首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Data on macroinvertebrates and stream chemistry were collected from sixty-four streams in Finland. Weighted averaging (WA) regression and calibration models were constructed to infer the minimum pH of streams from their invertebrate assemblages. The purpose was to develop an instrument for biological assessment and monitoring of stream acidification. The WA method was compared with simpler approaches, based on qualitative invertebrate data and pH tolerance limits, that are widely used.
2. Performance of the two approaches was assessed in terms of correlation between the inferred and observed minimum pH within the 'training set', and in terms of root mean squared differences (predicted – observed) (RMSEP) estimated by cross-validation or bootstrap resampling techniques. The models were further tested using independent data from the literature representative of a wide geographical range.
3. The predictive power of the WA models was reasonable (RMSEP 0.40–0.44 pH units) in the training set and consistently better than that of the tolerance limit method. In contrast to the latter, the WA models were able to infer a minimum pH above 5.5, suggesting they could detect the early stages of acidification.
4. The WA models performed better than the tolerance limit method in inferring pH from the independent literature, further demonstrating the superiority and generality of the WA approach.
5. The weighted averaging technique could be an effective and widely applicable tool for contemporary biological monitoring and assessment using aquatic invertebrates.  相似文献   

2.
SUMMARY. 1. In regional studies of surface-water acidification, annual means of chemical variables are often used to describe differences and change. Outputs from hydrochemical models are often in the form of mean values, which are used in biological models, and these, in turn, are usually derived from responses to mean conditions. Thus, biological forecasts are constrained to ignore the possible effects of the short-term variations in water chemistry which characterize acid streams. This approach requires appraisal.
2. Here, regional Welsh data and daily records from a smaller number of streams were used to investigate the estimation of pH parameters. Variations in aluminium concentration in relation to pH were also assessed. Empirical relationships between invertebrate assemblages, fish populations, mean stream chemistry and measures of fluctuation in pH and aluminium concentration were explored.
3. In general, pH or Al variability and mean pH or Al in Welsh streams were closely related, so that the biological influences of episodes could not easily be separated from those of chronic conditions. Mean pH and mean aluminium concentration were the most effective pH and aluminium statistics used in multivariate models of trout density, which were not improved by including other pH or aluminium variables. For models of invertebrate assemblages based on mean pH or mean aluminium, the inclusion of variables related to episodicity (e.g. pH minimum, aluminium maximum) gave moderate increases in precision.
4. This analysis indicates that it is reasonable to use means of stream chemical variables in biological models of acidification. Consideration of chemical variability could give improvements in some cases, but at the expense of increased model complexity and effort in parameter selection. Nevertheless, we emphasize the need for accurate calibration of both biological and hydrochemical models.  相似文献   

3.
We tested two predictions required to support the hypothesis that anthropogenic acidic episodes might explain the poor biological response of upland British streams otherwise recovering from acidification: (i) that invertebrate assemblages should differ between episodic and well-buffered streams and (ii) these effects should differentiate between sites with episodes caused by anthropogenic acidification as opposed to base-cation dilution or sea-salt deposition. Chronic and episodically acidic streams were widespread, and episodes reflected acid titration more than dilution. Nonmarine sulphate (16–18% vs. 5–9%), and nitrate (4–6% vs. 1–2%) contributed more to anion loading during episodes in Wales than Scotland, and Welsh streams also had a larger proportion of total stream sulphate from nonmarine sources (64–66% vs. 35–46%). Sea-salts were rarely a major cause of episodic ANC or pH reduction during the events sampled. By contrast, streams with episodes driven by strong anthropogenic acids had lower pH (5.0±0.6) and more dissolved aluminium (288±271 μg L−1) during events than where episodes were caused by dilution (pH 5.4±0.6; 116±110 μg Al L−1) or where streams remained circumneutral (pH 6.7±1.0; 50±45 μg Al L−1). Both biological predictions were supported: invertebrate assemblages differed among sites with different episode chemistry while several acid-sensitive species were absent only where episodes reflected anthropogenic acidification. We conclude that strong acid anions – dominantly nonmarine sulphate – still cause significant episodic acidification in acid-sensitive areas of Britain and may be a sufficient explanation for slow biological recovery in many locations.  相似文献   

4.
SUMMARY. 1 Eighteen streams in mid-Wales were sampled for macro-invertebrates in both riffles and margins in April 1985–87. Stream macro-flora, substrata and marginal habitats were surveyed in May 1988.
2. TWINSPAN classification of the macroinvertebrate data indicated three major stream groups. One was distinguished by circumneutral pH and had a flora and fauna typical of such conditions. The other two groups consisted of acidic streams with moorland and conifer afforested catchments respectively. The forest streams were the more acidic but the two groups also differed significantly in the composition of their marginal habitats.
3 The acidic moorland streams had more vegetation ('soft' features) in the margins and supported several invertebrate taxa which were relative more abundant there than in the riffles. These taxa may be excluded from forest streams because the margins are 'hard' due to greater erosiveness and shading.
4. In view of the increasing cover by conifer afforestation in Britain, it is clearly necessary to elucidate all its effects on stream ecosystems, which include changes to the physical environment.  相似文献   

5.
SUMMARY 1. We describe a preliminary approacb to modelling the impact of acidification on the ecology of two Welsb streams. Output from the hydrochemical Model of Acidification of Groundwaters in Catchments (MAGIC) was used to drive empirical models which predicted brown trout Salmo trulta (L.) survival, trout density and invertebrate assemblage type. The models were used for hindcasts between 1844 and 1984 under conifer forest and moorland conditions. Forecasts involved each of these land uses with sulphate deposition either continued at 1984 levels or reduced by 50%.
2. Trout survival times and trout densities in the models declined markedly between 1844 and 1984. The most severe decline occurred under simulated forest, where high aluminium concentration led to the virtual elimination of trout in both streams.
3. In forecasts, only in simulated moorland with sulphate deposition reduced by 50% of 1984 levels, was further decline in trout population retarded. There was no marked recovery in trout density under any of the conditions examined.
4. Invertebrate assemblages in streams during the nineteenth century may have differed from those now existing in nearby moorland streams which are presently circumneutral. Past chemical conditions were unusual (<3mg 1−1 total hardness, but pH >5.7 and low aluminium) by present-day standards, and were outside the range of the invertebrate model until -1940.
5. Between the 1940s and 1984 there was no change in invertebrate fauna under the moorland scenario despite some acidification. However, simulated forest advanced the appearance of the most impoverished assemblage type, which did not recover in spite of reduced deposition.
6. We discuss several uncertainties with the models in their present form, but suggest some methods for their testing and validation.  相似文献   

6.
Relationships between surface sediment diatom assemblages and measured environmental variables from 77 lakes in the central Canadian arctic treeline region were examined using multivariate statistical methods. Lakes were distributed across the arctic treeline from boreal forest to arctic tundra ecozones, along steep climatic and environmental gradients. Forward selection in canonical correspondence analysis determined that dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), total nitrogen (TN), lake surface area, silica, lake‐water depth, and iron explained significant portions of diatom species variation. Weighted‐averaging (WA) regression and calibration techniques were used to develop inference models for DIC, DOC, and TN from the estimated optima of the diatom taxa to these environmental variables. Simple WA models with classical deshrinking produced models with the strongest predictive abilities for all three variables based on the bootstrapped root mean squared errors of prediction (RMSEP). WA partial least squares showed little improvement over the simpler WA models as judged by the jackknifed RMSEP. These models suggest that it is possible to infer trends in DIC, DOC, and TN from fossil diatom assemblages from suitably chosen lakes in the central Canadian arctic treeline region.  相似文献   

7.
8.
1. Surface-sediment assemblages of subfossil chironomid head capsules from fifty-four primarily shallow and nutrient-rich Danish lakes were analysed using multivariate numerical techniques. The species data, comprising forty-one chironomid taxa, were compared to environmental monitoring data in order to establish a relationship between chironomid faunal composition and lake trophic state.
2. The subfossil assemblages were compared to the chironomid bathymetric distributions along transects from four lakes. Correspondence analysis and similarity coefficients showed that the subfossil assemblages, sampled in the lake centre, reflect the chironomid communities in the littoral at a depth of 2–7 m.
3. Two-way indicator species analysis (TWINSPAN) was used to classify the Danish lakes into five groups defined by trophic state, lake depth and pH. Eighteen chironomid taxa showed significant differences in abundance among the five groups. Canonical correspondence analysis (CCA) showed the chlorophyll a concentration ([Chl a ]) and Secchi depth to be the variables best correlated to the faunal data, and fourteen taxa were significantly correlated to [Chl a ].
4. The strong correlation between chironomid data and the ln-transformed ([Chl a ]) was used to create a weighted averaging (WA) model to infer lake trophic state. Several models were tested by cross validation (leave-one-out jack-knifing), and a simple WA model using inverse de-shrinking had a RMSEPjack of 0.65 (ln units) and a r 2jack of 0.67.
5. The results can be used in the assessment and reconstruction of lake trophic state for long-term monitoring and palaeoecological investigations of shallow, temperate lakes in the mesotrophic to hypertrophic nutrient range.  相似文献   

9.
1. Physico-chemical conditions and benthic macroinvertebrates were studied in two adjacent alpine streams in the Tyrolean Alps, Austria, for 2 years, and aquatic insect emergence was recorded for 1 year.
2. In the spring-fed system, maximum discharge and increased concentrations of suspended solids, nitrate and particulate phosphorus occurred during snowmelt in June. In the glacier-fed stream, high discharge and strong diel fluctuations in flow and concentrations of suspended solids created a harsh and unstable environment during summer. Glacial ablation, variation in groundwater inflow, and water inputs from tributaries draining calcareous rocks caused water chemistry to vary both seasonally and longitudinally in glacier-fed Rotmoosache.
3. A total of 126 aquatic or semi-aquatic invertebrate taxa were collected, 94 of which were found in the glacier-fed stream and 120 in the spring-fed stream. Chironomid abundance was 2–8 times and taxa richness 2–3 times lower in the glacier-fed stream than in the spring-fed stream, as was the number of chironomid taxa (72 versus 93 total).
4. These results broadly support the conceptual model by Milner & Petts (1994) concerning glacier-fed stream systems. However, single samples and seasonal means showed relatively high invertebrate abundance and richness, especially during winter, indicating a considerable degree of spatial and temporal variability.
5. We suggest that the seasonal shifts from harsh environmental conditions in summer to less severe conditions in autumn and a rather constant environment in winter are an important factor affecting larval development, life-history patterns and the maintenance of relatively high levels of diversity and productivity in glacier-fed streams.  相似文献   

10.
SUMMARY. 1. The results of a survey of thirty-four stream sites, differing in pH and invertebrate species richness, indicated that the pool of locally available, suitably adapted species was smaller in the acid streams. This plays a part in determining the general pattern of lower species richness at more acid sites.
2. Diversity of feeding categories increased with species richness, indicating that a greater range of food resources was available in the less acid, more species-rich communities.
3. The pattern of predation varied with pH and species richness. The numbers of large insect predators were lower in the less acid, more species-rich communities and this was correlated with the presence of fish.
4. A detailed study of the guild of detritivorous stoneflies in four streams differing in species richness provided evidence that density compensation occurs, niche width decreases and niche overlap declines as species richness increases.
5. We discuss the roles that competition and predation play in determining the structure and richness of stream invertebrate communities.  相似文献   

11.
SUMMARY 1. Macro-flora (angiosperms. bryophytes and macroscopic algae) and macroinvertebrates were sampled in 1984 at eighty-eight sites on soft-water streams in upland Wales. Assemblage patterns were related to stream chemistry using TWINSPAN, DECORANA and multiple discriminant analysis.
2. Floral assemblages could be related most strongly to pH and aluminium concentration, with Scapania undulata, Nardia compressa and filamentous chlorophytes characterizing streams of mean pH5.2–5.8, whilst Fontinalis squamosa occurred mostly at pH 5.6–6.2 and Lemanea at pH 5.8–7.0. We propose an indicator system based on thesetaxa.
3. Assemblages of invertebrates and flora concorded highly significantly, sites with Scapania and Nardia holding impoverished faunas. Because some acid sensitive invertebrates (e.g. Ecdyonurus and Ancylus ) can feed from acid tolerant plants (e.g. Scapania ), we hypothesize that they are restricted physiologically from acid streams.  相似文献   

12.
SUMMARY 1. Colonization and ecological development of postglacial freshwater communities was investigated in Glacier Bay National Park, south-eastern Alaska, following the rapid recession of a Neo-glacial ice sheet within the last 250 years.
2. Environmental variables shown to be most significant in stream development were temperature, flow regime and sedimentation.
3. The Chironomidae (Diptera) were the pioneer invertebrate colonizers of newly emergent streams arising as meltwater from receding ice sheets and displayed a distinct pattern of succession with stream maturity.
4. Ephemeroptera and Plecoptera colonized warmer clearwater streams, but Trichoptera had a minimal role in invertebrate community development.
5. Establishment and production of salmonid fish populations in the new streams related principally to stream flow and sediment characteristics.
6. Future pathways along which the streams may develop is probably dependent on the degree of large organic debris input.
7. Stream development, structure and function are summarized including reference to theories of ecosystem development, ecological succession and community stability.  相似文献   

13.
SUMMARY. 1. Ceilulolytic decomposition, measured by loss of tensile strength in strips of cellulose test cloth, was estimated in thirty-four stream sites in experiments in summer, autumn and winter.
2. The results of multiple regression analyses showed that strength loss was most closely related to temperature in summer, when the model accounted for only 38% of the variation, and to stream pH in autumn and winter, when the models accounted for 52% and 75% of the variation, respectively.
3. The relationship between decomposition rate and the structure of invertebrate communities in streams of dissimilar pH is discussed. We argue that a very rapid rate of decomposition of coarse particulate organic matter may profit consumers of fine particulate organic matter at the expense of coarse particle shredders.  相似文献   

14.
Most ecosystems are subjected to multiple stressors derived from natural and anthropogenic sources and community responses to human disturbance in naturally stressful habitats may differ from those in more benign habitats. We examined the influence of a natural (geology-driven acidity) vs. human-induced stress (land drainage) and their interaction on the composition and concordance of stream diatom, bryophyte and invertebrate communities. To account for differing drainage impacts in circumneutral (sedimentation) and naturally acid (reduced pH and increased metal concentrations) streams we investigated concordance in three groups of streams: reference (circumneutral and naturally acidic reference), circumneutral (reference and drained) and naturally acidic (reference and drained) streams. We expected diatoms to respond more strongly to anthropogenic acidification and more weakly to sedimentation compared to bryophytes and invertebrates. We expected overall strong concordance among the three taxonomic groups, but especially so in reference streams. All three organism groups had distinct species composition in naturally acidic vs. circumneutral streams. Concordance between communities was overall strong, especially so in the reference streams. All groups responded to drainage disturbance in both types of streams. Invertebrates were slightly less responsive to increased acidification in the naturally acidic streams but were more affected by sedimentation in the circumneutral streams than were the other two groups. The natural stressor affected communities more than the anthropogenic stressors. Naturally stressed communities were affected by an anthropogenic stressor as much as those in more benign habitats, although the additional stressor was similar to the initial stress (further reduction of stream pH). Naturally acid streams may need special concern in bioassessment because models based on circumneutral reference sites will likely produce biased predictions for these streams.  相似文献   

15.
1. To evaluate the spatial extent of the effects of forest cover on stream ecosystems, we measured algae, invertebrate, and fish biomass and invertebrate and fish community structure in 38 small first- to third-order streams in the National Capital Region of Canada along with forest cover at different spatial scales.
2. We considered 55 spatial scales of forest cover including several buffer widths (doubling 10–320 m) and lengths (doubling 10–1280 m, entire riparian distance upstream from sampling area) and entire catchments to determine which spatial scale maximized the correlation with biomass and metrics of community structure.
3. The proportion of variability in biomass and structural metrics explained by forest cover generally increased with increasing scale, suggesting that catchment-wide disturbances are the most influential determinants of benthic and fish communities.
4. Catchment forest cover explained more variation in algal (adjusted r 2   =   0.54), invertebrate (adjusted r 2   =   0.51) and fish (adjusted r 2   =   0.33) biomass than structural metrics of invertebrates and fish (adjusted r 2   =   0.08–0.27).
5. Analyses of the partial effects of forest cover at three scales (reach, riparian and the entire catchment) on biomass and community structure metrics identified catchment and reach scales as being most influential and never detected a significant partial effect of forest cover at the riparian scale.
6. These results suggest that maintenance or protection of reach and riparian buffers alone will not sufficiently protect stream function and structure from catchment-wide impacts.  相似文献   

16.
1. Aquatic hyphomycetes are an important component of detritus processing in streams. Their response to enhanced stream retentiveness was tested by manipulating three streams located in Kielder Forest (northern England), a large plantation of exotic conifers, and two streams in Montagne Noire (south-west France) dominated by native broadleaf woodland. Treatment was by placement of logs or plastic litter traps into a 10–20 m stream section. Fungal spores were collected from stream water upstream and downstream of the treated sections over 1–2 years.
2. The average concentration of fungal spores in reference sections was nearly 10× greater in the French streams than in the English streams. The number of hyphomycete species was also higher in the French streams. These differences between regions were probably a consequence of the much lower standing stock and diversity of leaf litter in the English streams.
3. Despite these large regional differences, the treatment had a clear effect in all streams. Detrital standing stocks were enhanced in treated sections by up to 90% in French streams and 70% in English streams.
4. Mean spore density below treated sections increased by 1.8–14.8% in French streams and 10.2–28.9% in the naturally less retentive English streams. The number of fungal species increased significantly below the treated sections of the English streams, although not the French ones.
5. In biologically impoverished plantation streams, input of woody debris can increase detritus retention and enhance hyphomycete diversity and productivity. This may have consequent benefits for detritus processing and macroinvertebrate production.  相似文献   

17.
1.  We collected adult stoneflies periodically over a 1-year period at 38 sites in two headwater catchments in the Ouachita Mountains, Arkansas, U.S.A. The 43 species collected were a subset of the Ozark-Ouachita fauna and the much larger fauna of the eastern U.S.A. We estimated 78–91% species coverage in the two catchments using jackknife extrapolation of species richness from our survey.
2.  Many streams, especially small ones, lacked surface water for months, but others, both small and large, flowed permanently.
3.  Using published regional presence–absence and coarse ecological data in a discriminant function analysis (DFA), we identified stream size (negative) and regional frequency of occurrence (positive) as predictors of presence in these headwater catchments. For the combined catchments, the extrapolated richness (51 spp.) was similar to an estimate (48 spp.) based on predicted absences from DFA and the Ouachita provincial total of known stonefly species (57 spp.).
4.  Local species richness (1–27 spp. per site) was correlated strongly with stream size (catchment area) but was independent of stream drying. Generic richness was correlated negatively with stream drying and positively, but less strongly, with stream size.
5.  Regionally endemic stoneflies dominated in drying streams, and widely distributed species dominated in more permanent streams. The composition of stonefly assemblages was associated with regional factors (species pools, regional abundance, evolution of tolerant endemic species, regional climate) and local factors (drying, stream size).  相似文献   

18.
The invertebrate fauna has been surveyed for twenty one unlimed generally acidic river systems in Norway. The data consist of 180 samples and 127 invertebrate taxa and associated water chemistry data (pH, calcium, acid neutralizing capacity, total aluminium, and conductivity). Multivariate numerical methods are used to quantify the relationships between aquatic invertebrates and water chemistry. Detrended canonical correspondence analysis (DCCA) shows one dominant axis of variation with high correlations for pH and aluminium. DCCA axis 2 is significantly correlated with calcium. The predictive abilities of invertebrates to pH are explored by means of weighted averaging (WA) regression and calibration and weighted averaging partial-least-squares regression (WA-PLS). The performance of the methods is reported in terms of the root mean square error of prediction (RMSEP) of (observed pH-inferred pH). Bootstrapping and leave-one-out jackknifing are used as cross-validation procedures. The predictive abilities of invertebrates are good (RMSEPboot for WA = 0.309 pH units). Comparison of the invertebrates with diatom studies shows that invertebrates are as good predictors of modern pH as diatoms are. RMSEPjack shows that WA-PLS improves the predictive abilities. Indicator taxa for pH are found by Gaussian regression. Anisoptera, Agrypnia obsoleta, Leptophlebia marginata, Sialis lutaria, and Zygoptera have significant sigmoidal curves where abundances increase with decreasing pH. Cyrnus flavidus shows a significant unimodal response and has an estimated optimum in the acid part of the gradient. Isoperla spp. and Ostracoda show significant sigmoidal responses where abundances increase with increasing pH. Amphinemura borealis, Diura nanseni, Isoperla grammatica, I. obscura, and Siphonoperla burmeisteri show significant unimodal responses and have high pH optima. Many taxa do not have statistically significant unimodal or sigmoidal curves, but are found by WA to be characteristic of either high pH or low pH. These results suggest that a combined use of Gaussian regression and direct gradient analysis is needed to get a full overview of potential indicator taxa.  相似文献   

19.
1. Changes in benthic invertebrate community structure following 16 years of forest succession after logging were examined by estimating benthic invertebrate abundance, biomass and secondary production in streams draining a forested reference and a recovering clear-cut catchment. Benthic invertebrate abundance was three times higher, and invertebrate biomass and production were two times higher in the disturbed stream.
2. Comparison of invertebrate community abundance 1, 5 and 16 years after clear-cutting indicated that the proportion of scrapers had decreased, whereas shredders had increased. Functional group percentage similarity indicated that the invertebrate community in the disturbed stream 16 years after clear-cutting was more similar to the reference than to that found earlier in the disturbed stream.
3. The five indices calculated from data collected over the past 16 years, as well as the abundance, biomass and production data collected during this study, proved to be of differing value in assessing recovery of the disturbed stream from logging. Percent dominant taxon and EPT (Ephemeroptera, Plecoptera and Trichoptera) taxon richness failed to show any initial differences between reference and disturbed streams, indicating that these indices may not be useful for measuring recovery from logging. The percentage Baetis and shredder–scraper indices showed significant differences only during the 1977 study and suggest recovery (no difference between reference and disturbed) by 1982. The North Carolina Biotic Index showed continued differences during 1982 in the riffle and depositional habitats and recovery by 1993. Total macroinvertebrate abundance, biomass and production, as well as EPT abundance, indicated continued differences between the reference and disturbed streams in the 1993 study.  相似文献   

20.
SUMMARY. 1. Daily temperature data from six streams in upland Wales were used to explore the thermal effects of afforestation on stream ecology. The data were linked to published biological models to simulate fish and invertebrate development.
2. Mean daily temperatures in forest streams were lower than those of moorland streams in spring and summer, and higher in winter. These spatial comparisons were supported by the results of experimental bank-side clearance at a forest site, where there was evidence that stream temperatures fell in winter and rose in spring following treatment.
3. Simulations indicated that brown trout (Salmo trutta) could weigh over 30% more by the end of their second growing season in a moorland compared with a forest stream. Several species of insects showed slower simulated egg development at forest sites. For two ephemeropteran species simulated nymphal growth was also retarded, suggesting significant alterations to the life cycle. Two plecopteran species were affected only slightly by the different temperature regimes.
4. Overall, the simulations suggested that afforestation, by reducing summer temperatures, could lead to marked reductions in rates of development of some invertebrates and fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号