首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental data on the comparative study of the invasive properties of vct+ Hly- and vct- Hly+ V. cholerae of serogroups 01 and 0139 are presented. Both vct- Hly+ and vct+ Hly- V. cholerae of serogroups 01 and 0139 have been shown to be capable of dissemination into internal organs. No differences in the dissemination of V. cholerae of different serogroups in both immunologically immature and mature experimental animals have been detected.  相似文献   

2.
V. cholerae strains of different origin have been studied for the presence of cholera toxin genes (vct), the proximal part of the virulence cassette including genes zot, ace and orfU, as well as neuraminidase genes (neu), in their genomes with the use of molecular DNA probes. The possibility, in principle, for some strains to lose only a part of their virulence cassette (gene vct), while retaining its proximal part has been shown. In most cases such strains are isolated from patients with diarrhea of different severity and may probably play some etiological role, provided that the expression of the genes of additional toxins of the virulence cassette occurs. The gene expressing neuraminidase which facilitates the penetration of cholera toxin into the epithelial cells of the intestine is always present in vct+ strains and may be absent in vct- strains. The absence of genetic relationship between neuraminidases in V. cholerae O139 and V. cholerae O1 and non-O1 (non-O139) has been confirmed. The problems in connection with the integration and deletion of genetic determinants of V. cholerae virulence factors are discussed.  相似文献   

3.
Experimental data on the comparative evaluation of the hemolytic activity of ctx+ Hly- and ctx- Hly+ V. cholerae, serogroups O1 and O139, in the process of their cultivation in different nutrient media are presented. The capacity of ctx+ V. cholerae of both serogroups cultivated under the conditions of iron deficiency, for the production of hemolysin capable of lyzing sheep red blood cells was shown. Hemolysin produced by ctx- strains of V. cholerae was synthesized under any conditions. The study of hemolysin preparations obtained from ctx- and ctx+ strains of V. cholerae, serogroups O1 and O139, revealed that they were biologically and immunologically similar.  相似文献   

4.
The hemolytic activity of ctx- and ctx+ V. cholerae, serogroups eltor and O39, in a medium free of FeCl3 was studied. During the cultivation in this medium, the strains of both V. cholerae serogroups proved to be capable of lysing sheep red blood cells in the Graig test, irrespective of the presence of ctx genes. The cultivation of V. cholerae ctx+ strains of both serogroups under such conditions facilitated the production of hemolysin with the same spectrum of lytic activity as hemolysin produced by ctx- strains.  相似文献   

5.
The pathomorphological picture of experimental infection caused by the infective agent of cholera was shown to have some specific features observed in infections caused by vibrios belonging to the serogroups under study. Infection caused by V. cholerae of serogroup O139 induced some morphological changes in the gastrointestinal tract which were quite characteristic of this disease, but inflammatory changes with the prevalence of proliferative infiltrative processes came to the foreground simultaneously with less developed processes of edema and dystrophic lesions of enterocytes. These specific morphological features in animals infected with V. cholerae of serogroup O139 appeared to be probably due to the production of new surface structures by these strains.  相似文献   

6.
The recombinant plasmid RP4 omega elt carrying Escherichia coli heat-labile enterotoxin elt genes with 70-80% homology with genes vct of Vibrio cholerae has been constructed. We used this plasmid to determine localization of the cholerae toxin genes vct on the map of Vibrio cholerae cholerae. Two types of the donors were revealed in matings of 10 strains of V. cholerae cholerae 569B/RP4 omega elt with the polyauxotrophic recipients RV31 and RV175: some strains had enhanced frequency of mobilization of ilv-1 and lys-6 markers, the others--of trp-1. Our data suggest that structural vct genes are located within two regions of V. cholerae cholerae 569B chromosome: trp-1 and ilv-1--lys-6.  相似文献   

7.
Vibrio cholerae, the causative agent of cholera, is endemic in many parts of the world, especially in countries poor in resources. Molecular subtyping of V. cholerae is useful to trace the regional spread of a clone or multidrug-resistant strains during outbreaks of cholera. Current available PCR-based fingerprinting methods such as Random Amplified Polymorphic DNA (RAPD)-PCR, Enterobacterial Repetitive Intergenic Consensus Sequence (ERIC)-PCR, and Repetitive Extragenic Palindromic (REP)-PCR were used to subtype V. cholerae. However, there are problems for inter-laboratory comparison as these PCR methods have their own limitations especially when different PCR methods have been used for molecular typing. In this study, a Vibrio cholerae Repeats-PCR (VCR-PCR) approach which targets the genetic polymorphism of the integron island of Vibrios was used and compared with other PCR-based fingerprinting methods in subtyping. Forty-three V. cholerae of different serogroups from various sources were tested. The PCR-fingerprinting approaches were evaluated on typeability, reproducibility, stability and discriminatory power. Overall, Malaysian non-O1/non-O139 V. cholerae were more diverse than O1 strains. Four non-O1/non-O139 strains were closely related with O1 strains. The O139 strain in this study shared similarity with strains of both O1 and non-O1/non-O139 serogroups. ERIC-PCR was the most discriminative approach (D value = 0.996). VCR-PCR was useful in discriminating non-O1/non-O139 strains. RAPD-PCR and REP-PCR were less suitable for efficient subtyping purposes as they were not reproducible and lacked stability. The combination of the ERIC-PCR and VCR-PCR may overcome the inadequacy of any one approach and hence provide more informative data.  相似文献   

8.
Testing the supernatants of ctx(+) strains of V. cholerae eltor and V. cholerae O139 on cell subcultures confirmed the possibility of the synthesis of hemolysin by V. cholerae under the condition of growing them in tripton medium lacking FeCl3. At the same time ctx(+) strains of V. cholerae of both serogroups retained, simultaneously with hemolysin production, their capacity for the synthesis of cholera toxin.  相似文献   

9.
The environmental reservoirs for Vibrio cholerae are natural aquatic habitats, where it colonizes the chitinous exoskeletons of copepod molts. Growth of V. cholerae on a chitin surface induces competence for natural transformation, a mechanism for intra-species gene exchange. The antigenically diverse O-serogroup determinants of V. cholerae are encoded by a genetically variable biosynthetic cluster of genes that is flanked on either side by chromosomal regions that are conserved between different serogroups. To determine whether this genomic motif and chitin-induced natural transformation might enable the exchange of serogroup-specific gene clusters between different O serogroups of V. cholerae, a strain of V. cholerae O1 El Tor was co-cultured with a strain of V. cholerae O139 Bengal within a biofilm on the same chitin surface immersed in seawater, and O1-to-O139 transformants were obtained. Serogroup conversion of the O1 recipient by the O139 donor was demonstrated by comparative genomic hybridization, biochemical and serological characterization of the O-antigenic determinant, and resistance of O1-to-O139 transformants to bacteriolysis by a virulent O1-specific phage. Serogroup conversion was shown to have occurred as a single-step exchange of large fragments of DNA. Crossovers were localized to regions of homology common to other V. cholerae serogroups that flank serogroup-specific encoding sequences. This result and the successful serogroup conversion of an O1 strain by O37 genomic DNA indicate that chitin-induced natural transformation might be a common mechanism for serogroup conversion in aquatic habitats and for the emergence of V. cholerae variants that are better adapted for survival in environmental niches or more pathogenic for humans.  相似文献   

10.
Vibrio cholerae is the causative organism of the disease cholera. The lipopolysaccharide (LPS) of V. cholerae plays an important role in eliciting the antibacterial immune response of the host and in classifying the vibrios into some 200 or more serogroups. This review presents an account of our up-to-date knowledge of the physical and chemical characteristics of the three constituents, lipid-A, core-polysaccharide (core-PS) and O-antigen polysaccharide (O-PS), of the LPS of V. cholerae of different serogroups including the disease-causing ones, O1 and O139. The structure and occurrence of the capsular polysaccharide (CPS) on V. cholerae O139 have been discussed as a relevant topic. Similarity and dissimilarity between the structures of LPS of different serogroups, and particularly between O22 and O139, have been analysed with a view to learning their role in the causation of the epidemic form of the disease by avoiding the host defence mechanism and in the evolution of the newer pathogenic strains in future. An idea of the emerging trends of research involving the use of immunogens prepared from synthetic oligosaccharides that mimic terminal epitopes of the O-PS of V. cholerae O1 in the development of a conjugate anti cholera vaccine is also discussed.  相似文献   

11.
The organization and distribution of the genes responsible for O antigen biosynthesis in various serogroups of Vibrio cholerae were investigated using several DNA probes derived from various regions of the genes responsible for O1 antigen biosynthesis. Based on the reactivity pattern of the probes against the various serogroups, the cluster of genes responsible for the O1 antigen biosynthesis could be broadly divided into six groups, designated as class 1-6. The class 3 cluster of genes corresponding to gmd to wbeO, wbeT and a part of wbeU was specific for only the O1 serogroup. The other cluster of genes (class 1, 2, 4-6) reacted with other serogroups of V. cholerae. These data indicate that serotype conversion in V. cholerae does not depend on a simple mutational event but may involve horizontal gene transfer not only between V. cholerae strains but also between V. cholerae and species other than V. cholerae.  相似文献   

12.
To find out stable and effective producers of major protective antigens intended for use as components of cholera chemical vaccine against V. cholerae strains of serogroups O and O139, the comparative analysis of the production of cholera toxin, toxin-coregulated pili (TCP), antigens O1 and O139, polysaccharide capsule and outer membrane protein OmpU in different V. cholerae strains groups O1 and O139 has been made. V. cholerae strain KM68, serogroup O1, has been found capable of the production of antigen O1, serovar Ogawa, protein OmpU at a sufficiently high level and the hyperproduction of cholera toxin and TCP, and thus suitable for use in the manufacture of cholera bivalent vaccine as the source of these antigens. Specially selected alysogenic noncapsular strain KM137 of serogroup O139, characterized by a high and stable level of the biosynthesis of this somatic antigen when grown in both laboratory and production conditions, may serve as the produces of antigen O139.  相似文献   

13.
Enterobacterial repetitive intergenic consensus (ERIC) sequence polymorphism was studied in Vibrio Cholerae strains isolated before and after the cholera epidemic in Brazil (in 1991), along with epidemic strains from Peru, Mexico, and India, by PCR. A total of 17 fingerprint patterns (FPs) were detected in the V. cholerae strains examined; 96.7% of the toxigenic V. cholerae O1 strains and 100% of the O139 serogroup strains were found to belong to the same FP group comprising four fragments (FP1). The nontoxigenic V. cholerae O1 also yielded four fragments but constituted a different FP group (FP2). A total of 15 different patterns were observed among the V. cholerae non-O1 strains. Two patterns were observed most frequently for V. cholerae non-01 strains, 25% of which have FP3, with five fragments, and 16.7% of which have FP4, with two fragments. Three fragments, 1.75, 0.79, and 0.5 kb, were found to be common to both toxigenic and nontoxigenic V. cholerae O1 strains as well as to group FP3, containing V. cholerae non-O1 strains. Two fragments of group FP3, 1.3 and 1.0 kb, were present in FP1 and FP2 respectively. The 0.5-kb fragment was common to all strains and serogroups of V. cholerae analyzed. It is concluded from the results of this study, based on DNA FPs of environmental isolates, that it is possible to detect an emerging virulent strain in a cholera-endemic region. ERIC-PCR constitutes a powerful tool for determination of the virulence potential of V. cholerae O1 strains isolated in surveillance programs and for molecular epidemiological investigations.  相似文献   

14.
S Yamasaki  T Shimizu  K Hoshino  S T Ho  T Shimada  G B Nair  Y Takeda 《Gene》1999,237(2):321-332
Several studies have shown that the emergence of the O139 serogroup of Vibrio cholerae is a result of horizontal gene transfer of a fragment of DNA from a serogroup other than O1 into the region responsible for O-antigen biosynthesis of the seventh pandemic V. cholerae O1 biotype El Tor strain. In this study, we show that the gene cluster responsible for O-antigen biosynthesis of the O139 serogroup of V. cholerae is closely related to those of O22. When DNA fragments derived from O139 O-antigen biosynthesis gene region were used as probes, the entire O139 O-antigen biosynthesis gene region could be divided into five classes, designated as I-V based on the reactivity pattern of the probes against reference strains of V. cholerae representing serogroups O1-O193. Class IV was specific to O139 serogroup, while classes I-III and class V were homologous to varying extents to some of the non-O1, non-O139 serogroups. Interestingly, the regions other than class IV were also conserved in the O22 serogroup. Long and accurate PCR was employed to determine if a simple deletion or substitution was involved to account for the difference in class IV between O139 and O22. A product of approx. 15kb was amplified when O139 DNA was used as the template, while a product of approx. 12.5kb was amplified when O22 DNA was used as the template, indicating that substitution but not deletion could account for the difference in the region between O22 and O139 serogroups. In order to precisely compare between the genes responsible for O-antigen biosynthesis of O139 and O22, the region responsible for O-antigen biosynthesis of O22 serogroup was cloned and analyzed. In concurrence with the results of the hybridization test, all regions were well conserved in O22 and O139 serogroups, although wbfA and the five or six genes comprising class IV in O22 and O139 serogroups, respectively, were exceptions. Again the genes in class IV in O22 were confirmed to be specific to O22 among the 155 'O' serogroups of V. cholerae. These data suggest that the gene clusters responsible for O139 O-antigen biosynthesis are most similar to those of O22 and genes within class IV of O139, and O22 defines the unique O antigen of O139 or O22.  相似文献   

15.
Since Vibrio cholerae O139 first appeared in 1992, both O1 El Tor and O139 have been recognized as the epidemic serogroups, although their geographic distribution, endemicity, and reservoir are not fully understood. To address this lack of information, a study of the epidemiology and ecology of V. cholerae O1 and O139 was carried out in two coastal areas, Bakerganj and Mathbaria, Bangladesh, where cholera occurs seasonally. The results of a biweekly clinical study (January 2004 to May 2005), employing culture methods, and of an ecological study (monthly in Bakerganj and biweekly in Mathbaria from March 2004 to May 2005), employing direct and enrichment culture, colony blot hybridization, and direct fluorescent-antibody methods, showed that cholera is endemic in both Bakerganj and Mathbaria and that V. cholerae O1, O139, and non-O1/non-O139 are autochthonous to the aquatic environment. Although V. cholerae O1 and O139 were isolated from both areas, most noteworthy was the isolation of V. cholerae O139 in March, July, and September 2004 in Mathbaria, where seasonal cholera was clinically linked only to V. cholerae O1. In Mathbaria, V. cholerae O139 emerged as the sole cause of a significant outbreak of cholera in March 2005. V. cholerae O1 reemerged clinically in April 2005 and established dominance over V. cholerae O139, continuing to cause cholera in Mathbaria. In conclusion, the epidemic potential and coastal aquatic reservoir for V. cholerae O139 have been demonstrated. Based on the results of this study, the coastal ecosystem of the Bay of Bengal is concluded to be a significant reservoir for the epidemic serogroups of V. cholerae.  相似文献   

16.
Abstract The outer membrane (OM) protein components of a Vibrio cholerae O1 and four V. cholerae O139 strains, collected from cholera patients, were analysed by SDS-PAGE. A protein of 69 kDa molecular mass was observed only when the OMPs were prepared from strains grown in synthetic broth. As a result of passage in the rabbit ileal loop (RIL), virulence was enhanced, and a protein component around 18 kDa of the V. cholerae O139 OM became the major protein component. On immunoblot analysis with rabbit antiserum against V. cholerae O139 OM, it was shown that, apart from the major protein component of V. cholerae O1 OM of around 45 kDa and that of V. cholerae O139 OM of around 38 kDa, all other minor protein components were cross-reactive between the two serogroups. In immunoblot assays with convalescent sera obtained from V. cholerae O139-infected patients, it was observed that in addition to the lipopolysaccharide (LPS)-induced antibody, only the 38 kDa major protein component elicited considerable levels of antibody in the pateint. Minor OM components of 18 kDa were detected in the immunoblot analysis by LPS-directed antibody, however, as the OM proteins are known to be associated with LPS.  相似文献   

17.
An account of our up to date knowledge of the genetics of biosynthesis of Vibrio cholerae lipopolysaccharide (LPS) is presented in this review. While not much information is available in the literature on the genetics of biosynthesis of lipid A of V. cholerae, the available information on the characteristics and proposed functions of the corepolysaccharide (core-PS) biosynthetic genes is discussed. The genetic organizations encoding the O-antigen polysaccharides (O-PS) of V. cholerae of serogroups O1 and O139, the disease causing ones, have been described along with the putative functions of the different constituent genes. The O-PS biosynthetic genes of some non-O1, non-O139 serogroups, particularly the serogroups O37 and O22, and their putative functions have also been discussed briefly. In view of the importance of the serogroup O139, the origination of the O139 strain and the possible donor of the corresponding O-PS gene cluster have been analyzed with a view to having knowledge of (i) the mode of evolution of different serogroups and (ii) the possible emergence of pathogenic strain(s) belonging to non-O1, non-O139 serogroups. The unsolved problems in this area of research and their probable impact on the production of an effective cholera vaccine have been outlined in conclusion.  相似文献   

18.
Mucinase is a soluble haemagglutinin protease, which may be important for the survival of Vibrio cholerae in association with mucilaginous blue-green algae (cyanobacteria). A comparative survival study was carried out with an Anabaena sp. and a wild-type V. cholerae O1 strain hap+ gene (haemagglutinin-protease), together with its isogenic mutant hap (hap-deleted gene). A simple spread plate technique was followed to count culturable V. cholerae O1 on taurocholate tellurite gelatin agar plate. The fluorescent antibody technique of Kogure et al. (1979) was used for the microscopical viable count of V. cholerae O1. Polymerase chain reaction (PCR) and Southern blot hybridization were carried out to detect a lower number of viable but nonculturable (VBNC) V. cholerae O1 from the laboratory-based experiments. The wild and mutant V. cholerae O1 strains survived in culturable form for 22 and 10 days. respectively, in association with the Anabaena sp., with the difference being statistically significant (P < 0.01). The fluorescent antibody technique, PCR, and hybridization results also showed that the wild strain survived better in the VBNC state than did the mutant VBNC strain in association with an Anabaena sp. These results indicate that the enzyme mucinase may play an important role in the association and long-term survival of V. cholerae O1 with a mucilaginous blue-green alga, Anabaena sp.  相似文献   

19.
The pathogenic strains of Vibrio cholerae that cause acute enteric infections in humans are derived from environmental nonpathogenic strains. To track the evolution of pathogenic V. cholerae and identify potential precursors of new pathogenic strains, we analyzed 324 environmental or clinical V. cholerae isolates for the presence of diverse genes involved in virulence or ecological fitness. Of 251 environmental non-O1, non-O139 strains tested, 10 (3.9%) carried the toxin coregulated pilus (TCP) pathogenicity island encoding TCPs, and the CTX prophage encoding cholera toxin, whereas another 10 isolates carried the TCP island alone, and were susceptible to transduction with CTX phage. Most V. cholerae O1 and O139 strains carried these two major virulence determinants, as well as the Vibrio seventh pandemic islands (VSP-1 and VSP-2), whereas 23 (9.1%) non-O1, non-O139 strains carried several VSP island genes, but none carried a complete VSP island. Conversely, 30 (11.9%) non-O1, non-O139 strains carried type III secretion system (TTSS) genes, but none of 63 V. cholerae O1 or O139 strains tested were positive for TTSS. Thus, the distribution of major virulence genes in the non-O1, non-O139 serogroups of V. cholerae is largely different from that of the O1 or O139 serogroups. However, the prevalence of putative accessory virulence genes (mshA, hlyA, and RTX) was similar in all strains, with the mshA being most prevalent (98.8%) followed by RTX genes (96.2%) and hlyA (94.6%), supporting more recent assumptions that these genes imparts increased environmental fitness. Since all pathogenic strains retain these genes, the epidemiological success of the strains presumably depends on their environmental persistence in addition to the ability to produce major virulence factors. Potential precursors of new pathogenic strains would thus require to assemble a combination of genes for both ecological fitness and virulence to attain epidemiological predominance.  相似文献   

20.
Cholera bacteriophages have been isolated from 27 lysogenic cultures of V. cholerae O139. As shown the pages under study belong to two morphological groups A1 and F1 and serological types II and XII. The use of prophage typing and the sensitivity test to specific phage made it possible to differentiate V. cholerae strains, serogroup O139.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号