首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
McGrath JL 《Current biology : CB》2005,15(23):R970-R972
Cytoplasmic dynein is a microtubule-based motor protein that transports membranes in cells. The movement driven by a single dynein molecule in vitro is not as robust as dynein-driven movements in cells. A new study suggests that transport by multiple dyneins is more similar to cellular motions.  相似文献   

2.
Molecular motor proteins use the energy released from ATP hydrolysis to generate force and haul cargoes along cytoskeletal filaments. Thus, measuring the force motors generate amounts to directly probing their function. We report on optical trapping methodology capable of making precise in vivo stall-force measurements of individual cargoes hauled by molecular motors in their native environment. Despite routine measurement of motor forces in vitro, performing and calibrating such measurements in vivo has been challenging. We describe the methodology recently developed to overcome these difficulties, and used to measure stall forces of both kinesin-1 and cytoplasmic dynein-driven lipid droplets in Drosophila embryos. Critically, by measuring the cargo dynamics in the optical trap, we find that there is memory: it is more likely for a cargo to resume motion in the same direction—rather than reverse direction—after the motors transporting it detach from the microtubule under the force of the optical trap. This suggests that only motors of one polarity are active on the cargo at any instant in time and is not consistent with the tug-of-war models of bidirectional transport where both polarity motors can bind the microtubules at all times. We further use the optical trap to measure in vivo the detachment rates from microtubules of kinesin-1 and dynein-driven lipid droplets. Unlike what is commonly assumed, we find that dynein’s but not kinesin’s detachment time in vivo increases with opposing load. This suggests that dynein’s interaction with microtubules behaves like a catch bond.  相似文献   

3.
Molecular motors: strategies to get along   总被引:2,自引:0,他引:2  
Mallik R  Gross SP 《Current biology : CB》2004,14(22):R971-R982
The majority of active transport in the cell is driven by three classes of molecular motors: the kinesin and dynein families that move toward the plus-end and minus-end of microtubules, respectively, and the unconventional myosin motors that move along actin filaments. Each class of motor has different properties, but in the cell they often function together. In this review we summarize what is known about their single-molecule properties and the possibilities for regulation of such properties. In view of new results on cytoplasmic dynein, we attempt to rationalize how these different classes of motors might work together as part of the intracellular transport machinery. We propose that kinesin and myosin are robust and highly efficient transporters, but with somewhat limited room for regulation of function. Because cytoplasmic dynein is less efficient and robust, to achieve function comparable to the other motors it requires a number of accessory proteins as well as multiple dyneins functioning together. This necessity for additional factors, as well as dynein's inherent complexity, in principle allows for greatly increased control of function by taking the factors away either singly or in combination. Thus, dynein's contribution relative to the other motors can be dynamically tuned, allowing the motors to function together differently in a variety of situations.  相似文献   

4.
Cytoplasmic dynein is a microtubule-based motor with diverse cellular roles. Here, we use mutations in the dynein heavy chain gene to impair the motor's function, and employ biophysical measurements to demonstrate that cytoplasmic dynein is responsible for the minus end motion of bidirectionally moving lipid droplets in early Drosophila embryos. This analysis yields an estimate for the force that a single cytoplasmic dynein exerts in vivo (1.1 pN). It also allows us to quantitate dynein-mediated cargo motion in vivo, providing a framework for investigating how dynein's activity is controlled. We identify three distinct travel states whose general features also characterize plus end motion. These states are preserved in different developmental stages. We had previously provided evidence that for each travel direction, single droplets are moved by multiple motors of the same type (Welte et al. 1998). Droplet travel distances (runs) are much shorter than expected for multiple motors based on in vitro estimates of cytoplasmic dynein processivity. Therefore, we propose the existence of a process that ends runs before the motors fall off the microtubules. We find that this process acts with a constant probability per unit distance, and is typically coupled to a switch in travel direction. A process with similar properties governs plus end motion, and its regulation controls the net direction of transport.  相似文献   

5.
Kinesin and cytoplasmic dynein are microtubule-based motor proteins that actively transport material throughout the cell. Microtubules can intersect at a variety of angles both near the nucleus and at the cell periphery, and the behavior of molecular motors at these intersections has implications for long-range transport efficiency and accuracy. To test motor function at microtubule intersections, crossovers were arranged in vitro using flow to orient successive layers of filaments. Single kinesin and cytoplasmic dynein-dynactin molecules fused with green-fluorescent protein, and artificial bead cargos decorated with multiple motors, were observed while they encountered intersections. Single kinesins tend to cross intersecting microtubules, whereas single dynein-dynactins have a more varied response. For bead cargos, kinesin motion is independent of motor number. Dynein beads with high motor numbers pause, but their actions become more varied as the motor number decreases. These results suggest that regulating the number of active dynein molecules could change a motile cargo into one that is anchored at an intersection, consistent with dynein's proposed transport and tethering functions in the cell.  相似文献   

6.
Motor proteins are essential components of intracellular transport inside eukaryotic cells. These protein molecules use chemical energy obtained from hydrolysis of ATP to produce mechanical forces required for transporting cargos inside cells, from one location to another, in a directed manner. Of these motors, cytoplasmic dynein is structurally more complex than other motor proteins involved in intracellular transport, as it shows force and fuel (ATP) concentration dependent step‐size. Cytoplasmic dynein motors are known to work in a team during cargo transport and force generation. Here, we use a complete Monte‐Carlo model of single dynein constrained by in vitro experiments, which includes the effect of both force and ATP on stepping as well as detachment of motors under force. We then use our complete Monte‐Carlo model of single dynein motor to understand collective cargo transport by a team of dynein motors, such as dependence of cargo travel distance and velocity on applied force and fuel concentration. In our model, cargos pulled by a team of dynein motors do not detach rapidly under higher forces, confirming the experimental observation of longer persistence time of dynein team on microtubule under higher forces.  相似文献   

7.
The spatial organization of the cell depends upon intracellular trafficking of cargos hauled along microtubules and actin filaments by the molecular motor proteins kinesin, dynein, and myosin. Although much is known about how single motors function, there is significant evidence that cargos in vivo are carried by multiple motors. While some aspects of multiple motor function have received attention, how the cargo itself--and motor organization on the cargo--affects transport has not been considered. To address this, we have developed a three-dimensional Monte Carlo simulation of motors transporting a spherical cargo, subject to thermal fluctuations that produce both rotational and translational diffusion. We found that these fluctuations could exert a load on the motor(s), significantly decreasing the mean travel distance and velocity of large cargos, especially at large viscosities. In addition, the presence of the cargo could dramatically help the motor to bind productively to the microtubule: the relatively slow translational and rotational diffusion of moderately sized cargos gave the motors ample opportunity to bind to a microtubule before the motor/cargo ensemble diffuses out of range of that microtubule. For rapidly diffusing cargos, the probability of their binding to a microtubule was high if there were nearby microtubules that they could easily reach by translational diffusion. Our simulations found that one reason why motors may be approximately 100 nm long is to improve their 'on' rates when attached to comparably sized cargos. Finally, our results suggested that to efficiently regulate the number of active motors, motors should be clustered together rather than spread randomly over the surface of the cargo. While our simulation uses the specific parameters for kinesin, these effects result from generic properties of the motors, cargos, and filaments, so they should apply to other motors as well.  相似文献   

8.
Intracellular transport along cytoskeletal filaments is often mediated by two teams of molecular motors that pull on the same cargo and move in opposite directions along the filaments. We have recently shown theoretically that this bidirectional transport can be understood as a stochastic tug-of-war between the two motor teams. Here, we further develop our theory to investigate the experimentally accessible dynamic behavior of cargos transported by strong motors such as kinesin-1 or cytoplasmic dynein. By studying the run and binding times of such a cargo, we show that the properties of biological motors, such as the large ratio of stall/detachment force and the small ratio of superstall backward/forward velocity, are favorable for bidirectional cargo transport, leading to fast motion and enhanced diffusion. In addition, cargo processivity is shown to be strongly enhanced by transport via several molecular motors even if these motors are engaged in a tug-of-war. Finally, we study the motility of a bidirectional cargo under force. Frictional forces arising, e.g., from the viscous cytoplasm, lead to peaks in the velocity distribution, while external forces as exerted, e.g., by an optical trap, lead to hysteresis effects. Our results, in particular our explicit expressions for the cargo binding time and the distance of the peaks in the velocity relation under friction, are directly accessible to in vitro as well as in vivo experiments.  相似文献   

9.
Kinesin and dynein are motor proteins that move in opposite directions along microtubules. In this study, we examine the consequences of having kinesin and dynein (ciliary outer arm or cytoplasmic) bound to glass surfaces interacting with the same microtubule in vitro. Although one might expect a balance of opposing forces to produce little or no net movement, we find instead that microtubules move unidirectionally for several microns (corresponding to hundreds of ATPase cycles by a motor) but continually switch between kinesin-directed and dynein-directed transport. The velocities in the plus-end (0.2-0.3 microns/s) and minus-end (3.5-4 microns/s) directions were approximately half those produced by kinesin (0.5 microns/s) and ciliary dynein (6.7 microns/s) alone, indicating that the motors not contributing to movement can interact with and impose a drag upon the microtubule. By comparing two dyneins with different duty ratios (percentage of time spent in a strongly bound state during the ATPase cycle) and varying the nucleotide conditions, we show that the microtubule attachment times of the two opposing motors as well as their relative numbers determine which motor predominates in this assay. Together, these findings are consistent with a model in which kinesin-induced movement of a microtubule induces a negative strain in attached dyneins which causes them to dissociate before entering a force-generating state (and vice versa); reversals in the direction of transport may require the temporary dissociation of the transporting motor from the microtubule. The bidirectional movements described here are also remarkably similar to the back-and-forth movements of chromosomes during mitosis and membrane vesicles in fibroblasts. These results suggest that the underlying mechanical properties of motor proteins, at least in part, may be responsible for reversals in microtubule-based transport observed in cells.  相似文献   

10.
Cytoplasmic dyneins are multisubunit minus-end-directed microtubule motors. Different isoforms of dynein are thought to provide a means for independent movement of different organelles. We investigated the differential regulation of dynein-driven transport of pigment organelles (melanosomes) in Xenopus melanophores. Aggregation of melanosomes to the cell center does not change the localization of mitochondria, nor does dispersion of melanosomes cause a change in the perinuclear localization of the Golgi complex, indicating that melanosomes bear a dedicated form of dynein. We examined the subcellular fractionation behavior of dynein light intermediate chains (LIC) and identified at least three forms immunologically, only one of which fractionated with melanosomes. Melanosome aggregation was specifically blocked after injection of an antibody recognizing this LIC. Our data indicate that melanosome-associated dynein is regulated independently of bulk cytoplasmic dynein and involves a subfraction of dynein with a distinct subunit composition.  相似文献   

11.
Xenopus melanophores have pigment organelles or melanosomes which, in response to hormones, disperse in the cytoplasm or aggregate in the perinuclear region. Melanosomes are transported by microtubule motors, kinesin-2 and cytoplasmic dynein, and an actin motor, myosin-V. We explored the regulation of melanosome transport along microtubules in vivo by using a new fast-tracking routine, which determines the melanosome position every 10 ms with 2-nm precision. The velocity distribution of melanosomes transported by cytoplasmic dynein or kinesin-2 under conditions of aggregation and dispersion presented several peaks and could not be fit with a single Gaussian function. We postulated that the melanosome velocity depends linearly on the number of active motors. According to this model, one to three dynein molecules transport each melanosome in the minus-end direction. The transport in the plus-end direction is mainly driven by one to two copies of kinesin-2. The number of dyneins transporting a melanosome increases during aggregation, whereas the number of active kinesin-2 stays the same during aggregation and dispersion. Thus, the number of active dynein molecules regulates the net direction of melanosome transport. The model also shows that multiple motors of the same polarity cooperate during the melanosome transport, whereas motors of opposite polarity do not compete.  相似文献   

12.
Many cellular processes are driven by collective forces generated by a team consisting of multiple molecular motor proteins. One aspect that has received less attention is the detachment rate of molecular motors under mechanical force/load. While detachment rate of kinesin motors measured under backward force increases rapidly for forces beyond stall‐force; this scenario is just reversed for non‐yeast dynein motors where detachment rate from microtubule decreases, exhibiting a catch‐bond type behavior. It has been shown recently that yeast dynein responds anisotropically to applied load, i.e. detachment rates are different under forward and backward pulling. Here, we use computational modeling to show that these anisotropic detachment rates might help yeast dynein motors to improve their collective force generation in the absence of catch‐bond behavior. We further show that the travel distance of cargos would be longer if detachment rates are anisotropic. Our results suggest that anisotropic detachment rates could be an alternative strategy for motors to improve the transport properties and force production by the team.  相似文献   

13.
The molecular motor cytoplasmic dynein is responsible for most minus-end-directed, microtubule-based transport in eukaryotic cells. It is especially important in neurons, where defects in microtubule-based motility have been linked to neurological diseases. For example, lissencephaly is caused by mutations in the dynein-associated protein Lis1. In this paper, using the long, highly polarized hyphae of the filamentous fungus Aspergillus nidulans, we show that three morphologically and functionally distinct dynein cargos showed transport defects in the genetic absence of Lis1/nudF, raising the possibility that Lis1 is ubiquitously used for dynein-based transport. Surprisingly, both dynein and its cargo moved at normal speeds in the absence of Lis1 but with reduced frequency. Moreover, Lis1, unlike dynein and dynactin, was absent from moving dynein cargos, further suggesting that Lis1 is not required for dynein-based cargo motility once it has commenced. Based on these observations, we propose that Lis1 has a general role in initiating dynein-driven motility.  相似文献   

14.
Among the major challenges in understanding ciliary and flagellar motility is to determine how the dynein motors are assembled and localized and how dynein-driven outer doublet microtubule sliding is controlled. Diverse studies, particularly in Chlamydomonas, have determined that the inner arm dynein I1 is targeted to a unique structural position and is critical for regulating the microtubule sliding required for normal ciliary/flagellar bending. As described in this review, I1 dynein offers additional opportunities to determine the principles of assembly and targeting of dyneins to cellular locations and for studying the mechanisms that regulate dynein activity and control of motility by phosphorylation.  相似文献   

15.
The active transport of proteins and organelles is critical for cellular organization and function in eukaryotic cells. A substantial portion of long-distance transport depends on the opposite polarity of the kinesin and dynein family molecular motors to move cargo along microtubules. It is increasingly clear that many cargo molecules are moved bi-directionally by both sets of motors; however, the regulatory mechanism that determines the directionality of transport remains unclear. We previously reported that collapsin response mediator protein-2 (CRMP-2) played key roles in axon elongation and neuronal polarization. CRMP-2 was also found to associate with the anterograde motor protein Kinesin-1 and was transported with other cargoes toward the axon terminal. In this study, we investigated the association of CRMP-2 with a retrograde motor protein, cytoplasmic dynein. Immunoprecipitation assays showed that CRMP-2 interacted with cytoplasmic dynein heavy chain. Dynein heavy chain directly bound to the N-terminus of CRMP-2, which is the distinct side of CRMP-2's kinesin light chain-binding region. Furthermore, over-expression of the dynein-binding fragments of CRMP-2 prevented dynein-driven microtubule transport in COS-7 cells. Given that CRMP-2 is a key regulator of axon elongation, this interference with cytoplasmic dynein function by CRMP-2 might have an important role in axon formation, and neuronal development.  相似文献   

16.
The number of microtubule motors attached to vesicles, organelles, and other subcellular commodities is widely believed to influence their motile properties. There is also evidence that cells regulate intracellular transport by tuning the number and/or ratio of motor types on cargos. Yet, the number of motors responsible for cargo motion is not easily characterized, and the extent to which motor copy number affects intracellular transport remains controversial. Here, we examined the load-dependent properties of structurally defined motor assemblies composed of two kinesin-1 molecules. We found that a group of kinesins can produce forces and move with velocities beyond the abilities of single kinesin molecules. However, such capabilities are not typically harnessed by the system. Instead, two-kinesin assemblies adopt a range of microtubule-bound configurations while transporting cargos against an applied load. The binding arrangement of motors on their filament dictates how loads are distributed within the two-motor system, which in turn influences motor-microtubule affinities. Most configurations promote microtubule detachment and prevent both kinesins from contributing to force production. These results imply that cargos will tend to be carried by only a fraction of the total number of kinesins that are available for transport at any given time, and provide an alternative explanation for observations that intracellular transport depends weakly on kinesin number in vivo.  相似文献   

17.
Intracellular transport is typically bidirectional, consisting of a series of back and forth movements. Kinesin-1 and cytoplasmic dynein require each other for bidirectional transport of intracellular cargo along microtubules; i.e., inhibition or depletion of kinesin-1 abolishes dynein-driven cargo transport and vice versa. Using Drosophila melanogaster S2 cells, we demonstrate that replacement of endogenous kinesin-1 or dynein with an unrelated, peroxisome-targeted motor of the same directionality activates peroxisome transport in the opposite direction. However, motility-deficient versions of motors, which retain the ability to bind microtubules and hydrolyze adenosine triphosphate, do not activate peroxisome motility. Thus, any pair of opposite-polarity motors, provided they move along microtubules, can activate one another. These results demonstrate that mechanical interactions between opposite-polarity motors are necessary and sufficient for bidirectional organelle transport in live cells.  相似文献   

18.
Many cellular components are transported using a combination of the actin- and microtubule-based transport systems. However, how these two systems work together to allow well-regulated transport is not clearly understood. We investigate this question in the Xenopus melanophore model system, where three motors, kinesin II, cytoplasmic dynein, and myosin V, drive aggregation or dispersion of pigment organelles called melanosomes. During dispersion, myosin V functions as a "molecular ratchet" to increase outward transport by selectively terminating dynein-driven minus end runs. We show that there is a continual tug-of-war between the actin and microtubule transport systems, but the microtubule motors kinesin II and dynein are likely coordinated. Finally, we find that the transition from dispersion to aggregation increases dynein-mediated motion, decreases myosin V--mediated motion, and does not change kinesin II--dependent motion. Down-regulation of myosin V contributes to aggregation by impairing its ability to effectively compete with movement along microtubules.  相似文献   

19.
Dyneins across eukaryotes: a comparative genomic analysis   总被引:1,自引:0,他引:1  
Dyneins are large minus-end-directed microtubule motors. Each dynein contains at least one dynein heavy chain (DHC) and a variable number of intermediate chains (IC), light intermediate chains (LIC) and light chains (LC). Here, we used genome sequence data from 24 diverse eukaryotes to assess the distribution of DHCs, ICs, LICs and LCs across Eukaryota. Phylogenetic inference identified nine DHC families (two cytoplasmic and seven axonemal) and six IC families (one cytoplasmic). We confirm that dyneins have been lost from higher plants and show that this is most likely because of a single loss of cytoplasmic dynein 1 from the ancestor of Rhodophyta and Viridiplantae, followed by lineage-specific losses of other families. Independent losses in Entamoeba mean that at least three extant eukaryotic lineages are entirely devoid of dyneins. Cytoplasmic dynein 2 is associated with intraflagellar transport (IFT), but in two chromalveolate organisms, we find an IFT footprint without the retrograde motor. The distribution of one family of outer-arm dyneins accounts for 2-headed or 3-headed outer-arm ultrastructures observed in different organisms. One diatom species builds motile axonemes without any inner-arm dyneins (IAD), and the unexpected conservation of IAD I1 in non-flagellate algae and LC8 (DYNLL1/2) in all lineages reveals a surprising fluidity to dynein function.  相似文献   

20.
Molecular motors move many intracellular cargos along microtubules. Recently, it has been hypothesized that in vivo cargo velocity can be used to determine the number of engaged motors. We use theoretical and experimental approaches to investigate these assertions, and find that this hypothesis is inconsistent with previously described motor behavior, surveyed and re-analyzed in this paper. Studying lipid droplet motion in Drosophila embryos, we compare transport in a mutant, Delta(halo), with that in wild-type embryos. The minus-end moving cargos in the mutant appear to be driven by more motors (based on in vivo stall force observations). Periods of minus-end motion are indeed longer than in wild-type embryos but the corresponding velocities are not higher. We conclude that velocity is not a definitive read-out of the number of motors propelling a cargo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号