首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Heat shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone required for the stability and function of a number of client proteins, many of which are involved in cancer development. The natural products geldanamycin (GM) and radicicol (RD) are known inhibitors of Hsp90, and their derivatives are being developed for the treatment of various cancers. To identify novel Hsp90 inhibitors, a highly robust time-resolved fluorescence resonance energy transfer (TR-FRET)-based HTS assay that measures the binding of biotinylated geldanamycin (biotin-GM) to the His-tagged human Hsp90 N-terminal ATP-binding domain (Hsp90N) was developed. This assay was optimized in 1536-well plates and was used as the primary assay to screen 10(6) compounds. Identified "hits" were then confirmed in a scintillation proximity assay (SPA) and a DEAE membrane-based assay for [(3)H]AAG binding to Hsp90. In addition, a surface plasmon resonance (SPR) assay that measures the direct interaction of Hsp90 with its inhibitors was developed and used to further characterize the identified inhibitors. Several potent and reversible inhibitors of human Hsp90 with K(d) values measured in the high nanomolar range were identified.  相似文献   

2.
Effects of inhibitors of the heat shock protein 90 (HSP90) chaperone activity and inhibitors of the heat shock protein (HSP) expression on sensitivity of HeLa tumor cells to hyperthermia were studied. It was found that nanomolar concentrations of inhibitors of the HSP90 activity (17AAG or radicicol) slowed down the chaperone-dependent reactivation of a thermolabile reporter (luciferase) in heat-stressed HeLa cells and slightly enhanced their death following the incubation for 60 min at 43°C. The inhibitors of HSP90 activity stimulated de novo induction of additional chaperones (HSP70 and HSP27) that significantly increased intracellular HSP levels. Treatment of the cells with 17AAG or radicicol along with an inhibitor of the HSP induction (e.g. quercetin or triptolide, or NZ28) completely prevented the increase in the intracellular chaperone levels resulting from the inhibition of HSP90 activity and subsequent heating. Combination of all three treatments (inhibition of the HSP90 activity + inhibition of the HSP induction + heating at 43°C for 60 min) resulted in more potent inhibition of the reporter reactivation and a sharp (2–3-fold) increase in cell death. Such enhancement of the cytotoxicity may be attributed to the “chaperone deficiency” when prior to heat stress both the functional activity of constitutive HSP90 and the expression of additional (inducible) chaperones are blocked in the cells.  相似文献   

3.
Radicicol and geldanamycin are potent inhibitors of the Hsp90 protein folding machinery, which is an emerging target for the development of cancer chemotherapeutics. However, radicicol is inactive in vivo and geldanamycin suffers from its redox-active behavior that produces toxicity unrelated to Hsp90 inhibition. It was proposed that a chimeric molecule containing the resorcinol ring of radicicol and the quinone of geldanamycin could provide an opportunity to elucidate structure-activity relationships for both natural products and serve as a starting point for the development of more potent inhibitors. Synthesis of the macrocyclic chimera named radanamycin is reported along with the biological activity exhibited by this compound in MCF-7 breast cancer cells.  相似文献   

4.
HSP90 chaperones are essential regulators of cellular function, as they ensure the appropriate conformation of multiple key client proteins. Four HSP90 isoforms were identified in the protozoan parasite Theileria annulata. Partial characterization was undertaken for three and localization confirmed for cytoplasmic (TA12105), endoplasmic reticulum (TA06470), and apicoplast (TA10720) forms. ATPase activity and binding to the HSP90 inhibitor geldanamycin were demonstrated for recombinant TA12105, and all three native forms could be isolated to varying extents by binding to geldanamycin beads. Because it is essential, HSP90 is considered a potential therapeutic drug target. Resistance to the only specific Theileriacidal drug is increasing, and one challenge for design of drugs that target the parasite is to limit the effect on the host. An in vitro cell culture system that allows comparison between uninfected bovine cells and the T. annulata‐infected counterpart was utilized to test the effects of geldanamycin and the derivative 17‐AAG. T. annulata‐infected cells had greater tolerance to geldanamycin than uninfected cells yet exhibited significantly more sensitivity to 17‐AAG. These findings suggest that parasite HSP90 isoform(s) can alter the drug sensitivity of infected host cells and that members of the Theileria HSP90 family are potential targets worthy of further investigation.  相似文献   

5.
Plasma membrane transporter SLC6A14 transports all neutral and basic amino acids in a Na/Cl – dependent way and it is up-regulated in many types of cancer. Mass spectrometry analysis of overexpressed SLC6A14–associated proteins identified, among others, the presence of cytosolic heat shock proteins (HSPs) and co-chaperones. We detected co-localization of overexpressed and native SLC6A14 with HSP90-beta and HSP70 (HSPA14). Proximity ligation assay confirmed a direct interaction of overexpressed SLC6A14 with both HSPs. Treatment with radicicol and VER155008, specific inhibitors of HSP90 and HSP70, respectively, attenuated these interactions and strongly reduced transporter presence at the cell surface, what resulted from the diminished level of the total transporter protein. Distortion of SLC6A14 proper folding by both HSPs inhibitors directed the transporter towards endoplasmic reticulum-associated degradation pathway, a process reversed by the proteasome inhibitor – bortezomib. As demonstrated in an in vitro ATPase assay of recombinant purified HSP90-beta, the peptides corresponding to C-terminal amino acid sequence following the last transmembrane domain of SLC6A14 affected the HSP90-beta activity. These results indicate that a plasma membrane protein folding can be controlled not only by chaperones in the endoplasmic reticulum, but also those localized in the cytosol.  相似文献   

6.
7.
8.
We have used selective inhibitors to determine whether the molecular chaperone heat shock protein 90 (HSP90) has an effect on both recombinant and native human P2X1 receptors. P2X1 receptor currents in HEK293 cells were reduced by ∼70–85% by the selective HSP90 inhibitor geldanamycin (2 μm, 20 min). This was associated with a speeding in the time course of desensitization as well as a reduction in cell surface expression. Imaging in real time of photoactivatable GFP-tagged P2X receptors showed that they are highly mobile. Geldanamycin almost abolished this movement for P2X1 receptors but had no effect on P2X2 receptor trafficking. P2X1/2 receptor chimeras showed that the intracellular N and C termini were involved in geldanamycin sensitivity. Geldanamycin also inhibited native P2X1 receptor-mediated responses. Platelet P2X1 receptors play an important role in hemostasis, contribute to amplification of signaling to a range of stimuli including collagen, and are novel targets for antithrombotic therapies. Platelet P2X1 receptor-, but not P2Y1 receptor-, mediated increases in intracellular calcium were reduced by 40–45% following HSP90 inhibition with geldanamycin or radicicol. Collagen stimulation leads to ATP release from platelets, and calcium increases to low doses of collagen were also reduced by ∼40% by the HSP90 inhibitors consistent with an effect on P2X1 receptors. These studies suggest that HSP90 inhibitors may be as effective as selective antagonists in regulating platelet P2X1 receptors, and their potential effects on hemostasis should be considered in clinical studies.  相似文献   

9.
The cellular prion protein PrPc is of crucial importance for the development of neurodegenerative diseases called transmissible spongiform encephalopathies. We investigated if the function of members of the HSP90 family is required for the integrity of the normal, nonpathogenic prion protein called PrPc. Eukaryotic cells were treated with the structurally unrelated HSP90-inhibitors geldanamycin (GA) or radicicol (RC). In either case the cellular prion protein was induced and exhibited faster migrating bands on western blot analysis, whereas geldampicin (GE), an analog of GA known not to bind to HSP90, had no effect. Ongoing protein and messenger RNA synthesis during treatment were found to be necessary for the appearance of these bands. Cotreatment with tunicamycin abrogated any effect of HSP90 inhibitors on the cellular prion protein. Finally, enzymatic deglycosylation with peptide:N-glycosidase F of the normal prion protein as well as the variant induced by benzoquinone ansamycins resulted in very similar band patterns. These experiments indicate that either altered glycosylation, or a change in conformation, or both are involved in the induction of faster migrating bands by HSP90 inhibitors. Thus the inhibition of the function of members of the HSP90 family of molecular chaperones results in profound changes in the physicochemical properties of PrPc.  相似文献   

10.
11.
In Leishmania donovani, the HSP90 chaperone complex plays an essential role in the control of the parasite’s life cycle, general viability and infectivity. Several of the associated co-chaperones were also shown to be essential for viability and/or infectivity to mammalian cells. Here, we identify and describe the co-chaperone P23 and distinguish its function from that of the structurally related small heat shock protein HSP23. P23 is expressed constitutively and associates itself with members of the HSP90 complex, i.e. HSP90 and Sti1. Viable P23 gene replacement mutants could be raised and confirmed as null mutants without deleterious effects on viability under a variety of physiological growth conditions. The null mutant also displays near-wild-type infectivity, arguing against a decisive role played by P23 in laboratory settings. However, the P23 null mutant displays a marked hypersensitivity against HSP90 inhibitors geldanamycin and radicicol. P23 also appears to affect the radicicol resistance of a HSP90 Leu33-Ile mutant described previously. Therefore, the annotation of L. donovani P23 as HSP90-interacting co-chaperone is confirmed.

Electronic supplementary material

The online version of this article (doi:10.1007/s12192-015-0595-y) contains supplementary material, which is available to authorized users.  相似文献   

12.
Heat shock protein (HSP) 90 is of interest as an anticancer drug target because of its importance in maintaining the conformation, stability and function of the client proteins involved in signal transduction pathways leading to proliferation, cell cycle progression, and apoptosis. Geldanamycin, a specific antagonist of HSP90, binds directly to HSP90 and promotes proteolytic degradation of client proteins of HSP90. The aim of the present study was to identify novel client proteins of HSP90 and to elucidate HSP90 function through inhibition of HSP90 binding to its client proteins, by using of geldanamycin. We investigated changes in protein profile when apoptosis was induced by exposure to geldanamycin. Differentially expressed proteins were identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS), in human neuroblastoma SK-N-SH cells. The vimentin level was found to decrease dramatically by the treatment of geldanamycin. We observed subcellular co-localization of vimentin and HSP90. Physical association of vimentin with HSP90 was detected by an immunoprecipitation assay. The caspase inhibitors, Z-VAD-FMK and Ac-DEVD-CHO, completely abolished geldanamycin-induced cleavage of vimentin. Changes of HSP90 level by antisense treatment or transfection of HSP90-overexpressing vector affected geldanamycin-induced cleavage of vimentin. These results suggest that HSP90 protects vimentin by physical interaction in the geldanamycin-induced apoptotic pathway.  相似文献   

13.
Hsp90: chaperoning signal transduction   总被引:20,自引:0,他引:20  
  相似文献   

14.
Geldanamycin is a macrocyclic heat shock protein 90 (HSP90) inhibitor that suppresses cancer cell proliferation. Since geldanamycin also promotes the heat shock response (HSR) in cells, this compound is used as a chemical inducer of the HSR in Arabidopsis. Although many types of HSP90 inhibitors that are different from the macrocyclic types have been developed in pharmaceutical research, non-macrocyclic HSP90 inhibitors have not been investigated in terms of whether they can induce the HSR in plants. Here, we determined the HSR-inducing activities in Arabidopsis of 10 non-macrocyclic HSP90 inhibitors including 2 benzamide derivatives, 3 purine derivatives, and 5 resorcinol derivatives. Among the tested inhibitors, PU-H71, which is a purine derivative, showed the highest HSR-inducing activity. The activity of PU-H71 was significantly higher than that of geldanamycin. The application of PU-H71 induced the HSR in all Arabidopsis seedlings. The HSP17.6C-CI and HSP70 proteins accumulated after the treatment with PU-H71. The seedlings treated with PU-H71 maintained more chlorophyll than the control seedlings after the heat stress. These results suggest that the purine-derivative HSP90 inhibitor PU-H71 enhanced the heat tolerance of Arabidopsis by promoting the HSR in the plant.  相似文献   

15.
Willmund F  Schroda M 《Plant physiology》2005,138(4):2310-2322
We report on the molecular and biochemical characterization of HEAT SHOCK PROTEIN 90C (HSP90C), one of the three Hsp90 chaperones encoded by the Chlamydomonas reinhardtii genome. Fractionation experiments indicate that HSP90C is a plastidic protein. In the chloroplast, HSP90C was localized to the soluble stroma fraction, but also to thylakoids and low-density membranes containing inner envelopes. HSP90C is expressed under basal conditions and is strongly induced by heat shock and moderately by light. In soluble cell extracts, HSP90C was mainly found to organize into dimers, but also into complexes of high molecular mass. Also, heterologously expressed HSP90C was mainly found in dimers, but tetramers and fewer monomers were detected, as well. HSP90C exhibits a weak ATPase activity with a Km for ATP of approximately 48 microM and a kcat of approximately 0.71 min(-1). This activity was inhibited by the Hsp90-specific inhibitor radicicol. In coimmunoprecipitation experiments, we found that HSP90C interacts with several proteins, among them plastidic HSP70B. The cellular concentration of HSP70B was found to be 2.9 times higher than that of HSP90C, giving a 4.8:1 stoichiometry of HSP70B monomers to HSP90C dimers. The strong inducibility of HSP90C by heat shock implies a role of the chaperone in stress management. Furthermore, its interaction with HSP70B suggests that, similar to their relatives in cytosol and the endoplasmic reticulum, both chaperones might constitute the core of a multichaperone complex involved in the maturation of specific client proteins, e.g. components of signal transduction pathways.  相似文献   

16.
Heat shock protein 90 (Hsp90), one of the most abundant chaperones in eukaryotes, participates in folding and stabilization of signal-transducing molecules including steroid hormone receptors and protein kinases. The amino terminus of Hsp90 contains a non-conventional nucleotide-binding site, related to the ATP-binding motif of bacterial DNA gyrase. The anti-tumor agents geldanamycin and radicicol bind specifically at this site and induce destabilization of Hsp90-dependent client proteins. We recently demonstrated that the gyrase inhibitor novobiocin also interacts with Hsp90, altering the affinity of the chaperone for geldanamycin and radicicol and causing in vitro and in vivo depletion of key regulatory Hsp90-dependent kinases including v-Src, Raf-1, and p185(ErbB2). In the present study we used deletion/mutation analysis to identify the site of interaction of novobiocin with Hsp90, and we demonstrate that the novobiocin-binding site resides in the carboxyl terminus of the chaperone. Surprisingly, this motif also recognizes ATP, and ATP and novobiocin efficiently compete with each other for binding to this region of Hsp90. Novobiocin interferes with association of the co-chaperones Hsc70 and p23 with Hsp90. These results identify a second site on Hsp90 where the binding of small molecule inhibitors can significantly impact the function of this chaperone, and they support the hypothesis that both amino- and carboxyl-terminal domains of Hsp90 interact to modulate chaperone activity.  相似文献   

17.
Ansamycins, including geldanamycin and the derivative 17-allylamino-17-demethoxygeldanamycin, and radicicol are known for their ability to tightly bind to the ATP-binding site of the amino-terminal domain region of heat shock protein 90. We have found that geldanamycin and some of its derivatives can inhibit hepatocyte growth factor/scatter factor-mediated Met tyrosine kinase receptor-dependent urokinase-plasminogen activation at femtomolar levels. Assessment is made of structural requirements for such an activity and evidence is given that distinguishes the target of such an activity from that of heat shock protein 90.  相似文献   

18.
19.
The 90 kDa heat shock protein, Hsp90, is an abundant molecular chaperone participating in the cytoprotection of eukaryotic cells. Here we analyzed the involvement of Hsp90 in the maintenance of cellular integrity using partial cell lysis as a measure. Inhibition of Hsp90 by geldanamycin, radicicol, cisplatin, and novobiocin induced a significant acceleration of detergent- and hypotonic shock-induced cell lysis. The concentration and time dependence of cell lysis acceleration was in agreement with the Hsp90 inhibition characteristics of the N-terminal inhibitors, geldanamycin and radicicol. Glutathione and other reducing agents partially blocked geldanamycin-induced acceleration of cell lysis but were largely ineffective with other inhibitors. Indeed, geldanamycin treatment led to superoxide production and a change in membrane fluidity. When Hsp90 content was diminished using anti-Hsp90 hammerhead ribozymes, an accelerated cell lysis was also observed. Hsp90 inhibition-induced cell lysis was more pronounced in eukaryotic (yeast, mouse red blood, and human T-lymphoma) cells than in bacteria. Our results indicate that besides the geldanamycin-induced superoxide production, and a consequent increase in cell lysis, inhibition or lack of Hsp90 alone can also compromise cellular integrity. Moreover, cell lysis after hypoxia and complement attack was also enhanced by any type of Hsp90 inhibition used, which shows that the maintenance of cellular integrity by Hsp90 is important in physiologically relevant lytic conditions of tumor cells.  相似文献   

20.
Type II DNA topoisomerases have been classified into two families, Topo IIA and Topo IIB, based on structural and mechanistic dissimilarities. Topo IIA is the target of many important antibiotics and antitumoural drugs, most of them being inactive on Topo IIB. The effects and mode of action of Topo IIA inhibitors in vitro and in vivo have been extensively studied for the last twenty-five years. In contrast, studies of Topo IIB inhibitors were lacking. To document this field, we have studied two Hsp90 inhibitors (radicicol and geldanamycin), known to interact with the ATP-binding site of Hsp90 (the Bergerat fold), which is also present in Topo IIB. Here, we report that radicicol inhibits the decatenation and relaxation activities of Sulfolobus shibatae DNA topoisomerase VI (a Topo IIB) while geldanamycin does not. In addition, radicicol has no effect on the Topo IIA Escherichia coli DNA gyrase. In agreement with their different effects on DNA topoisomerase VI, we found that radicicol can theoretically fit in the ATP-binding pocket of the DNA topoisomerase VI 'Bergerat fold', whereas geldanamycin cannot. Radicicol inhibited growths of Sulfolobus acidocaldarius (a crenarchaeon) and of Haloferax volcanii (a euryarchaeon) at the same doses that inhibited DNA topoisomerase VI in vitro. In contrast, the bacteria E.coli was resistant to this drug. Radicicol thus appears to be a very promising compound to study the mechanism of Topo IIB in vitro, as well as the biological roles of these enzymes in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号