that were documented in these variable regions resulted in amino acid changes. This is an extremely nonrandom pattern, which suggests selective pressure driving amino acid changes in discrete variable domains. In the present study, we investigated whether neutralizing-antibody responses are one selective force responsible at least in part for the observed pattern of sequence variation. Variant env sequences called 1-12 and 8-22 obtained 69 and 93 weeks after infection of a rhesus monkey with cloned SIVmac239 were recombined into the parental SIVmac239 genome, and variant viruses were generated by transfection of cultured cells with cloned DNA. The 1-12 and 8-22 recombinants differ from the parental SIVmac239 at 18 amino acid positions in gp120 and at 5 and 10 amino acid positions, respectively, in gp41. Sequential sera from the monkey infected with cloned SIVmac239 from which the 1-12 and 8-22 variants were isolated showed much higher neutralizing antibody titers to cloned SIVmac239 than to the cloned 1-12 and 8-22 variants. For example, at 55 weeks postinfection the neutralizing antibody titer against SIVmac239 was 640 while those to the variant viruses were 40 and less than 20. Two other rhesus monkeys infected with cloned SIVmac239 showed a similar pattern. Rhesus monkeys were also experimentally infected with the cloned variants so that the type-specific nature of the neutralizing antibody responses could be verified. Indeed, each of these monkeys showed neutralizing-antibody responses of much higher titer to the homologous variant used for infection. These experiments unambiguously demonstrate that SIV mutants resistant to serum neutralization arise during the course of persistent infection of rhesus monkeys.  相似文献   

10.
11.
12.
Recent DNA sequence analysis indicates that rhesus rhadinovirus (RRV) is a member of the lymphotropic gamma-2 herpesvirus family. To determine if RRV is lymphotropic, peripheral blood mononuclear cells from naturally infected monkeys were separated by immunomagnetic bead depletion and analyzed for the presence of RRV by virus isolation and nested PCR. The recovery and consistent detection of RRV in the CD20(+)-enriched fraction clearly demonstrates that B lymphocytes are a major site of virus persistence.  相似文献   

13.
A major goal of AIDS vaccine development is to design vaccination strategies that can elicit broad and potent protective antibodies. The initial viral targets of neutralizing antibodies (NAbs) early after human or simian immunodeficiency virus (HIV/SIV) infection are not known. The identification of early NAb epitopes that induce protective immunity or retard the progression of disease is important for AIDS vaccine development. The aim of this study was to determine the Env residues targeted by early SIV NAbs and to assess the influence of prior vaccination on neutralizing antibody kinetics and specificity during early infection. We previously described stereotypic env sequence variations in SIVmac251-infected rhesus monkeys that resulted in viral escape from NAbs. Here, we defined the early viral targets of neutralization and determined whether the ability of serum antibody from infected monkeys to neutralize SIV was altered in the setting of prior vaccination. To localize the viral determinants recognized by early NAbs, a panel of mutant pseudoviruses was assessed in a TZM-bl reporter gene neutralization assay to define the precise changes that eliminate recognition by SIV Env-specific NAbs in 16 rhesus monkeys. Changing R420 to G or R424 to Q in V4 of Env resulted in the loss of recognition by NAbs in vaccinated monkeys. In contrast, mutations in the V1 region of Env did not alter the NAb profile. These findings indicate that early NAbs are directed toward SIVmac251 Env V4 but not the V1 region, and that this env vaccination regimen did not alter the kinetics or the breadth of NAbs during early infection.  相似文献   

14.
The recognition of naturally occurring rhadinoviruses in macaque monkeys has spurred interest in their use as models for human infection with Kaposi sarcoma-associated herpesvirus (human herpesvirus 8). Rhesus macaques (Macaca mulatta) and pig-tailed macaques (Macaca nemestrina) were inoculated intravenously with rhadinovirus isolates derived from these species (rhesus rhadinovirus [RRV] and pig-tailed rhadinovirus [PRV]). Nine rhadinovirus antibody-negative and two rhadinovirus antibody-positive monkeys were used for these experimental inoculations. Antibody-negative animals clearly became infected following virus inoculation since they developed persisting antibody responses to virus and virus was isolated from peripheral blood on repeated occasions following inoculation. Viral sequences were also detected by PCR in lymph node, oral mucosa, skin, and peripheral blood mononuclear cells following inoculation. Experimentally infected animals developed peripheral lymphadenopathy which resolved by 12 weeks following inoculation, and these animals have subsequently remained free of disease. No increased pathogenicity was apparent from cross-species infection, i.e., inoculation of rhesus macaques with PRV or of pig-tailed macaques with RRV, whether the animals were antibody positive or negative at the time of virus inoculation. Coinoculation of additional rhesus monkeys with simian immunodeficiency virus (SIV) isolate SIVmac251 and macaque-derived rhadinovirus resulted in an attenuated antibody response to both agents and shorter mean survival compared to SIVmac251-inoculated controls (155.5 days versus 560.1 days; P < 0.019). Coinfected and immunodeficient macaques died of a variety of opportunistic infections characteristic of simian AIDS. PCR analysis of sorted peripheral blood mononuclear cells indicated a preferential tropism of RRV for CD20(+) B lymphocytes. Our results demonstrate persistent infection of macaque monkeys with RRV and PRV following experimental inoculation, but no specific disease was readily apparent from these infections even in the context of concurrent SIV infection.  相似文献   

15.
We have identified a lytic origin of DNA replication (oriLyt) for rhesus macaque rhadinovirus (RRV), the rhesus macaque homolog of human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus. RRV oriLyt maps to the region of the genome between open reading frame 69 (ORF69) and ORF71 (vFLIP) and is composed of an upstream A+T-rich region followed by a short (300-bp) downstream G+C-rich DNA sequence. A set of overlapping cosmids corresponding to the entire genome of RRV was capable of complementing oriLyt-dependent DNA replication only when additional ORF50 was supplied as an expression plasmid in the transfection mixture, suggesting that the level of ORF50 protein originating from input cosmid DNA was insufficient. The requirement of RRV ORF50 in the cotransfection replication assay may also suggest a direct role for this protein in DNA replication. RRV oriLyt shares a high degree of nucleotide sequence and G+C base distribution with the corresponding loci in HHV-8.  相似文献   

16.
Rhesus monkey rhadinovirus (RRV) is one of the closest phylogenetic relatives to the human pathogen Kaposi's sarcoma-associated herpesvirus (KSHV), yet it has the distinct experimental advantage of entering efficiently into lytic replication and growing to high titers in culture. RRV therefore holds promise as a potentially attractive model with which to study gammaherpesvirus structure and assembly. We have isolated RRV capsids, determined their molecular composition, and identified the genes encoding five of the main capsid structural proteins. Our data indicate that, as with other herpesviruses, lytic infection with RRV leads to the synthesis of three distinct intranuclear capsid species. However, in contrast to the inefficiency of KSHV maturation following reactivation from latently infected B-cell lines (K. Nealon, W. W. Newcomb, T. R. Pray, C. S. Craik, J. C. Brown, and D. H. Kedes, J. Virol. 75:2866-2878, 2001), de novo infection of immortalized rhesus fibroblasts with RRV results in the release of high levels of infectious virions with genome-containing C capsids at their center. Together, our findings argue for the use of RRV as a powerful model with which to study the structure and assembly of gammaherpesviruses and, specifically, the human rhadinovirus,KSHV.  相似文献   

17.
Two distinct patterns of neutralization were identified by comparing the neutralization curves of monoclonal antibodies (MAbs) directed at the two surface proteins, VP4 and VP7, of rhesus rotavirus. VP7-specific MAbs were able to neutralize virus efficiently, and slight increases in antibody concentration resulted in a sharp decline in infectivity. On the other hand, MAbs to VP4 proved much less efficient at neutralizing rhesus rotavirus, and the fraction of infectious virus decreased gradually throughout a wide range of antibody concentrations. MAbs directed at VP8*, the smaller trypsin cleavage fragment of VP4, were shown to efficiently prevent binding of radiolabeled virions to MA104 cell monolayers, to an extent and at concentrations comparable to those required for neutralization of infectivity. Conversely, MAbs recognizing VP7 or the larger VP4 trypsin cleavage product, VP5*, showed little or no inhibitory effect on virus binding to cells. All MAbs studied were able to neutralize rotavirus that was already bound to the surface of cells. The MAbs directed at VP8*, but not those recognizing VP5* or VP7, were shown to mediate release of radiolabeled virus from the surface of the cells. With MAbs directed at VP7, papain digestion of virus-bound antibody molecules led to an almost complete recovery of infectivity. Neutralization could be fully restored by incubation of virus-Fab complexes with anti-mouse immunoglobulin G antiserum. Neutralization with MAbs directed at VP8* proved insensitive to digestion with papain as well as to the addition of anti-immunoglobulin antibodies.  相似文献   

18.
We have sequenced the long unique region (LUR) and characterized the terminal repeats of the genome of a rhesus rhadinovirus (RRV), strain 17577. The LUR as sequenced is 131,364 bp in length, with a G+C content of 52.2% and a CpG ratio of 1.11. The genome codes for 79 open reading frames (ORFs), with 67 of these ORFs similar to genes found in both Kaposi's sarcoma-associated herpesvirus (KSHV) (formal name, human herpesvirus 8) and herpesvirus saimiri. Eight of the 12 unique genes show similarity to genes found in KSHV, including genes for viral interleukin-6, viral macrophage inflammatory protein, and a family of viral interferon regulatory factors (vIRFs). Genomic organization is essentially colinear with KSHV, the primary differences being the number of cytokine and IRF genes and the location of the gene for dihydrofolate reductase. Highly repetitive sequences are located in positions corresponding to repetitive sequences found in KSHV. Phylogenetic analysis of several ORFs supports the similarity between RRV and KSHV. Overall, the sequence, structural, and phylogenetic data combine to provide strong evidence that RRV 17577 is the rhesus macaque homolog of KSHV.  相似文献   

19.
Rhesus rhadinovirus (RRV) and retroperitoneal fibromatosis herpesvirus (RFHV), 2 closely related γ2 herpesviruses, are endemic in breeding populations of rhesus macaques at our institution. We previously reported significantly different prevalence levels, suggesting the transmission dynamics of RRV and RFHV differ with regard to viral shedding and infectivity. We designed a longitudinal study to further examine the previously observed differences between RRV and RFHV prevalence and the potential influence of age, season, and housing location on the same 90 rhesus macaques previously studied. Virus- and host-genome-specific real-time PCR assays were used to determine viral loads for both RRV and RFHV in blood and saliva samples collected at 6 time points over an 18-mo period. Proportions of positive animals and viral load in blood and saliva were compared between and within viruses by age group, location, and season by using 2-part longitudinal modeling with Bayesian inferences. Our results demonstrate that age and season are significant determinants, with age as the most significant factor analyzed, of viremia and oral shedding for both RRV and RFHV, and these pathogens exhibit distinctly different patterns of viremia and oral shedding over time within a single population.  相似文献   

20.
We investigated properties of the rotavirus genome segment 11 protein. A rotavirus SA11 genome segment 11 cDNA which contains the entire coding region was sequenced and inserted into the baculovirus transfer vector pVL941. Recombinants containing gene 11 cDNA were selected, and the gene 11 product expressed in Spodoptera frugiperda cells infected with these recombinants was inoculated into guinea pigs to produce hyperimmune antiserum. Characterization of the antiserum showed that it recognized a primary translation product with a molecular weight of 26,000 (26K protein) in recombinant-infected insect cells, in SA11-infected monkey kidney cells, and in cell-free translation reactions programmed with SA11 mRNA. A modified 28K product was also detected but only in SA11-infected monkey kidney cells. The 26K 28K proteins were shown to be phosphorylated in infected monkey kidney cells, and the 26K protein was phosphorylated in insect cells. We were unable to identify what type of modification caused the molecular weight shift to 28,000 in infected monkey kidney cells. Large amounts of the gene 11 product were detected by immunofluorescence in discrete foci in the cytoplasm of infected monkey kidney cells. Viruses of all known serotypes were also detected by immunofluorescence by using hyperimmune antiserum to the SA11 gene 11 product. The antiserum reacted with particle-depleted cytosol fractions but did not react with purified virus particles by immunoprecipitation or immunoblotting; it also did not neutralize virus infectivity in plaque reduction neutralization assays. Therefore, we conclude that the primary gene 11 product is a nonstructural phosphoprotein which we designated NS26.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号