首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary. The effect of aluminum on hydrogen peroxide production and peroxidase-catalyzed NADH oxidation was studied in barley roots germinated and grown between two layers of moistened filter paper. Guaiacol peroxidase activity significantly increased after 48h and was approximately two times higher after 72h in Al-treated roots. The oxidation of NADH was also significantly increased and, like guaiacol peroxidase activity, it was two times higher in Al-treated roots than in controls. Elevated H2O2 production was observed both 48 and 72h after the onset of imbibition in the presence of Al. Separation on a cation exchange column allowed the detection of two peaks with NADH peroxidase and H2O2 production activity. However, a difference between control and Al-treated plants was found only in one fraction, in which four times higher guaiacol peroxidase activity and five times higher NADH peroxidase activity were expressed and about three times more H2O2 was produced. One anionic peroxidase and three cationic peroxidases were detected in this fraction by native polyacrylamide gel electrophoresis. The anionic peroxidase was activated in the Al-treated root tips and also oxidized NADH but was detectable only after a long incubation time. Two of the cationic peroxidases were capable of oxidizing NADH and producing a significant amount of H2O2, but only one of these was activated by Al stress. The role of these peroxidases during Al stress in barley root tips is discussed.Correspondence and reprints: Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 14, 845 23 Bratislava, Slovakia.  相似文献   

2.
NADH-supported generation of H2O2 by permeabilized rat heart mitochondria was partially prevented by the specific complex I-directed inhibitor, NADH-OH, and was significantly stimulated by ammonium. Ammonium did not affect H2O2 production by complex I in coupled submitochondrial particles. The soluble mitochondrial matrix protein fraction catalyzed NADH-dependent H2O2 production, which was greatly (approximately 10-fold) stimulated by ammonium. We conclude that complex I is not the major contributor to mitochondrial superoxide (hydrogen peroxide) generation and that there are specific ammonium-sensitive NADH:oxygen oxidoreductase(s) in the mitochondrial matrix which are responsible for mitochondrial H2O2 production.  相似文献   

3.
Drosophila melanogaster is a key model organism for genetic investigation of the role of free radicals in aging, but biochemical understanding is lacking. Superoxide production by Drosophila mitochondria was measured fluorometrically as hydrogen peroxide, using its dependence on substrates, inhibitors, and added superoxide dismutase to determine sites of production and their topology. Glycerol 3-phosphate dehydrogenase and center o of complex III in the presence of antimycin had the greatest maximum capacities to generate superoxide on the cytosolic side of the inner membrane. Complex I had significant capacity on the matrix side. Center i of complex III, cytochrome c, and complex IV produced no superoxide. Native superoxide generation by isolated mitochondria was also measured without added inhibitors. There was a high rate of superoxide production with sn-glycerol 3-phosphate as substrate; two-thirds mostly from glycerol 3-phosphate dehydrogenase on the cytosolic side and one-third on the matrix side from complex I following reverse electron transport. There was little superoxide production from any site with NADH-linked substrate. Superoxide production by complex I following reverse electron flow from glycerol 3-phosphate was particularly sensitive to membrane potential, decreasing 70% when potential decreased 10 mV, showing that mild uncoupling lowers superoxide production in the matrix very effectively.  相似文献   

4.
A photosystem for solar energy conversion, comprised of a culture of green microalgae supplemented with methyl viologen, is proposed. The capture of solar energy is based on the Mehler reaction. The reduction of methyl viologen by the photosynthetic apparatus and its subsequent reoxidation by oxygen produces hydrogen peroxide. This is a rich-energy compound that can be used as a nonpollutant and efficient fuel. Four different species of green microalgae, Chlamydomonas reinhardtii (21gr) C. reinhardtii (CW15), Chlorella fusca, and Monoraphidium braunii, were tested as a possible biocatalyst. Each species presented a different efficiency level in the transformation of energy. Azide was an efficient inhibitor of the hydrogen peroxide scavenging system while maintaining photosynthetic activity of the microalgae, and thus significantly increasing the production of the photosystem. The strain C. reinhardtii (21gr), among the species studied, was the most efficient with an initial production rate of 185 micromol H(2)O(2)/h x mg Chl and reaching a maximum of 42.5 micromol H(2)O(2)/mg Chl when assayed in the presence of azide inhibitor.  相似文献   

5.
We studied the extent to which hormonally-induced mitochondrial glycerophosphate dehydrogenase (mGPDH) activity contributes to the supply of reducing equivalents to the mitochondrial respiratory chain in the rat liver. The activity of glycerophosphate oxidase was compared with those of NADH oxidase and/or succinate oxidase. It was found that triiodothyronine-activated mGPDH represents almost the same capacity for the saturation of the respiratory chain as Complex II. Furthermore, the increase of mGPDH activity induced by triiodothyronine correlated with an increase of capacity for glycerophosphate-dependent hydrogen peroxide production. As a result of hormonal treatment, a 3-fold increase in glycerophosphate-dependent hydrogen peroxide production by liver mitochondria was detected by polarographic and luminometric measurements.  相似文献   

6.
Cationic ammonium fullerene derivatives (C60-bis(N, N-dimethylpyrrolidinium iodide) and C60-bis(N-methylpiperazinium iodide)) suppressed E. coli growth, whereas an anionic derivative (C60-dimalonic acid) did not. Both cationic derivatives inhibited E. coli dioxygen consumption. Inhibition of energy metabolism is concluded to be a mechanism of the growth inhibition effect of fullerene derivatives.  相似文献   

7.
We found that reversible inactivation of mitochondrial complex I by S-nitroso-N-acetyl-D,L-penicillamine (SNAP) in isolated rat heart mitochondria resulted in a three-fold increase in H2O2 production, when mitochondria were respiring on pyruvate and malate, (but not when respiring on succinate or in the absence of added respiratory substrate). The inactivation of complex I and the increased H2O2 production were present in mitochondria washed free of SNAP or NO, but were partially reversed by light or dithiothreitol, treatments known to reverse S-nitrosation. Specific inhibition of complex I with rotenone increased H2O2 production to a similar extent as that caused by SNAP. The results suggest that S-nitrosation of complex I can reversibly increase oxidant production by mitochondria, which is potentially important in cell signalling and/or pathology.  相似文献   

8.
The sulphydryl containing anti-rheumatic drug D-penicillamine mildly inhibited proteoglycan synthesis in cartilage explant cultures by a mechanism not dependent upon H2O2 generation. More importantly, this drug alleviated the suppression of PG synthesis mediated by 10(-4) M H2O2 in a dose-dependent manner at concentrations of reduced drug similar to those plasma levels reported in vivo. The ability of D-penicillamine to reverse this effect was due solely to a reaction which resulted in scavenging of medium H2O2 and was not due to the "repair" of cellular lesions caused by prior exposure to H2O2.  相似文献   

9.
The synthesis of hyaluronic acid by bovine articular cartilage in culture was inhibited after treatment with xanthine oxidase and hypoxanthine. Through the use of catalase, superoxide dismutase and the specific iron chelator diethylenetriaminepentaacetic acid, the active species responsible for inhibition was shown to be hydrogen peroxide. Hydrogen peroxide generated by glucose oxidase was also inhibitory. Some recovery of hyaluronic synthesis was evident after a further period of culturing. Proteoglycan synthesis was inhibited in parallel with hyaluronic acid synthesis.  相似文献   

10.
Hydrogen peroxide was found to prevent the recovery of Campylobacter jejuni from sub-lethal injury induced by freezing. It also acted synergistically with rifampicin to inhibit both damaged and undamaged cells. these effects could be overcome by the addition to culture media of either catalase of FBP supplement (ferrous sulphat-sodium metabisulphite-sodium pyruvate).  相似文献   

11.
The rate of color formation in an activity assay consisting of phenol and hydrogen peroxide as substrates and 4-aminoantipyrine as chromogen is significantly influenced by hydrogen peroxide concentration due to its inhibitory effect on catalytic activity. A steady-state kinetic model describing the dependence of peroxidase activity on hydrogen peroxide concentration is presented. The model was tested for its application to soybean peroxidase (SBP) and horseradish peroxidase (HRP) reactions based on experimental data which were measured using simple spectrophotometric techniques. The model successfully describes the dependence of enzyme activity for SBP and HRP over a wide range of hydrogen peroxide concentrations. Model parameters may be used to compare the rate of substrate utilization for different peroxidases as well as their susceptibility to compound III formation. The model indicates that SBP tends to form more compound III and is catalytically slower than HRP during the oxidation of phenol.  相似文献   

12.
Hydrogen peroxide is formed in solutions of glutathione exposed to oxygen. This hydrogen peroxide or its precursors will decrease the viscosity of polymers like desoxyribonucleic acid and sodium alginate. Further knowledge of the mechanism of these chemical effects of oxygen might further the understanding of the biological effects of oxygen. This study deals with the rate of solution of oxygen and with the decomposition of hydrogen peroxide in chemical systems exposed to high oxygen pressures. At 6 atmospheres, the absorption coefficient for oxygen into water was about 1 cm./hour and at 143 atmospheres, it was about 2 cm./hour; the difference probably being due to the modus operandi. The addition of cobalt (II), manganese (II), nickel (II), or zinc ions in glutathione (GSH) solutions exposed to high oxygen pressure decreased the net formation of hydrogen peroxide and also the reduced glutathione remaining in the solution. Studies on hydrogen peroxide decomposition indicated that these ions act probably by accelerating the hydrogen perioxide oxidation of glutathione. The chelating agent, ethylenediaminetetraacetic acid disodium salt, inhibited the oxidation of GSH exposed to high oxygen pressure for 14 hours. However, indication that oxidation still occurred, though at a much slower rate, was found in experiments lasting 10 weeks. Thiourea decomposed hydrogen peroxide very rapidly. When GSH solutions were exposed to high oxygen pressure, there was oxidation of the GSH, which became relatively smaller with increasing concentrations of GSH.  相似文献   

13.
A series of genistein derivatives, prepared by alkylation and difluoromethylation, were tested for their inhibitory effects on the hydrogen peroxide induced impairment in human umbilical vein endothelial (HUVE-12) cells in vitro. The HUVE-12 cells were pretreated with either the vehicle solvent (DMSO), genistein, or different amounts of the genistein derivatives for 30 min before exposed to 1 mM hydrogen peroxide for 24 h. Cell apoptosis was determined by flow cytometry with propidium iodide (PI) staining. Cellular injury was estimated by measuring the lactate dehydrogenase (LDH) release. Data suggested that the genistein derivatives possessed a protective effect on HUVE-12 cells from hydrogen peroxide induced apoptosis and reduced LDH release. Among these derivatives, 7-difluoromethyl-5,4'-dimethoxygenistein exhibited the strongest activity against hydrogen peroxide induced apoptosis of HUVE-12 cells.  相似文献   

14.
Enzymatic production of hydrogen peroxide in organic solvents has been demonstrated using immobilizedPichia pastoris alcohol oxidase. Enzyme life was shown to be independent of the solvent used; increasing the solvent polarity resulted in higher levels of hydrogen peroxide production.  相似文献   

15.
Abnormal accumulation of Ca2+ and exposure to pro-apoptotic proteins, such as Bax, is believed to stimulate mitochondrial generation of reactive oxygen species (ROS) and contribute to neural cell death during acute ischemic and traumatic brain injury, and in neurodegenerative diseases, e.g. Parkinson's disease. However, the mechanism by which Ca2+ or apoptotic proteins stimulate mitochondrial ROS production is unclear. We used a sensitive fluorescent probe to compare the effects of Ca2+ on H2O2 emission by isolated rat brain mitochondria in the presence of physiological concentrations of ATP and Mg2+ and different respiratory substrates. In the absence of respiratory chain inhibitors, Ca2+ suppressed H2O2 generation and reduced the membrane potential of mitochondria oxidizing succinate, or glutamate plus malate. In the presence of the respiratory chain Complex I inhibitor rotenone, accumulation of Ca2+ stimulated H2O2 production by mitochondria oxidizing succinate, and this stimulation was associated with release of mitochondrial cytochrome c. In the presence of glutamate plus malate, or succinate, cytochrome c release and H2O2 formation were stimulated by human recombinant full-length Bax in the presence of a BH3 cell death domain peptide. These results indicate that in the presence of ATP and Mg2+, Ca2+ accumulation either inhibits or stimulates mitochondrial H2O2 production, depending on the respiratory substrate and the effect of Ca2+ on the mitochondrial membrane potential. Bax plus a BH3 domain peptide stimulate H2O2 production by brain mitochondria due to release of cytochrome c and this stimulation is insensitive to changes in membrane potential.  相似文献   

16.
Summary. The polyamines spermidine and spermine have been hypothesized to possess different functions in the protection of DNA from reactive oxygen species. The growth and survival of mouse fibroblasts unable to synthesize spermine were compared to their normal counterparts in their native and polyamine-depleted states in response to oxidative stress. The results of these studies suggest that when present at normal or supraphysiological concentrations, either spermidine or spermine can protect cells from reactive oxygen species. However, when polyamine pools are pharmacologically manipulated to produce cells with low levels of predominately spermine or spermidine, spermine appears to be more effective. Importantly, when cells are depleted of both glutathione and endogenous polyamines, they exhibit increased sensitivity to hydrogen peroxide as compared to glutathione depletion alone, suggesting that polyamines not only play a role in protecting cells from oxidative stress but this role is distinct from that played by glutathione.  相似文献   

17.
Nitric oxide (NO) and hydrogen peroxide (H2O2) show cooperativity in their cytotoxic action. The present study was performed to decipher the mechanisms underlying this phenomenon. In cultured liver endothelial cells and in cultured, glutathione-depleted hepatocytes, the combined exposure to NO (released by spermine NONOate, 1 mM) and H2O2 (released by glucose oxidase) induced cell injury that was far higher than the injury elicited by NO or H2O2 alone. In both cell types, the addition of the NO donor increased H2O2 steady-state levels, although with different kinetics: in hepatocytes, the increase in H2O2 levels was already evident at early time points while in liver endothelial cells it became evident after 2 h of incubation. NO exposure inhibited H2O2 degradation, assessed after addition of 50 µM, 200 µM, or 4 mM authentic H2O2, significantly in both cell types. However, again, early and delayed inhibition was observed. The late inhibition of H2O2 degradation in endothelial cells was paralleled by a decrease in glutathione peroxidase activity. Glutathione peroxidase inactivation was prevented by hypoxia or by ascorbate, suggesting inactivation by reactive nitrogen oxide species (NOx). Early inhibition of H2O2 degradation by NO, in contrast, could be mimicked by the catalase inhibitor azide. Together, these results suggest that the cooperative effect of NO and H2O2 is due to inhibition of H2O2 degradation by NO, namely to inhibition of catalase by NO itself (predominant in hepatocytes) and/or to inhibition of glutathione peroxidase by NOx (prevailing in endothelial cells). nitrogen monoxide; catalase; glutathione peroxidase  相似文献   

18.
Fluorescence in red cells following hydrogen peroxide treatment has been attributed to lipid peroxidation of the membrane. The putative relationship between lipid peroxidation and fluorescence was questioned by the finding that BHT and alpha-tocopherol, which are thought to inhibit lipid peroxidation, do not inhibit the fluorescence detected by flow cytometry. Furthermore, lipid peroxidation induced in red cells by the Fe(III)-ADP-ascorbate system did not produce fluorescence. These results require an alternative explanation for the hydrogen peroxide-induced fluorescence. A role for reduced hemoglobin is indicated by the inhibition of fluorescence by pretreatment of cells with CO that binds strongly to ferrohemoglobin and nitrite that oxidizes ferrohemoglobin. Our earlier studies have shown the formation of fluorescent heme degradation products during the reaction of purified hemoglobin with hydrogen peroxide, which was also inhibited by CO and nitrite pretreatment. The fluorescence produced in red cells after the addition of hydrogen peroxide can, therefore, be attributed to fluorescent heme degradation products.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号