首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study aimed at identifying heterozygotic phenylketonuria gene carriers with phenylalanine tolerance test performed in Lublin region. Serum phenylalanine concentration has been assayed during fasting and 1 and 2 hours following oral phenylalanine load in the dose of 0.1 g per 1 kg body weight. The study involved 203 individuals of the general population and 29 heterozygotes with phenylketonuria gene. Blood serum phenylalanine was assayed with Guthrie' technique. Statistical analysis has shown that hyperphenylalaninemia is relatively frequent in fasting individuals of the general population (59.1%). The same was demonstrated in 5 heterozygotes. Phenylalanine tolerance test did not allow to identify heterozygotic carries of phenylketonuria gene in the general population though fasting and after phenylalanine load increased blood serum levels of this amino acid are a criterium of hyperphenylalaninemia in the group of tested individuals (29%).  相似文献   

2.
3.
Summary Phenylketonuria is an autosomal recessive inherited disease caused by a disturbance in the phenylalanine hydroxylating system. Phenylalanine is converted to tyrosine by phenylalanine hydroxylase, which is located mainly in the liver. This enzyme needs the reduced cofactor tetrahydrobiopterin to be active. In phenylketonuria, low or zero enzyme activity is measured. Enzyme activity higher than 5% compared with that in normal controls is correlated to hyperphenylalaninemia. Dihydropteridine reductase regenerates the active cofactor. A defect in this enzyme or in the biosynthesis of the cofactor results in phenylketonuria which does not respond to dietary treatment because the biosynthesis of neurotransmitters is impaired.  相似文献   

4.
Phenylketonuria and severe focal scleroderma were observed in a white male child. This is the first instance in which the association of these two rare disorders has been reported. Studies carried out on this patient provide a possible explanation for the abnormalities of indole metabolism in phenylketonuria. On an unrestricted diet, when serum phenylalanine levels were elevated, excessive urinary excretion of indolic tryptophan metabolites was seen 18-24 hours after oral tryptophan loading, and tryptophan was demonstrable in the stool. This was not observed when the serum phenylalanine was within normal limits on a low phenylalanine diet. Impaired intestinal tryptophan absorption secondary to elevated serum phenylalanine, by providing tryptophan substrate for bacterial degradation to indolic compounds which are absorbed and excreted in the urine, may partially explain the abnormalities of indole metabolism in phenylketonuria.  相似文献   

5.
Acidic metabolites of phenylalanine in plasma of phenylketonurics   总被引:2,自引:0,他引:2  
Seven aromatic metabolites of phenylalanine were determined in plasma of 20 patients with classical phenylketonuria by means of capillary gas chromatography. The results obtained showed good correlation with plasma phenylalanine levels. Plasma aromatic acid levels may prove useful in the diagnosis and management of phenylketonuria, as well as in research of this disorder.  相似文献   

6.
The enzyme phenylalanine ammonia lyase taken orally has been found to reduce the rise in blood phenylalanine that normally occurs following a protein meal. Therefore the enzyme has a potential use in the management of the genetic disease phenylketonuria. The enzyme mediates the conversion of phenylalanine to cinnamic acid and its possible clinical future has necessitated a more detailed study of the product of its reaction. Cinnamic acid is a compound of low toxicity which is converted in the mammalian body primarily to hippuric acid. We have examined the kinetics of this process in a healthy male and in two patients with untreated phenylketonuria. In addition we have attempted to clarify the inconsistencies in earlier published work about the status of other, minor metabolites. Following an oral load of sodium (2H6) cinnamate there is an increase in urinary hippuric acid largely due to the excretion of (2H5) hippuric acid. In the subjects studied there was no major difference in the rate of elimination although the amount of cinnamic acid converted was less in those with phenylketonuria. This may reflect reduced first-pass absorption by the liver in untreated phenylketonuria enabling increased uptake to occur in other parts of the body.  相似文献   

7.
We have used a cell-free system derived from hamster brain to investigate protein synthesis during experimental phenylketonuria. In such a system the elongation inhibitor emetine impeded translation in extracts derived from both treated and control animals. On the other hand the initiation inhibitor aurintricarboxylic acid showed no effects on protein synthesis activity of treated hamsters, although it was severely inhibiting in controls. This suggests that initiation is the altered step in brain protein synthesis failure consecutive to phenylketonuria.Abbreviations ATA aurintricarboxylic acid - HPA hyperphenylalaninaemia (hyperphenylalaninaemic) - PHE phenylalanine - PKU phenylketonuria (phenylketonuric) - PR polyribosome  相似文献   

8.
Identifying novel melanoma genetic risk factors informs screening and prevention efforts. Mutations in the phenylalanine hydroxylase gene (the causative gene in phenylketonuria) lead to reduced pigmentation in untreated phenylketonuria patients, and reduced pigmentation is associated with greater melanoma risk. Therefore, we sought to characterize the relationship between phenylketonuria carrier status and melanoma risk. Using National Newborn Screening Reports, we determined the United States phenylketonuria/hyperphenylalanemia carrier frequency in Caucasians to be 1.76%. We examined three publically available melanoma datasets for germline mutations in the phenylalanine hydroxylase gene associated with classic phenylketonuria and/or hyperphenylalanemia. Mutations were identified in 29/814 melanoma patients, with a carrier frequency of 3.56%. There was a twofold enrichment (p ‐value = 3.4 × 10?5) compared to the Caucasian frequency of hyperphenylalanemia/phenylketonuria carriers. These data demonstrate a novel association between phenylalanine hydroxylase carrier status and melanoma risk. Further, functional investigation is warranted to determine the link between phenylalanine hydroxylase mutations and melanomagenesis.  相似文献   

9.
The phenylalanine analogues p-chlorophenylalanine and alpha-methylphenylalanine were used to inhibit phenylalanine hydroxylase in animal models for phenylketonuria. The present report examines the affects of these analogues on the metabolism of neuroblastoma cells. p-Chlorophenylalanine inhibited growth and was toxic to neuroblastoma cells. Although in vivo this analogue increased cell monoribosomes by 42%, it did not significantly affect poly(U)-directed protein synthesis in vitro. P-Chlorophenylalanine did not compete with phenylalanine or tyrosine for aminoacylation of tRNA and was therefore not substituted for those amino acids in nascent polypeptides. The initial cellular uptake of various large neutral amino acids was inhibited by this analogue but did not affect the flux of amino acids already in the cell; this suggested that an alteration of the cell's amino acid pools was not responsible for the cytotoxicity of the analogues. In contrast with p-chlorophenylalanine, alpha-methylphenylalanine did not exert these direct toxic effects because the administration of alpha-methylphenylalanine in vivo did not affect brain polyribosomes and a comparable concentration of this analogue was neither growth inhibitory nor cytotoxic to neuroblastoma cells in culture. The suitability of each analogue as an inhibitor of phenylalanine hydroxylase in animal models for phenylketonuria is discussed.  相似文献   

10.
Seventy-two adults with phenylketonuria were evaluated to investigate the genotypic relationship to phenotype. Patient data were collected by chart review and medical follow-up as well as current psychological evaluation. Nineteen diagnosed neonatally had remained on a phenylalanine-restricted diet all their lives, whereas 34 who were also diagnosed on newborn screening had discontinued dietary restriction during childhood. Nineteen others who were born prior to newborn screening were diagnosed later than the newborn period on clinical grounds but have remained on dietary restriction. Comparison between intellectual ability, academic achievement, and mental illness was made with degree of diet control as defined by range of blood phenylalanine levels over time. Diet discontinuation in childhood did not significantly lower IQ per se but appeared to diminish academic achievement. The lowest IQ scores were associated with poor dietary restriction of phenylalanine in the diet during childhood. While there appears to be a strong genotypic relationship to phenotypic metabolic parameters in phenylketonuria, there does not seem to be a similar relationship to intellectual ability in adults. Mutation R408W was not strongly related to the occurrence of mental illness in this sample. We conclude that dietary restriction of phenylalanine neonatally and good control contributed to normal intellectual development. Continuation of dietary treatment into adulthood appeared to improve academic achievement in patients with severe phenylalanine hydroxylase mutations.  相似文献   

11.
Hyperphenylalaninemias (HPAs) are due to autosomal recessive inherited deficiency of phenylalanine hydroxylase and include three different biochemical and clinical phenotypes: classic phenylketonuria, mild phenylketonuria and persistent HPA. Recently the relationship between birth weight and HPA has been investigated. We performed an evaluation of birth weight in our 260 HPA patients. Our results do not support the view that birth weight is reduced in HPA patients and we found no correlation between birth weight and severity of the disease. Only a better knowledge of genetic mechanisms involved in HPA can clarify the interaction between HPA and fetal development.  相似文献   

12.
Hyperphenylalaninaemia induced by daily injections of alpha-methylphenylalanine plus phenylalanine caused 20-40% decreases in cerebral dopamine (3,4-dihydroxyphenethylamine) and noradrenaline in 7- and 11-day-old rats. alpha-Methylphenylalanine alone as well as phenylalanine alone caused cerebral dopamine depletion. However, the effects were not additive, in that the depletion caused by alpha-methylphenylalanine was greater, not less, than that after treatment with both it and phenylalanine. Increased concentrations of tyrosine in the brain, owing to administered or endogenously formed tyrosine, could overcome the effect of excess phenylalanine on cerebral dopamine content. The fact that the inhibition of tyrosine hydroxylase by phenylalanine (or alpha-methylphenylalanine) in vitro was overcome by tyrosine concentrations similar to those effective in vivo further implicates the tyrosine hydroxylase inhibition as the mechanism underlying the dopamine depletion in hyperphenylalaninaemia. These results provide a theoretical basis for elevation, by tyrosine supplementation, of the cerebral phenylalanine/tyrosine ratio as a possible treatment modality for phenylketonuria.  相似文献   

13.
芳香族氨基酸羟化酶(AAAH)家族是一类单加氢酶,包括苯丙氨酸羟化酶(PAH)、酪氨酸羟化酶(TH)和色氨酸羟化酶(TPH). 在辅因子四氢生物蝶呤、铁原子及氧存在下,分别催化苯丙氨酸、酪氨酸、色氨酸的羟化反应. 多种疾病如苯丙酮尿症、帕金森氏病以及神经相关疾病的发病机制均与这类酶有关. 本文综述近年来对芳香族氨基酸羟化酶家族蛋白结构功能、底物特异性、催化机制等方面的研究进展,为该类酶的定向进化及功能应用提供新思路.  相似文献   

14.
Two genetic mouse models for human phenylketonuria have been characterized by DNA sequence analysis. For each, a distinct mutation was identified within the protein coding sequence of the phenylalanine hydroxylase gene. This establishes that the mutated locus is the same as that causing human phenylketonuria and allows a comparison between these mouse phenylketonuria models and the human disease. A genotype/phenotype relationship that is strikingly similar to the human disease emerges, underscoring the similarity of phenylketonuria in mouse and man. InPAHENU1,the phenotype is mild. ThePahenu1mutation predicts a conservative valine to alanine amino acid substitution and is located in exon 3, a gene region where serious mutations are rare in humans. InPAHENU2,the phenotype is severe. ThePahenu2mutation predicts a radical phenylalanine to serine substitution and is located in exon 7, a gene region where serious mutations are common in humans. InPAHENU2,the sequence information was used to devise a direct genotyping system based on the creation of a newAlw26I restriction endonuclease site.  相似文献   

15.
During routine screening procedures for amino-acid disorders by thin-layer chromatography, a 16-year-old boy was found to have phenylketonuria and cystinuria. A phenylalanine and a cystine loading were carried out. The patient was found to be homozygous for phenylketonuria and heterozygous for cystinuria type II. His father was heterozygous for phenylketonuria and cystinuria, while his mother proved to be heterozygous only for phenylketonuria.  相似文献   

16.
Phenylketonuria is an autosomal recessive inborn error of metabolism resulting from phenylalanine hydroxylase deficiency. Genetic basis of phenylalanine hydroxylase deficiency has been reported in various European and Asian countries with few reports available in Arab populations of the Mediterranean region. This is the first pilot study describing phenotype and genotype of 23 Lebanese patients with phenylketonuria. 48% of the patients presented mainly with neurological signs at a mean age of 2 years 9 months, as newborn screening is not yet a nationwide policy. 56.5% of the patients had classical phenylketonuria. Thirteen different mutations were identified: splice site 52%, frameshift 31%, and missense 17% with no nonsense mutations. IVS10-11G>A was found mainly in Christians at high relative frequency whereas Muslims carried the G352fs and R261Q mutations. A rare splice mutation IVS7+1G>T, not described before, was identified in the homozygous state in one family with moderate phenylketonuria phenotype. Genotype–phenotype correlation using Guldberg arbitrary value method showed high consistency between predicted and observed phenotypes. Calculated homozygosity rate was 0.07 indicating the genetic heterogeneity in our patients. Our findings underline the admixture of different ethnicities and religions in Lebanon that might help tracing back the PAH gene flux history across the Mediterranean region.  相似文献   

17.
Summary Three children with hyperphenylalaninaemia and hyperphenylalaniaemic mothers are presented. At least one of the affected children was a compound heterozygote for hyperphenylalaninaemia and phenylketonuria. The families were examined by an l-phenylalanine loading test, by direct determination of phenylalanine hydroxylase and/or a loading test with hepta-deuterophenylalanine. We conclude that most of the patients with moderately elevated serum phenylalanine should have the genotype hyperphenylalaninaemia/phenylketonuria, i.e. they are compound heterozygotes.  相似文献   

18.
The PKU locus in man is on chromosome 12   总被引:7,自引:3,他引:4       下载免费PDF全文
Classical phenylketonuria (PKU) is a typical example of inborn errors in metabolism and is characterized by a complete lack of the hepatic enzyme phenylalanine hydroxylase, which normally converts phenylalanine to tyrosine. The genetic disorder causes impairment of postnatal brain development, resulting in severe mental retardation in untreated children. The disease is transmitted as an autosomal recessive trait and has a collective prevalence of about one in 10,000 among Caucasians, so that 2% of the population are carriers of the PKU trait. We have recently reported the cloning of human phenylalanine hydroxylase cDNA and that the human chromosomal phenylalanine hydroxylase gene is encoded by a unique DNA sequence. Using the human phenylalanine hydroxylase cDNA clone to analyze a clonal human/mouse hybrid cell panel by Southern hybridization, the phenylalanine hydroxylase gene has been assigned to human chromosome 12. Since the hypothesis that classical PKU is caused by structural mutations in the phenylalanine hydroxylase gene itself rather than through some transregulatory mechanisms has recently been confirmed by gene mapping, the PKU locus in man is determined to be on chromosome 12.  相似文献   

19.
Summary The hyperphenylalaninemic disorders of classic phenylketonuria (PKU), mild phenylketonuria, and hyperphenylalaninemia (HPA), result from a deficiency of the hepatic enzyme phenylalanine hydroxylase (PAH) or its cofactor (tetrahydrobiopterin). Use of the complementary DNA of this enzyme has allowed the establishment of a restriction fragment length polymorphism (RFLP) haplotype-analysis system. This haplotype analysis system provides the means for determination of mutant PAH alleles in most affected families and is the basis for mutational analysis of the PKU locus. This review is focused on two major areas of current PKU research: (1) the use of DNA haplotype analysis in the study of the population genetics of PAH deficiency, and (2) the study of genotypes, and their various combinations, as a means of explaining and predicting the phenotypic variability observed for the disorders of PAH deficiency.  相似文献   

20.
Experimental hyperphenylalaninemia has been induced in chick embryos between 11–20 days of incubation by daily injection of α-methylphenylalanine and phenylalanine. Brain and liver weight decreased after 8 days of treatment. An increase of nearly 14-fold in the brain phenylalanine/tyrosine ratio was observed after 9 days of treatment. Similar results were obtained in liver, although the increase found in this case was smaller than in brain. Chronic hyperphenylalaninemia induced a clear rise in the levels of plasma and liver valine, leucine and isoleucine, while in brain these levels did not change significantly. Plasma and brain glycine content was also enhanced by this treatment. Brain tyrosine concentration was clearly decreased in these conditions, in contrast to the enhancement reported after this and other treatments in various animal species. Thus, the higher value of the brain phenylalanine/tyrosine ratio obtained by α-methylphenylalanine plus phenylalanine administration was due to both an increase in the phenylalanine and a decrease in the tyrosine levels, conditions that have been also found in human phenylketonurics. Therefore, the treatment here reported was an excellent method for imitating the conditions of phenylketonuria during the period of rapid myelination in the chick, one of the most dramatic in nervous system development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号