首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrically evoked activity in the submuscular ventral longitudinal nerve cords of Notoplana acticola is depressed by GABA and glycine in the presence of high magnesium concentrations. This inhibition occurs with 0.001–0.01 millimolar concentrations of these putative aminergic neurotransmitters and is reversible when washed out. The action of GABA and glycine was reversed nonspecifically by picrotoxin, bucuculline, and strychnine. PTZ (Pentylenetetrazole) was shown to mimic the effects that these blocking agents had on evoked activity when they were tested alone. The release of inhibition by these blocking agents is similar to that of decerebration. Three possible mechanisms responsible for synaptic activity in high Mg2+ concentrations are discussed and the possibility that the effector site of interaction may be the chloride ionophore is explored.  相似文献   

2.
GABA transporters accumulate GABA to inactivate or reutilize it. Transporter-mediated GABA release can also occur. Recent findings indicate that GABA transporters can perform additional functions. We investigated how activation of GABA transporters can mediate release of glycine. Nerve endings purified from mouse cerebellum were prelabeled with [(3)H]glycine in presence of the glycine GlyT1 transporter inhibitor NFPS to label selectively GlyT2-bearing terminals. GABA was added under superfusion conditions and the mechanisms of the GABA-evoked [(3)H]glycine release were characterized. GABA stimulated [(3)H]glycine release in a concentration-dependent manner (EC(50) = 8.26 μM). The GABA-evoked release was insensitive to GABA(A) and GABA(B) receptor antagonists, but it was abolished by GABA transporter inhibitors. About 25% of the evoked release was dependent on external Ca(2+) entering the nerve terminals through VSCCs sensitive to ω-conotoxins. The external Ca(2+)-independent release involved mitochondrial Ca(2+), as it was prevented by the Na(+)/Ca(2+) exchanger inhibitor CGP37157. The GABA uptake-mediated increases in cytosolic Ca(2+) did not trigger exocytotic release because the [(3)H]glycine efflux was insensitive to clostridial toxins. Bafilomycin inhibited the evoked release likely because it reduced vesicular storage of [(3)H]glycine so that less [(3)H]glycine can become cytosolic when GABA taken up exchanges with [(3)H]glycine at the vesicular inhibitory amino acid transporters shared by the two amino acids. The GABA-evoked [(3)H]glycine efflux could be prevented by niflumic acid or NPPB indicating that the evoked release occurred essentially by permeation through anion channels. In conclusion, GABA uptake into GlyT2-bearing cerebellar nerve endings triggered glycine release which occurred essentially by permeation through Ca(2+)-dependent anion channels. Glial GABA release mediated by anion channels was proposed to underlie tonic inhibition in the cerebellum; the present results suggest that glycine release by neuronal anion channels also might contribute to tonic inhibition.  相似文献   

3.
In sonicates of mouse brain synaptosomes, we demonstrated that gamma-aminobutyric acid (GABA) can be formed when L-ornithine (Orn) through L-glutamic acid (Glu), but not through putrescine (Put). Incubation of these sonicates with [3H]ORN yielded not only [3H]Glu and [3H]L-proline (Pro) but also produced [3H]GABA from the [3H]Glu. Formation of each of these three major amino acids from [3H]Orn was strongly inhibited by the addition of GABA (1-5 mM). The likely enzymatic site of this negative feedback inhibition by GABA appeared to be ornithine delta-aminotransferase (OAT). A radiometric procedure was employed to study the effects of the three amino acids cited above and of others found in the free form in brain on the activity of a 30-fold-purified OAT from rat brain. Enzyme activity was measured in the presence of low concentrations of Orn, such as might occur in vivo. OAT was inhibited by GABA to a considerably greater extent than by Glu, L-glutamine, or Put; no inhibition was found with Pro, glycine, aspartarte, taurine, or beta-alanine. The inhibition of GABA was competitive with Orn. These results clearly show that one of the molecular mechanisms underlying the negative feedback inhibition of synaptosomal GABA biosynthesis from Orn is a competitive inhibition by GABA of the brain OAT activity that is responsible for the formation of L-glutamic-gamma-semialdehyde in equilibrium with L-delta 1-pyrroline-5-carboxylic acid from Orn. Thus, the results suggest that GABA may play an important role in restricting the metabolic flow from Orn to Glu and thence to GABA. It is confirmed that L-canaline (delta-aminooxy-L-alpha-aminobutyric acid) is a potent and specific inhibitor of brain OAT whereas much weaker inhibition was observed with two other carbonyl-trapping agents, aminooxyacetic acid and hydrazine.  相似文献   

4.
The effect of Cd2+, as one of the most widespread toxic environmental pollutants, was studied on gamma-aminobutyric acid (GABA) evoked responses of identified neurons in the central nervous system of the pond snail, LYmnaea stagnalis L. (Gastropoda). In the experiments, the modulation of the action of GABA both on neuronal activity (current clamp recording) and on the a GABA activated membrane Cl- current (voltage clamp studies) has been shown. It was found that: 1. GABA could evoked three different various types of response in GABA sensitive neurons: i) hyperpolarization with strong inhibition of ongoing spike activity, ii) short depolarization with an increase of spike the activity, iii) biphasic respone with a short excitation followed by a more prolonged long inhibition. 2. In low-Cl- solution the inhibitory action of GABA was reduced or eliminated, but the excitatory one was not or only moderately affected. 3. CdCl2 inhibited the GABA evoked hyperpolarization, but left intact or only slightly reduced the excitation evoked by GABA. 4. The inward Cl- current evoked by GABA at a -75 mV holding potential was slightly augmented in the presence of I micromol/l Cd2+, but was reduced or blocked at higher cadmium concentrations. The effect of Cd2+ was concentration and time dependent. 5. Parallel with reducing the GABA evoked current, cadmium increased both the time to peak and the half inactivation time of the current. 6. CdCl2 alone, in 50 micromol/l concentration, induced a 1-2 nA inward current. The blocking effect of cadmium on GABA activated inhibitory processes can be an important component of the neuro-toxic effects of this heavy metal ion.  相似文献   

5.
The interactions of GABA- and glycine-mediated responses have been analyzed, the whole cell patch-clamp method being used. The response induced by co-application of glycine and GABA was a lesser one than the sum of responses induced by applying two transmitters separately. The molecular mechanisms underlying this effect have been determined. Due to applications of high concentrations of neurotransmitters it was revealed that GABA could activate glycine receptors in frog spinal motoneurons with relatively high efficiency (EC50 = 1.2 mM). The sequential application of neurotransmitters showed that even a single application of glycine could significantly boost the "run-down" of the GABA-mediated current, suggesting that there was a strong phosphorylation-dependent mechanism of GABAa-receptors inhibition. These mechanisms are likely to take place in frog spinal motoneurons when GABA and glycine are co-released from the same synaptic terminal.  相似文献   

6.
Sensitivity to glutamate, aspartate, glycine and GABA was examined in giant interneurons of the lamprey spinal cord.1. The membrane potentials evoked by iontophoretic application decayed with varied time constants specific to amino acids: 2.5 sec for glutamate, 6.3 sec for glycine and 10.3 sec for GABA. li|2. Bath-applied amino acids reduced the input resistance by varying degrees; when glutamate effect was taken as 1, relative effects of aspartate, glycine and GABA were 0.28, 40.5 and 12.3, respectively.3. Glutamate sensitivity was fairly uniform in both the soma and the dendrites. Glycine sensitivity, as well as GABA, was high in the soma and declined steeply along the dendrites by iontophoresis.  相似文献   

7.
Activation of baroreceptors causes efferent sympathetic nerve activity (SNA) to fall. Two mechanisms could account for this sympathoinhibition: disfacilitation of sympathetic preganglionic neurons (SPN) and/or direct inhibition of SPN. The roles that spinal GABA and glycine receptors play in the baroreceptor reflex were examined in anesthetized, paralyzed, and artificially ventilated rats. Spinal GABA(A) receptors were blocked by an intrathecal injection of bicuculline methiodide, whereas glycine receptors were blocked with strychnine. Baroreceptors were activated by stimulation of the aortic depressor nerve (ADN), and a somatosympathetic reflex was used as control. After an intrathecal injection of vehicle, there was no effect on any measured variable or evoked reflex. In contrast, bicuculline caused a dose-dependent increase in arterial pressure, SNA, phrenic nerve discharge, and it significantly facilitated the somatosympathetic reflex. However, bicuculline did not attenuate either the depressor response or sympathoinhibition evoked after ADN stimulation. Similarly, strychnine did not affect the baroreceptor-induced depressor response. Thus GABA(A) and glycine receptors in the spinal cord have no significant role in baroreceptor-mediated sympathoinhibition.  相似文献   

8.
The primary goal of this study was to establish whether inhibition of GABA synthesis was sufficient to induce network hyperexcitability in a rat hippocampal slice model comparable to that seen with GABA receptor blockade. We used field and intracellular recordings from the CA1 region of rat hippocampal slices to determine the physiological effects of blocking GABA synthesis with the convulsant, 3-mercaptoproprionic acid (MPA). We measured the rate of synthesis of GABA and glutamate in slices using 2-13C-glucose as a label source and liquid chromatography-tandem mass spectrometry. There was little effect of 3.5mM MPA on evoked events under control recording conditions. Tissue excitability was enhanced following a series of stimulus trains; this effect was enhanced when GABA transport was blocked. Evoked inhibitory potentials (IPSPs) failed following repetitive stimulation and MPA. Spontaneous epileptiform activity was seen reliably with elevated extracellular potassium (5mM). GABA synthesis decreased by 49% with MPA alone and 45% with the combination of MPA and excess potassium; GABA content was not substantially altered. Our data indicate: (1) GABAergic inhibition cannot be significantly compromised by MPA without network activation; (2) GABAergic synaptic inhibition is mediated by newly synthesized GABA; (3) there is a depletable pool of GABA that can sustain GABAergic inhibition when synthesis is impaired under basal, but not activated conditions; (4) overt hyperexcitability is only seen when newly synthesized GABA levels are low.  相似文献   

9.
The effect of cold and immobilization stress on presynaptic GABAergic autoreceptors was examined using the release of [3H]GABA (gamma-aminobutyric acid) from slices of rat striatum. It was found that in vitro addition of delta-aminolevulinic acid, as well as GABA agonists such as muscimol and imidazoleacetic acid, exhibited a significant suppression of the striatal release of [3H]GABA evoked by the addition of high potassium, whereas delta-aminovaleric acid had no significant effects on the evoked release. These suppressive actions were antagonized invariably by the GABA antagonists, bicuculline and picrotoxin, but not by the glycine antagonist, strychnine. Cholinergic agonists, such as pilocarpine and tetramethylammonium, also attenuated significantly the evoked release of [3H]GABA from striatal slices, while none of its antagonists, including atropine, hexamethonium and d-tubocurarine, affected the release. On the other hand, in vitro addition of dopamine receptor agents such as dopamine, apomorphine, and haloperidol, or the inhibitory amino acids, glycine, beta-alanine, and taurine failed to influence the evoked release of [3H]GABA from striatal slices. Application of a cold and immobilization stress for 3 h was found to induce a significant enhancement of the suppressive effects by muscimol and delta-aminolevulinic acid on the evoked release of [3H]GABA, without affecting that by pilocarpine and tetramethylammonium. These results suggest that the release of GABA from striatal GABA neurons may be regulated by presynaptic autoreceptors for this neuroactive amino acid, and may play a significant functional role in the exhibition of various symptoms induced by stress.  相似文献   

10.
Lu T  Rubio ME  Trussell LO 《Neuron》2008,57(4):524-535
The firing pattern of neurons is shaped by the convergence of excitation and inhibition, each with finely tuned magnitude and duration. In an auditory brainstem nucleus, glycinergic inhibition features fast decay kinetics, the mechanism of which is unknown. By applying glycine to native or recombinant glycine receptors, we show that response decay times are accelerated by addition of GABA, a weak partial agonist of glycine receptors. Systematic variation in agonist exposure time revealed that fast synaptic time course may be achieved with submillisecond exposures to mixtures of glycine and GABA at physiological concentrations. Accordingly, presynaptic terminals generally contained both transmitters, and depleting terminals of GABA slowed glycinergic synaptic currents. Thus, coreleased GABA accelerates glycinergic transmission by acting directly on glycine receptors, narrowing the time window for effective inhibition. Packaging both weak and strong agonists in vesicles may be a general means by which presynaptic neurons regulate the duration of postsynaptic responses.  相似文献   

11.
Fenamate NSAIDs have several central effects, including anti-epileptic and neuroprotective actions. The underlying mechanism(s) of these actions are not presently understood. In this study, the effects of five members of the fenamate NSAID group were investigated on native ligand-gated ion channels expressed in cultured rat hippocampal neurons. All fenamates tested (1-100 microM) dose-dependently potentiated GABA-evoked currents; mefenamic acid (MFA) was the most potent and efficacious and was found to shift the GABA dose-response curve to the left without effect on the maximum amplitude or the GABA Hill Slope. The modulation of GABA receptors by MFA was not reduced in the presence of the benzodiazepine antagonist, flumazenil (10 microM) and was moderately voltage-dependent. MFA at concentrations >or=10 microM evoked dose-dependent currents in the absence of GABA. These currents were potentiated by diazepam (1 microM) and blocked by bicuculline (10 microM). The MFA (50 microM) current-voltage relationship and reversal potential were similar to that evoked by GABA. MFA (1-100 microM) had no effects on sub-maximal glycine, glutamate or NMDA evoked currents. These data show that fenamate NSAIDs are a highly effective class of GABA(A) receptor modulator and activators.  相似文献   

12.
In the present electrophysiological study the effect of aminooxyacetic acid (AOAA) on the cortical epileptogenicity, and on the basic electro-cortical activity was investigated in anesthetized rats. AOAA did not induce spontaneous epileptiform discharges but modified the somato-sensory evoked responses and the cortical epileptogenicity (induced by 4-aminopyridine) in the same manner depending on its concentration. AOAA at low concentrations increased the amplitude of evoked responses and the ipsilateral manifestation of epileptiform activity, however, at high concentrations significantly suppressed both the evoked responses and the induction and expression of seizures discharges. The anticonvulsive effect of AOAA was time-dependent (reached its maximum after 2h AOAA pre-treatment) and reversible. AOAA at low concentrations probably increases the efficacy of the NMDA excitatory system and decreases GABA-synthesis, resulting neuronal hyperexcitation. However, AOAA at high concentrations can lead to an effective cortical inhibition through intra- and extracellular accumulation of GABA. The gradual GABA accumulation - up to a certain level - at the synapses could also explain the time-dependency of the anticonvulsive effect of AOAA.  相似文献   

13.
The present study used microdialysis techniques in an intact rabbit model to measure the release of amino acids within the lumbar spinal cord in response to transcranial electrical stimulation. Dialysis samples from the extracellular space were obtained over a stimulation period of 90 minutes and were examined using high pressure liquid chromatography. Neuronal excitation was verified by recerding corticomotor evoked potentials (CMEPs) from the spinal cord. A significant increase in the release of glycine and taurine compared to sham animals was measured after 90 minutes of transcranial stimulation. Glutamate and aspartate release was not significantly elevated. GABA concentrations were consistently low. CMEP components repeatedly showed adequate activation of descending fiber pathways and segmental interneuron pools during dialysis sampling. Since glycine, and to a lesser extent taurine, have been shown to inhibit motor neuron activity and are closely associated with segmental interneuron pools, suprasegmental modulation of motor activity may be, in part, through these inhibitory amino acid neurotransmitters in the rabbit lumbar spinal cord.  相似文献   

14.
J W Hell  L Edelmann  J Hartinger  R Jahn 《Biochemistry》1991,30(51):11795-11800
The gamma-aminobutyric acid transporter of rat brain synaptic vesicles was reconstituted in proteoliposomes, and its activity was studied in response to artificially created membrane potentials or proton gradients. Changes of the membrane potential were monitored using the dyes oxonol VI and 3,3'-diisopropylthiodicarbocyanine iodide, and changes of the H+ gradient were followed using acridine orange. An inside positive membrane potential was generated by the creation of an inwardly directed K+ gradient and the subsequent addition of valinomycin. Under these conditions, valinomycin evoked uptake of [3H]GABA which was saturable. Similarly, [3H]glutamate uptake was stimulated by valinomycin, indicating that both transporters can be driven by the membrane potential. Proton gradients were generated by the incubation of K(+)-loaded proteoliposomes in a buffer free of K+ or Na+ ions and the subsequent addition of nigericin. Proton gradients were also generated via the endogenous H+ ATPase by incubation of K(+)-loaded proteoliposomes in equimolar K+ buffer in the presence of valinomycin. These proton gradients evoked nonspecific, nonsaturable uptake of GABA and beta-alanine but not of glycine in proteoliposomes as well as protein-free liposomes. Therefore, transporter activity was monitored using glycine as an alternative substrate. Proton gradients generated by both methods elicited saturable glycine uptake in proteoliposomes. Together, our data confirm that the vesicular GABA transporter can be energized by both the membrane potential and the pH gradient and show that transport can be achieved by artificial gradients independently of the endogenous proton ATPase.  相似文献   

15.
Alpha-latrotoxin evokes massive [3H]GABA release from rat brain synaptosomes by stimulating exocytosis and outflow from non-vesicular pool. In the present study, GABA transporter-mediated [3H]GABA release was shown to be involved in alpha-latrotoxin-triggered release of [3H]GABA from non-vesicular pool. The following agents have been exploited as tools: (1) a protonophore carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazon (FCCP) and bafilomycin A1 for evoking depletion of synaptic vesicle [3H]GABA and enlargement of non-vesicular pool; (2) a non-substrate high-affinity GABA transport blocker NO-711 for determining participation of GABA carrier in the toxin-stimulated GABA release; (3) a competitive inhibitor of GABA reuptake nipecotic acid for heteroexchange [3H]GABA release. As shown by the experiments with nipecotic acid, FCCP and bafilomycin A1 considerably increase the content of non-vesicular [3H]GABA. The treatment of the synaptosomes with these agents modified the response to alpha-latrotoxin, particularly to its subnanomolar concentrations: the lack or substantial lowering of the toxin-evoked release during the first 2 min after the toxin addition and substantial enhancement of release up to the 5th minute were observed. Only the step of enhanced release was sensitive to GABA transporter blocker NO-711. Distinct sensitivity to NO-711 was shown to be characteristic for different steps of alpha-latrotoxin-stimulated [3H]GABA release from the control, untreated synaptosomes: lack of any effect of NO-711 during the first 2 min and powerful inhibition in 10 min after the toxin application. Taken together these data appear to indicate that the toxin non-simultaneously from vesicular and non-vesicular origins releases the neurotransmitter, the first rapid step reflects exocytosis stimulation, and the second tardy step is at least in part due to the release mediated by GABA transporters. The incomplete inhibition with NO-711 of the tardy step of the release evoked by nanomolar toxin concentrations suggests the participation not only of the GABA transporters.  相似文献   

16.
GABAergic activity is regulated by rapid, high affinity uptake of GABA from the synapse. Perturbation of GABA reuptake has been implicated in neurological disease and inhibitors of GABA transporters (GAT) have been used therapeutically but little detail is known about the ramifications of GAT inhibition on brain neurochemistry. Here, we incubated Guinea pig cortical tissue slices with [3-13C]pyruvate and major, currently available GABA uptake inhibitors. Metabolic fingerprints were generated from these experiments using 13C/1H NMR spectroscopy. These fingerprints were analyzed using multivariate statistical approaches and compared with an existing library of fingerprints of activity at GABA receptors. This approach identified five distinct clusters of metabolic activity induced by blocking GABA uptake. Inhibition of GABA uptake via GAT1 produced patterns similar to activity at mainstream GABAergic synapses in particular those containing α1-subunits but still statistically separable. This indicated that inhibition of GABA uptake, an indirect method of activating GABA receptors, produces different effects to direct receptor activation or to exogenous GABA. The mechanism of inhibitor function also produced different outcomes, with the channel blocker SKF 89976A yielding a unique metabolic response. Blocking GAT1 and GAT3 simultaneously induces a large metabolic response consistent with induction of tonic inhibition via high affinity GABA receptors. Blocking BGT produces patterns similar to activity at less common receptors such as those containing α5 subunits. This approach is useful for determining where in the spectrum of GABAergic responses a particular GABA transport inhibitor is effective.  相似文献   

17.
Microfluorometric recordings showed that the inhibitory neurotransmitters gamma-aminobutyric acid (GABA) and glycine activated transient increases in the intracellular Cl- concentration in neurons of the inferior colliculus (IC) from acutely isolated slices of the rat auditory midbrain. Current recordings in gramicidin-perforated patch mode disclosed that GABA and glycine mainly evoked inward or biphasic currents. These currents were dependent on HCO3- and characterized by a continuous shift of their reversal potential (E(GABA/gly)) in the positive direction. In HCO3- -buffered saline, GABA and glycine could also evoke an increase in the intracellular Ca2+ concentration. Ca2+ transients occurred only with large depolarizations and were blocked by Cd2+, suggesting an activation of voltage-gated Ca2+ channels. However, in the absence of HCO3-, only a small rise, if any, in the intracellular Ca2+ concentration could be evoked by GABA or glycine. We suggest that the activation of GABAA or glycine receptors results in an acute accumulation of Cl- that is enhanced by the depolarization owing to HCO3- efflux, thus shifting E(GABA/gly) to more positive values. A subsequent activation of these receptors would result in a strenghtened depolarization and an enlarged Ca2+ influx that might play a role in the stabilization of inhibitory synapses in the auditory pathway.  相似文献   

18.
Abstract: The adenosine A2a receptor inhibition of potassium (15 m M )-evoked GABA release from striatal nerve terminals has been examined. High extracellular calcium concentrations (4 m M ) reduced the effect of the A2a receptor agonist CGS-21680 (1 n M ). CGS-21680 inhibited GABA release in the presence of the L-type calcium channel blocker nifedipine, which itself inhibited evoked GABA release (by 16 ± 4%). ω-Conotoxin inhibited the evoked release by 45 ± 4% and prevented the action of CGS-21680. Forskolin and 8-bromo cyclic AMP both stimulated evoked GABA release at low concentrations, but at higher concentrations they abolished the inhibition by CGS-21680 without affecting the evoked release. The nonselective protein kinase inhibitor H-7 inhibited both the evoked release and the inhibition by CGS-21680, whereas the selective protein kinase A and G inhibitor HA-1004 had no effect on either evoked release or the action of CGS-21680. Pretreatment with pertussis toxin did not affect the A2a receptor-mediated inhibition. Therefore, the effect of A2a receptor stimulation was not mediated by protein kinases A or G but was inhibited by elevated cyclic AMP levels and mimicked by inhibitors of the N-type calcium channel and protein kinase C.  相似文献   

19.
Effects of Lead In Vivo and In Vitro on GABAergic Neurochemistry   总被引:2,自引:1,他引:1  
Abstract: Alterations in aspects of neurotransmission utilizing -γ-aminobutyric acid (GABA) are associated with in vivo exposure of rats to lead at doses that do not produce convulsions, but sensitize animals to convulsant agents. These effects are observed regionally and include: decreased GABA levels in cerebellum; increased activity of glutamate decarboxylase (GAD) in caudate; and decreased GABA release (both resting and K+-stimulated) in cortex, caudate, cerebellum and substantia nigra. Sodium-dependent uptake of GABA by synaptosomes of cerebellum, substantia nigra and caudate was also affected: in these regions, affinity (Km) was increased and maximal velocity (Vmax) was reduced. Sodium-independent binding of GABA to synaptic membranes was increased in cerebellum, but was observed only when tissue was Tritonized and prepared without freezing and washing. No effects on GAD or on GABA uptake, release, or binding were observed when lead was added to brain tissue in vitro in concentrations as high as 100 μM. The results suggest that lead may produce chronic inhibition of presynaptic GABAergic function, notably in the cerebellum, which is associated with supersensitivity of postsynaptic GABA receptors. Failure of lead to affect GABAergic function in vitro may indicate that these effects are secondary to another neurotoxic action of lead in the CNS or are consequent to a nonneuronal metabolic action of lead.  相似文献   

20.
GABA参与兔杏仁体抑制内膝体神经元电活动   总被引:2,自引:1,他引:1  
Yang L  Dong XW  Feng MZ  Wu QY  Zhou SC 《生理学报》1998,50(3):257-262
本文采用多管微电极胞外记录技术观察了短纯音引起兔内膝神经元的声反应及刺激杏仁体对声反应的影响,并在此基础上观察电泳GABA及其拮抗剂Bicuculline的效应。实验结果表明:GABA可以抑制MGB神经元的声反应及自发放电活动,而GABAA拮抗剂Bicuculline的作用则相反;电泳GABA对MGB神经元产生同刺激杏仁体一样的抑制产应,并且这种影响可被Bicuculline翻转;嗅鼻沟后缘听区农  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号