首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Scavenger receptor, class B, type I (SR-BI) is a cell-surface glycoprotein that mediates selective uptake of high density lipoprotein cholesteryl ester (CE) without the concomitant uptake and degradation of the particle. We have investigated the endocytic and selective uptake of low density lipoprotein (LDL)-CE by SR-BI using COS-7 cells transiently transfected with mouse SR-BI. Analysis of lipoprotein uptake data showed a concentration-dependent LDL-CE-selective uptake when doubly labeled LDL particles were incubated with SR-BI-expressing COS-7 cells. In contrast to vector-transfected cells, SR-BI-expressing COS-7 cells showed marked increases in LDL cell association and CE uptake by the selective uptake pathway, but only a modest increase in CE uptake by the endocytic pathway. SR-BI-mediated LDL-CE-selective uptake exceeded LDL endocytic uptake by 50-100-fold. SR-BI-mediated LDL-CE-selective uptake was not inhibited by the proteoglycan synthesis inhibitor, p-nitrophenyl-beta-D-xylopyranoside or by the sulfation inhibitor sodium chlorate, indicating that SR-BI-mediated LDL-CE uptake occurs independently of LDL interaction with cell-surface proteoglycan. Analyses with subclones of Y1 adrenocortical cells showed that LDL-CE-selective uptake was proportional to the level of SR-BI expression. Furthermore, antibody directed to the extracellular domain of SR-BI blocked LDL-CE-selective uptake in adrenocortical cells. Thus, in cells that normally express SR-BI and in transfected COS-7 cells SR-BI mediates the efficient uptake of LDL-CE via the selective uptake mechanism. These results suggest that SR-BI may influence the metabolism of apoB-containing lipoproteins in vivo by mediating LDL-CE uptake into SR-BI-expressing cells.  相似文献   

2.
Scavenger receptor class B type I localizes to a late endosomal compartment   总被引:1,自引:0,他引:1  
Scavenger receptor class B type I (SR-BI) has an established role in mediating the selective uptake of cholesterol from HDL in hepatocytes, steroidogenic cells, and other tissues. SR-BI is present on the plasma membrane but also localizes to stable intracellular compartments of unknown function. Using indirect immunofluorescence and subcellular fractionation, we have investigated the subcellular distribution of SR-BI. We report that red fluorescent protein-tagged mouse SR-BI (RFP-mSR-BI) colocalizes with the late endosomal and lysosomal markers, Rab7, LBPA, and Rab9. In addition, endogenous SR-BI is also found on lysosomes and colocalizes with LAMP-2 in primary hepatocytes. Furthermore, we demonstrate that the trafficking of SR-BI through these compartments is Rab7 dependent. Interestingly, filipin staining indicates accumulation of lysosomal cholesterol in SR-BI-deficient ((-/-)) as compared with wild-type hepatocytes. In addition to its role as a plasma membrane receptor, SR-BI may function in cholesterol trafficking from late endosomes/lysosomes.  相似文献   

3.
The formation of cholesterol-loaded macrophage foam cells in arterial tissue may occur by the uptake of modified lipoproteins via the scavenger receptor pathway. The macrophage scavenger receptor, also called the acetylated low density lipoprotein (Ac-LDL) receptor, has been reported to recognize Ac-LDL as well as oxidized LDL species such as endothelial cell-modified LDL (EC-LDL). We now report that there is another class of macrophage receptors that recognizes EC-LDL but not Ac-LDL. We performed assays of 0 degrees C binding and 37 degrees C degradation of 125I-Ac-LDL and 125I-EC-LDL by mouse peritoneal macrophages. Competition studies showed that unlabeled Ac-LDL could compete for only 25% of the binding and only 50% of the degradation of 125I-EC-LDL. Unlabeled EC-LDL, however, competed for greater than 90% of 125I-EC-LDL binding and degradation. Unlabeled Ac-LDL was greater than 90% effective against 125I-Ac-LDL; EC-LDL competed for about 80% of 125I-Ac-LDL binding and degradation. Copper-oxidized LDL behaved the same as EC-LDL in all the competition studies. Copper-mediated oxidation of Ac-LDL produced a superior competitor which could now displace 90% of 125I-EC-LDL binding. After 5 h at 37 degrees C in the presence of ligand, macrophages accumulated six times more cell-associated radioactivity from 125I-EC-LDL than from 125I-Ac-LDL, despite approximately equal amounts of degradation to trichloroacetic acid-soluble products, which may imply different intracellular processing of the two lipoproteins. Our results suggest that 1) there is more than one macrophage "scavenger receptor" for modified lipoproteins; and 2) oxidized LDL and Ac-LDL are not identical ligands with respect to macrophage recognition and uptake.  相似文献   

4.
The murine scavenger receptor class B, type I (mSR-BI) is a receptor for high density lipoprotein (HDL), low density lipoprotein (LDL), and acetylated LDL (AcLDL). It mediates selective uptake of lipoprotein lipid and stimulates efflux of [(3)H]cholesterol to lipoproteins. SR-BI-mediated [(3)H]cholesterol efflux was proposed to be independent of ligand binding. In this study, using anti-mSR-BI antibody KKB-1 and two mSR-BI mutants with altered ligand binding properties, we demonstrated that SR-BI-mediated [(3)H]cholesterol efflux to lipoproteins was correlated with ligand binding and lipid uptake activities of the receptor. The KKB-1 antibody, which blocked lipoprotein binding without substantially altering the cholesterol oxidase-accessible cellular [(3)H]cholesterol, also blocked [(3)H]cholesterol efflux to HDL and LDL. One of the SR-BI mutants, which has a double substitution of arginines for glutamines at positions 402 and 418 (Q402R/Q418R), exhibited a high level of LDL binding and lipid uptake from LDL, but lost most of the corresponding HDL receptor activity. This mutant could mediate efficient [(3)H]cholesterol efflux to LDL, but not to HDL. Another mutant, M158R, with an arginine in place of methionine at position 158, exhibited reduced HDL and LDL receptor activities, but apparently normal AcLDL receptor activity. This mutant could mediate efficient [(3)H]cholesterol efflux to AcLDL, but not to HDL or LDL. These results suggest that SR-BI-stimulated [(3)H]cholesterol efflux to lipoproteins critically depends on ligand binding to this receptor and raise the possibility that the mechanisms of selective lipid uptake and [(3)H]cholesterol efflux may be intimately related.  相似文献   

5.
The internalization of oxidized low density lipoprotein (OxLDL) by macrophages is hypothesized to contribute to foam cell formation and eventually to atherosclerotic lesion formation. OxLDL is a ligand for the acetylated low density lipoprotein (AcLDL) receptor, however, our data show that this receptor accounts for less than half of OxLDL uptake by mouse macrophages, suggesting additional receptors for OxLDL. We have developed a novel expression cloning strategy in order to isolate clones encoding OxLDL receptors. In addition to the AcLDL receptor, we isolated a molecular clone for a structurally unrelated receptor capable of mediating the high affinity uptake of OxLDL following transfection into cells. This receptor has been identified as the mouse Fc gamma RII-B2, a member of a family of receptors known to mediate immune complex uptake through recognition of the Fc region of IgG. The uptake of OxLDL by cells transfected with the Fc gamma RII-B2 clone is not blocked by AcLDL but is blocked by the anti-Fc gamma RII monoclonal antibody, 2.4G2.  相似文献   

6.
Scavenger receptor BI (SR-BI) is a selective uptake receptor for HDL cholesterol but is also involved in the catabolism of apolipoprotein (apo)B-containing lipoproteins. However, plasma levels of apoB-containing lipoproteins increase following hepatic SR-BI overexpression, suggesting that SR-BI not solely mediates their catabolism. We therefore tested the hypothesis that hepatic SR-BI impacts on VLDL production. On day 7 following adenovirus (Ad)-mediated overexpression of SR-BI, VLDL-triglyceride and VLDL-apoB production rates were significantly increased (P < 0.001), whereas VLDL production was significantly lower in SR-BI knockout mice compared with controls (P < 0.05). In mice injected with AdSR-BI, hepatic cholesterol content increased (P < 0.001), microsomal triglyceride transfer protein activity was higher (P < 0.01) and expression of sterol-regulatory element binding protein (SREBP)2 and its target genes was decreased (P < 0.01). Conversely, in SR-BI knockout mice, microsomal triglyceride transfer protein activity was lower and expression of SREBP2 target genes was increased (P < 0.01). Finally, we demonstrate in vitro in isolated primary hepatocytes as well as in vivo that cholesterol derived from HDL and taken up via SR-BI into the liver can be resecreted within VLDL. These data indicate that hepatic SR-BI expression is linked to VLDL production, and within liver, a metabolic shunt might exist that delivers HDL cholesterol, at least in part, to a pool from which cholesterol is mobilized for VLDL production. These results might have implications for HDL-based therapies against atherosclerotic cardiovascular disease, especially with SR-BI as target.  相似文献   

7.
The murine class B, type I scavenger receptor (mSR-BI) is a receptor for both high density lipoprotein (HDL) and low density lipoprotein (LDL) and mediates selective, rather than endocytic, uptake of lipoprotein lipid. We have developed a "retrovirus library-based activity dissection" method to generate mSR-BI mutants in which some, but not all, of the activities of this multifunctional protein have been disrupted. This method employs three techniques: 1) efficient in vitro cDNA mutagenesis (here error-prone PCR was used), 2) efficient retroviral delivery and high expression of single mutant cDNAs into individual cells, and 3) isolation of infected cells expressing the desired mutant phenotype using high sensitivity positive/negative screening by two-color fluorescence-activated cell sorting. A set of mutants, all having arginine substitutions at two common sites (positions 402 or 401 and position 418), were isolated and characterized. Mutation at either site alone did not generate as strong a mutant phenotype (loss of DiI uptake from DiI-HDL) as did the double mutations. "Activity-dissected" double mutants were as effective as wild-type mSR-BI in functioning as LDL receptors, mediating high affinity LDL binding and uptake of metabolically active cholesterol from LDL, but they lost most of their corresponding HDL receptor activity. Thus, these mutants provide support for the proposal that the interaction of SR-BI with HDL differs from that with LDL. Examination of the in vivo function of such mutants may provide insights into the differential roles of the LDL and HDL receptor activities of SR-BI in normal lipoprotein metabolism and in SR-BI's ability to protect against atherosclerosis.  相似文献   

8.
Hepatitis C virus (HCV) is a major cause of chronic hepatitis worldwide. The study of early steps during HCV infection has been hampered by the lack of suitable in vitro or in vivo models. Primary Tupaia hepatocytes (PTH) have been shown to be susceptible to HCV infection in vitro and in vivo. Human scavenger receptor class B type I (SR-BI) represents an HCV receptor candidate mediating the cellular binding of E2 glycoprotein to HepG2 hepatoma cells. However, the function of SR-BI for viral infection of hepatocytes is unknown. In this study, we used PTH to assess the functional role of SR-BI as a putative HCV receptor. Sequence analysis of cloned tupaia SR-BI revealed a high homology between tupaia and human SR-BI. Transfection of CHO cells with human or tupaia SR-BI but not mouse SR-BI cDNA resulted in cellular E2 binding, suggesting that E2-binding domains between human and tupaia SR-BI are highly conserved. Preincubation of PTH with anti-SR-BI antibodies resulted in marked inhibition of E2 or HCV-like particle binding. However, anti-SR-BI antibodies were not able to block HCV infection of PTH. In conclusion, our results demonstrate that SR-BI represents an important cell surface molecule for the binding of the HCV envelope to hepatocytes and suggest that other or additional cell surface molecules are required for the initiation of HCV infection. Furthermore, the structural and functional similarities between human and tupaia SR-BI indicate that PTH represent a useful model system to characterize the molecular interaction of the HCV envelope and SR-BI on primary hepatocytes.  相似文献   

9.
Scavenger receptor class B type I (SR-BI) mediates selective uptake of cholesteryl esters from HDL as well as efflux of cellular free cholesterol to HDL. It is unclear whether the receptor is involved in intestinal cholesterol absorption. We addressed this issue by studying [3H]cholesterol flux in differentiated CaCo-2 cells incubated at their apical side with mixed taurocholate/phosphatidylcholine/cholesterol micelles. Biotinylation and HDL binding experiments showed predominant apical expression of endogenous and overexpressed SR-BI. Mixed micellar cholesterol saturation affected the magnitude and direction of cholesterol flux with significant net uptake only from supersaturated micelles and net efflux from unsaturated micelles. Incubation with micelles that depleted cellular cholesterol resulted in a decrease of SR-BI protein, whereas incubation with cholesterol-loading micelles resulted in a significant increase of SR-BI protein. Apical cholesterol uptake by CaCo-2 cells was increased in the presence of a SR-BI-blocking antibody and by partial inhibition of SR-BI expression with small inhibitory RNA. Adenovirus-mediated overexpression of apical SR-BI did not affect cholesterol uptake but stimulated apical cholesterol efflux, even to supersaturated mixed micelles. Partial inhibition of SR-BI with small inhibitory RNA reduced apical cholesterol efflux. Our data argue against a direct role for SR-BI in micellar cholesterol uptake. However, SR-BI might be involved in cholesterol absorption by facilitating cholesterol efflux to micelles.  相似文献   

10.
Scavenger receptor (SR)-BI catalyzes the selective uptake of cholesteryl ester (CE) from high density lipoprotein (HDL) by a two-step process that involves the following: 1) binding of HDL to the receptor and 2) diffusion of the CE molecules into the cell plasma membrane. We examined the effects of the size of discoidal HDL particles containing wild-type (WT) apoA-I on selective uptake of CE and efflux of cellular free (unesterified) cholesterol (FC) from COS-7 cells expressing SR-BI to determine the following: 1) the influence of apoA-I conformation on the lipid transfer process, and 2) the contribution of receptor binding-dependent processes to the overall efflux of cellular FC. Large (10 nm diameter) reconstituted HDL bound to SR-BI better (B(max) approximately 420 versus 220 ng of apoA-I/mg cell protein), delivered more CE, and promoted more FC efflux than small ( approximately 8 nm) particles. When normalized to the number of reconstituted HDL particles bound to the receptor, the efficiencies of either CE uptake or FC efflux with these particles were the same indicating that altering the conformation of WT apoA-I modulates binding to the receptor (step 1) but does not change the efficiency of the subsequent lipid transfer (step 2); this implies that binding induces an optimal alignment of the WT apoA-I.SR-BI complex so that the efficiency of lipid transfer is always the same. FC efflux to HDL is affected both by binding of HDL to SR-BI and by the ability of the receptor to perturb the packing of FC molecules in the cell plasma membrane.  相似文献   

11.
Hepatoma cell lines serve as a suitable model to study hepatic clearance of lipoprotein-associated cholesteryl esters (CEs). The present study aimed at investigating holoparticle-association of and selective CE-uptake from human high density lipoprotein subclass 3 (HDL3) by non-malignant adult (Chang-liver) and non-malignant fetal (WRL-68) epithelial cell lines as well as a hepatocellular carcinoma (HUH-7) cell line. Binding properties of 125I-HDL3 at 4 and 37 degrees C were similar for all three cell lines while degradation rates were highest for Chang-liver cells. Calculating the selective uptake of HDL3-associated CEs as the difference between [3H]CE- and 125I-HDL3 cell-association revealed that the selective lipid uptake and holoparticle-association was similar in Chang-liver while in WRL-68 and HUH-7 cells pronounced capacity for lipid tracer uptake in excess of holoparticle uptake was measured. Using RT-PCR, Northern and Western blot analysis, as well as immunocytochemical technique pronounced expression of scavenger receptor class B, type I (SR-BI) but not SR-BII (a splice variant of SR-BI less efficient for selective CE-uptake than SR-BI) could be identified in HUH-7 and WRL-68 cells. A polyclonal antiserum raised against SR-BI significantly decreased cell-association of [3H]CE-HDL3 in HUH-7 and WRL-68. The present findings suggest that the capacity for selective cholesteryl ester-uptake from high density lipoprotein by malignant and normal epithelial cells from the liver depends on expression of the scavenger receptor class B, type I.  相似文献   

12.
I Volf  T Moeslinger  J Cooper  W Schmid  E Koller 《FEBS letters》1999,449(2-3):141-145
The widely studied macrophage scavenger receptor system is known to bind both acetylated low density lipoprotein and oxidized low density lipoprotein. Although only the latter ligand has been shown to occur in vivo, acetylated low density lipoprotein is often used to evaluate the contribution of scavenger receptors to different (patho)physiologic processes, assuming that all existing subtypes of scavenger receptors recognise both lipoproteins. In the present work, we identify human platelets as the first natural cell type to bind oxidized low density lipoprotein without showing specificity for acetylated low density lipoprotein. Consequently, platelets possess exclusive receptor(s) for oxidized low density lipoprotein distinct from the 'classical' scavenger receptor AI/AII. From the data presented in this work, we conclude that the class B scavenger receptor CD36 (GPIV) is responsible for this exclusive oxidized low density lipoprotein binding.  相似文献   

13.
Serum amyloid A is an acute phase protein that is carried in the plasma largely as an apolipoprotein of high density lipoprotein (HDL). In this study we investigated whether SAA is a ligand for the HDL receptor, scavenger receptor class B type I (SR-BI), and how SAA may influence SR-BI-mediated HDL binding and selective cholesteryl ester uptake. Studies using Chinese hamster ovary cells expressing SR-BI showed that (125)I-labeled SAA, both in lipid-free form and in reconstituted HDL particles, functions as a high affinity ligand for SR-BI. SAA also bound with high affinity to the hepatocyte cell line, HepG2. Alexa-labeled SAA was shown by fluorescence confocal microscopy to be internalized by cells in a SR-BI-dependent manner. To assess how SAA association with HDL influences HDL interaction with SR-BI, SAA-containing HDL was isolated from mice overexpressing SAA through adenoviral gene transfer. SAA presence on HDL had little effect on HDL binding to SR-BI but decreased (30-50%) selective cholesteryl ester uptake. Lipid-free SAA, unlike lipid-free apoA-I, was an effective inhibitor of both SR-BI-dependent binding and selective cholesteryl ester uptake of HDL. We have concluded that SR-BI plays a key role in SAA metabolism through its ability to interact with and internalize SAA and, further, that SAA influences HDL cholesterol metabolism through its inhibitory effects on SR-BI-mediated selective lipid uptake.  相似文献   

14.
High density lipoprotein (HDL) levels are inversely proportional to the risk of coronary heart disease. HDL mediates various anti-atherogenic pathways including reverse cholesterol transport from cells of the arterial wall to the liver and steroidogenic tissues. In addition HDL activates various intracellular signaling events that confer atheroprotection. The HDL receptor, scavenger receptor class B type I (SR-BI) has been implicated directly and indirectly in HDL induced signaling. The aim of this review is to summarize the role of SR-BI in HDL induced signaling in the vasculature.  相似文献   

15.
SR-B1 belongs to the class B scavenger receptor, or CD36 super family. SR-B1 and CD36 share an affinity for a wide array of ligands. Although they exhibit similar ligand binding specificity, SR-B1 and CD36 have some very specific lipid transport functions. Whereas SR-B1 primarily facilitates the selective delivery of cholesteryl esters (CEs) and cholesterol from HDL particles to the liver and non-placental steroidogenic tissues, as well as participating in cholesterol efflux from cells, CD36 primarily mediates the uptake of long-chain fatty acids in high fatty acid-requiring organs such as the heart, skeletal muscle and adipose tissue. However, CD36 also mediates cholesterol efflux and facilitates selective lipoprotein-CE delivery, although less efficiently than SR-B1. Interestingly, the ability or efficiency of SR-B1 to mediate fatty acid uptake has not been reported. In this paper, using overexpression and siRNA-mediated knockdown of SR-B1, we show that SR-B1 possesses the ability to facilitate fatty acid uptake. Moreover, this function is not blocked by BLT-1, a specific chemical inhibitor of HDL-CE uptake activity of SR-B1, nor by sulfo-N-succinimidyl oleate, which inhibits fatty acid uptake by CD36. Attenuated fatty acid uptake was also observed in primary adipocytes isolated from SR-B1 knockout mice. In conclusion, facilitation of fatty acid uptake is an additional function that is mediated by SR-B1.  相似文献   

16.
Receptor-mediated endocytosis of oxidized low density lipoprotein (OxLDL) by macrophages has been implicated in foam cell transformation in the process of atherogenesis. Although several scavenger receptor molecules, including class A scavenger receptors and CD36, have been identified as OxLDL receptors on macrophages, additional molecules on macrophages may also be involved in the recognition of OxLDL. From a cDNA library of phorbol 12-myristate 13-acetate-stimulated THP-1 cells, we isolated a cDNA encoding a novel protein designated SR-PSOX (scavenger receptor that binds phosphatidylserine and oxidized lipoprotein), which acts as a receptor for OxLDL. SR-PSOX was a type I membrane protein consisting of 254 amino acids, expression of which was shown on human and murine macrophages with a molecular mass of 30 kDa. SR-PSOX could specifically bind with high affinity, internalize, and degrade OxLDL. The recognition of OxLDL was blocked by polyinosinic acid and dextran sulfate but not by acetylated low density lipoprotein. Taken together, SR-PSOX is a novel class of molecule belonging to the scavenger receptor family, which may play important roles in pathophysiology including atherogenesis.  相似文献   

17.
The low density lipoprotein receptor   总被引:3,自引:0,他引:3  
The study of familial hypercholesterolemia at the molecular level has led to its advancement from a clinical syndrome to a fascinating experimental system. FH was first described 50 years ago by Carl Müller who concluded that the disease produces high plasma cholesterol levels and myocardial infarctions in young people, and is transmitted as an autosomal dominant trait determined by a single gene. The existence of two forms of FH, namely heterozygous and homozygous, was recognized by Khachadurian and Fredrickson and Levy much later. The value of FH as an experimental model system lies in the availability of homozygotes, because mutant genes can be studied without interference from the normal gene. The first and most important breakthrough was the realization that the defect underlying FH could be studied in cultured skin fibroblasts. Rapidly, the LDL receptor pathway was conceptualized and its dysfunction in cells from FH homozygotes was demonstrates. Isolation of the normal LDL receptor protein and studies on the biosynthesis and structure of abnormal receptors in mutant cell lines provided essential groundwork for elucidation of defects at the DNA level. The power of the experimental system, FH, became nowhere more obvious than in work that correlated structural information at the protein level with the elucidation of defined defects in the LDL receptor gene. In addition to revealing important structure-function relationships in the LDL receptor polypeptide and delineating mutational events, studies of FH have established several more general concepts. First, the tight coupling of LDL binding to its internalization suggested that endocytosis was not a non-specific process as suggested from early observations. The key finding was that LDL receptors clustered in coated pits, structures that had been described by Roth and Porter 10 years earlier. These investigators had demonstrated, in electron microscopic studies on the uptake of yolk proteins by mosquito oocytes, that coated pits pinch off from the cell surface and form coated vesicles that transport extracellular fluid into the cell. Studies on the LDL receptor system showed directly that receptor clustering in coated pits is the essential event in this kind of endocytosis, and thus established receptor-mediated endocytosis as a distinct mechanism for the transport of macromolecules across the plasma membrane. Subsequently, many additional systems of receptor-mediated endocytosis have been defined, and variations of the overall pathway have been described.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) can be proteolytically cleaved and released as soluble forms (sLOX-1). We have determined serums LOX-1 in type 2 diabetes and evaluated the effect of glucose and advanced glycation end products (AGEs) on sLOX-1 in vitro and in vivo. Endothelial cells were incubated with glucose or AGEs, and sLOX-1 in cell medium was measured. Serum sLOX-1 was measured in 219 diabetic patients and 187 controls by ELISA. The effect of lowering glucose and AGEs on sLOX-1 was determined in 38 poorly controlled diabetic patients after improvement in glycemic control. Incubation of endothelial cells with AGE-BSA led to a dose-dependent increase in sLOX-1, whereas the effect of glucose on sLOX-1 was less marked. Serum sLOX-1 was 9% higher in diabetic patients compared with controls (P<0.01). In the poorly controlled patients, serum sLOX-1 decreased by 12.5% after improvement in glycemic control (P<0.05). The magnitude of reduction in sLOX-1 correlated with the improvement in hemoglobin A1c and AGEs but not with the reduction in oxidized LDL. sLOX-1 level is increased in type 2 diabetes. Both glucose and AGEs are important determinants of LOX-1 expression, and lowering glucose and AGEs leads to a reduction in sLOX-1.  相似文献   

19.
Low density lipoprotein (LDL) oxidation is characterized by alterations in biological properties and structure of the lipoprotein particles, including breakdown and modification of apolipoprotein B (apoB). We compared apoB breakdown patterns in different models of minimally and extensively oxidized LDL using Western blotting techniques and several monoclonal and polyclonal antibodies. It was found that copper and endothelial cell-mediated oxidation produced a relatively similar apoB banding pattern with progressive fragmentation of apoB during LDL oxidation, whereas malondialdehyde (MDA)- and hydroxynonenal (HNE) -modified LDL produced an aggregated apoB. It is conceivable that apoB fragments present in copper and endothelial cell oxidized LDL lead to the exposure on the lipoprotein surface of different protein epitopes than in aggregated MDA-LDL and HNE-LDL. Although all models of extensively oxidized LDL led to increased lipid uptake in macrophages, mild degrees of oxidation interfered with LDL uptake in fibroblasts and extensively oxidized LDL impaired degradation of native LDL in fibroblasts. We suggest that in order to improve interpretation and comparison of results, data obtained with various models of oxidized LDL should be compared to the simpliest and most reproducible models of 3 h and 18 h copper-oxidized LDL (apoB breakdown) and MDA-LDL (apoB aggregation) since different models of oxidized LDL have significant differences in apoB breakdown and aggregation patterns which may affect immunological and biological properties of oxidized LDL.  相似文献   

20.
We report here the presence of a membrane-associated receptor which mediates endocytic uptake of malondialdehyde-modified high density lipoprotein (MDA-HDL) on sinusoidal liver cells. Binding of [125I]MDA-HDL to the cells was followed by internalization and degradation in lysosomes. The binding and lysosomal degradation of [125I]MDA-HDL were effectively inhibited by unlabeled MDA-HDL and acetyl-HDL. However, formaldehyde-treated serum albumin or low density lipoprotein modified either by acetylation or malondialdehyde, ligands known to undergo receptor-mediated endocytosis by sinusoidal liver cells, did not affect the binding of [125I]MDA-HDL to the cells. These results indicate that a receptor for MDA-HDL is described as a distinct member among the scavenger receptors for chemically modified proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号