首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Serum enzymes after marathon running   总被引:1,自引:0,他引:1  
  相似文献   

3.
4.
5.
6.
Serum electrolyte changes after marathon running   总被引:1,自引:0,他引:1  
  相似文献   

7.
Respiratory muscle fatigue after marathon running   总被引:3,自引:0,他引:3  
  相似文献   

8.
Adrenal-sympathico function, blood carbohydrates and lipids, and water and electrolyte balance were studied in six highly trained male marathon runners prior to and after running a marathon (26.2 miles; 42.2 km) and on control days corresponding to the above times. Fluid intake was not sufficient to maintain body weight, the runners losing approximately 2.8 kg. Estimated plasma volume losses (161 ml, 4.4%) indicated that most of the fluid loss was extravascular. Tre rose an average 2.4 degrees C and a significant negative correlation between running time and rise in Tre was observed. Glucose, fatty acids, glycerol, hemoglobin, and plasma proteins were significantly elevated after the race. Small but statistically significant increments in lactate and pyruvate were also observed. Alterations in adrenal-sympathico function were indicated by increased levels of cortisol, epinephrine, and norepinephrine.  相似文献   

9.
10.
11.
12.
13.
To investigate the hypothesis that endurance exercise may lead to a decrease in ventilatory chemosensitivity as possibly mediated by an increase in endogenous beta-endorphins, we measured hypercapnic ventilatory responsiveness (HCVR) and circulating beta-endorphin immunoreactivity in six runners before and after a marathon (42.2 km) race and after administration of 10 mg iv naloxone. Similar testing was performed at identical time periods on the day before the marathon as control data. On each occasion, HCVR was measured twice 15 min apart, and the mean value was used for analysis. Six active (training distance 50-104 km/wk) and experienced (no. of marathons completed, 1-25) runners participated in the study. There were no significant changes in beta-endorphin activity or HCVR on the control day. All runners experienced a rise in beta-endorphin activity from premarathon (21.3 +/- 16.0 pg/ml) to immediate postmarathon (89.6 +/- 84.9 pg/ml) values (P less than 0.05). However, HCVR showed no significant change at any of the three testing periods on the marathon day. To investigate whether a time delay may have affected the lack of response to naloxone, additional testing was performed in five subjects, except that 10 mg iv naloxone was given within 10 min after completion of the marathon, and then HCVR was measured. Although there was a greater than fourfold increase in beta-endorphin immunoreactivity after the marathon, there was no significant change in HCVR after naloxone administration. We conclude that natural increases in endogenous beta-endorphin activity associated with marathon running do not modulate central chemosensitivity.  相似文献   

14.
A well-trained subject, age 38, ran continously for periods ranging from 60 to 165 min on a motor-driven treadmill at 255.7 m/min while confronted with an airflow equivalent to running speed in cool, moderate, and hot environments. After a period of intensive heat acclimatization, treadmill runs were repeated in the moderate and hot conditions. Measurements were also obtained outdoors in a competitive marathon race. Sweat rate (SR) and mean skin temperature (Ts) were linearly related to Tdb. Acclimatization did not alter VO2max or metabolic rate during the treadmill runs, but heart rat (HR),rectal temperature (Tre), and Ts were lower, SR was higher, and maximal run duration longer in the hot environment, postacclimatization. Maximum runs in the hot environment were terminated by a spiralling increase in Tre to hyperthermic levels, due largely to a marked reduction in cutaneous blood flow, probably reflecting cardiovascular overload from the combined muscular and thermoregulatory blood flow demands, coupled with the effects of progressive dehydration. Utilizing partitional calorimetry and the subject's metabolic heat production, two examples of limiting environmental conditions for his marathon running speed were given.  相似文献   

15.
This study examined energy expenditure and physiologic determinants for marathon performance in recreational runners. Twenty recreational marathon runners participated (10 males aged 41 +/- 11.3 years, 10 females aged 42.7 +/- 11.7 years). Each subject completed a V(.-)O2max and a 1-hour treadmill run at recent marathon pace, and body composition was indirectly determined via dual energy X-ray absorptiometry. The male runners exhibited higher V(.-)O2max (ml x kg(-1) x min(-1)) values (52.6 +/- 5.5) than their female counterparts (41.9 +/- 6.6), although ventilatory threshold (T-vent) values were similar between groups (males: 76.2 +/- 6.1 % of V(.-)O2max, females: 75.1 +/- 5.1%). The male runners expended more energy (2,792 +/- 235 kcal) for their most recent marathon as calculated from the 1-hour treadmill run at marathon pace than the female runners (2,436 +/- 297 kcal). Body composition parameters correlated moderately to highly (r ranging from 0.50 to 0.87) with marathon run time. Also, V(.-)O2max (r = -0.73) and ventilatory threshold (r = -0.73) moderately correlated with marathon run time. As a group, the participants ran near their ventilatory threshold for their most recent marathon (r = 0.74). These results indicate the influence of body size on marathon run performance. In general, the larger male and female runners ran slower and expended more kilocalories than smaller runners. Regardless of marathon finishing time, the runners maintained a pace near their T-vent, and as T-vent or V(.-)O2max increased, marathon performance time decreased.  相似文献   

16.
17.
18.
19.
20.
Circulatory fluid shifts were studied in middle-aged runners (6 males and 5 females, ages 32-58 yr) during a 42.2-km marathon race run in mild weather (dry-bulb temperature = 17.5-20.4 degrees C). Running times for the subjects were 3:12-4:40 (mean values were 3:34 for males and 4:10 for females). Venous blood samples were taken without stasis in all subjects seated at rest before the start of the race and within 3 min of finishing; eight of the subjects also paused for samples at 6 and 27 km during the race. At 6 km, body weight loss averaged less than 1%, whereas plasma volume (PV) had decreased by 6.5% in male subjects and 8.6% in female subjects. By the end of the race, hypohydration had reached 3.2% in male subjects and 2.9% in female subjects, but PV in both groups remained stable. Sweat rates during the race averaged 545 and 429 g X m-2 X h-1 for male and female subjects, respectively, with ad lib. water intake replacing 21-72% of fluid loss. Increases in plasma protein concentration throughout the race reflected the observed initial decrease in PV. The interpretation of PV responses to exercise and/or hypohydration is critically dependent on selection of base-line conditions; we were able to control for posture-exercise effects by treating the early exercise (6 km) sample as the base line for examining the effects of later fluid loss. Under these conditions, the vascular compartment resisted volume depletion. The ability to maintain stable PV can be explained in part by relationships among oncotic and hydrostatic pressures in the intra- and extravascular fluid compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号