首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A morphological model of vertebral trabecular bone   总被引:3,自引:0,他引:3  
In their micro-structures, typical natural cellular materials such as vertebral trabecular bone have a network of doubly tapered struts, thickening near the strut joints. However, past analytical models for vertebral trabecular bone do not take account of the effect of strut taper on the mechanical properties.This paper presents an analytical cell model comprised of doubly tapered struts to predict the global mechanical properties of vertebral trabecular bone. The predicted results for male, female, and both sexes fit the experimental data well. By considering several strut taper geometries, it is shown that the horizontal Young's modulus and the horizontal uniaxial collapse stress are, in some cases, approximately 1.8- and 2.2-fold higher, respectively, than those of the uniform strut model. This finding illustrates the importance of increased trabecular thickening near the strut joints (i) for improving the accuracy of calculating the mechanical properties and (ii) for the effective treatment of aged bone using drug therapy. It also highlights the need to combine trabecular architecture measurements with information about the morphology near the strut joints.  相似文献   

2.
Subject-specific finite element models are an extensively used tool for the numerical analysis of the biomechanical behaviour of human bones. However, bone modelling is not an easy task due to the complex behaviour of bone tissue, involving non-homogeneous and anisotropic mechanical properties. Moreover, bone is a living tissue and therefore its microstructure and mechanical properties evolve with time in a known process called bone remodelling. This phenomenon has been widely studied, many being the numerical models that have been formulated to predict density distribution and its evolution in several bones. The aim of the present study is to assess the capability of a bone remodelling model to predict the bone density distribution of different types of human bone (femur, tibia and mandible) comparing the obtained results with the bone density estimated by means of computerised tomography. Good accuracy was observed for the bone remodelling predictions including the thickness of the cortical layer.  相似文献   

3.
Interactions between the physical and physiological properties of cellular sub-units result in changes in the shape and mechanical behaviour of living tissues. To understand the mechanotransmission processes, models are needed to describe the complex interrelations between the elements and the cytoskeletal structure. In this study, we used a 30-element tensegrity structure to analyse the influence of the type of loading on the mechanical response and shape changes of the cell. Our numerical results, expressed in terms of strain energy as a function of the overall deformation of the tensegrity structure, suggest that changes in cell functions during mechanical stimuli for a given potential energy are correlated to the type of loading applied, which determines the resultant changes in cell shape. The analysis of these cellular deformations may explain the large variability in the response of bone cells submitted to different types of mechanical loading.  相似文献   

4.
How angiogenesis is regulated by local environmental cues is still not fully understood despite its importance to many regenerative events. Although mechanics is known to influence angiogenesis, the specific cellular mechanisms influenced by mechanical loading are poorly understood. This study adopts a lattice-based modelling approach to simulate endothelial cell (EC) migration and proliferation in order to explore how mechanical stretch regulates their behaviour. The approach enables the explicit modelling of ECs and, in particular, their migration/proliferation (specifically, rate and directionality) in response to such mechanical cues. The model was first used to simulate previously reported experiments of EC migration and proliferation in an unloaded environment. Next, three potential effects (increased cell migration, increased cell proliferation and biased cellular migration) of mechanical stretch on EC behaviour were simulated using the model and the observed changes in cell population characteristics were compared to experimental findings. Combinations of these three potential drivers were also investigated. The model demonstrates that only by incorporating all three changes in cellular physiology (increased EC migration, increased EC proliferation and biased EC migration in the direction perpendicular to the applied strain) in response to dynamic loading, it is possible to successfully predict experimental findings. This provides support for the underlying model hypotheses for how mechanics regulates EC behaviour.  相似文献   

5.
Insufficient bone density of the alveolar crests, caused by loss of the dental elements, sometimes impedes the primary stability of an integrated bone implant. The techniques of bone regeneration allow to obtain a sufficient quantity of alveolar bone to permit the implant rehabilitation of the edentulous crests. Today several grafting materials are available and they have different characteristics, according to their structure, which influence the different behaviour of the grafting materials to the bone and the implant surface. The aim of this study is to evaluate the interaction between a human osteosarcoma MG63 cell line and three different biomaterials: polylactic-co-glycolic acid (PLAGA), deproteinized bovine bone and demineralised freeze-dried bone allograft (DFDBA). From this study a different behaviour emerges of the osteoblast-like MG63 cells in relation to the sublayer on which these cells were placed in culture. The results of the study, in fact, demonstrate that the most osteoconductive material of the three analysed is the DFDBA, followed by DPBB. On the contrary, the PLGA, because of its roughness, does not seem to represent a valid support for cell growth, and does not encourage any morphologic modification in tumor cells. Furthermore, deproteinized bovine bone shows a differentiating effect which could lead to hypothesise an osteoconductive capacity of this biomaterial. Further studies should be carried out with the aim of explaining the results obtained.  相似文献   

6.
In this study, a cell based lattice free modelling framework is proposed to study cell aggregate behaviour in bone tissue engineering applications. The model encompasses cell-to-cell and cell–environment interactions such as adhesion, repulsion and drag forces. Oxygen, nutrients, waste products, growth factors and inhibitors are explicitly represented in the model influencing cellular behaviour. Furthermore, a model for cell metabolism is incorporated representing the basic enzymic reactions of glycolysis and the Krebs cycle. Various types of cell death such as necrosis, apoptosis and anoikis are implemented. Finally, an explicit model of the cell cycle controls the proliferation process, taking into account the presence or absence of various metabolites, sufficient space and mechanical stress. Several examples are presented demonstrating the potential of the modelling framework. The behaviour of a synchronised cell aggregate under ideal circumstances is simulated, clearly showing the different stages of the cell cycle and the resulting growth of the aggregate. Also the difference in aggregate development under ideal (normoxic) and hypoxic conditions is simulated, showing hypoxia induced necrosis mainly in the centre of the aggregate grown under hypoxic conditions. The next step in this research will be the application of this modelling framework to specific experimental set-ups for bone tissue engineering applications.  相似文献   

7.
Bone has an architecture which is optimized for its mechanical environment. In various conditions, this architecture is altered, and the underlying cause for this change is not always known. In the present paper, we investigated the sensitivity of the bone microarchitecture for four factors: changes in bone cellular activity, changes in mechanical loading, changes in mechanotransduction, and changes in mechanical tissue properties. The goal was to evaluate whether these factors can be the cause of typical bone structural changes seen in various pathologies. For this purpose, we used an established computational model for the simulation of bone adaptation. We performed two sensitivity analyses to evaluate the effect of the four factors on the trabecular structure, in both developing and adult bone. According to our simulations, alterations in mechanical load, bone cellular activities, mechanotransduction, and mechanical tissue properties may all result in bone structural changes similar to those observed in various pathologies. For example, our simulations confirmed that decreases in loading and increases in osteoclast number and activity may lead to osteoporotic changes. In addition, they showed that both increased loading and decreased bone matrix stiffness may lead to bone structural changes similar to those seen in osteoarthritis. Finally, we found that the model may help in gaining a better understanding of the contribution of individual disturbances to a complicated multi-factorial disease process, such as osteogenesis imperfecta.  相似文献   

8.
How environmental mechanical forces affect cellular functions is a central problem in cell biology. Theoretical models of cellular biomechanics provide relevant tools for understanding how the contributions of deformable intracellular components and specific adhesion conditions at the cell interface are integrated for determining the overall balance of mechanical forces within the cell. We investigate here the spatial distributions of intracellular stresses when adherent cells are probed by magnetic twisting cytometry. The influence of the cell nucleus stiffness on the simulated nonlinear torque-bead rotation response is analyzed by considering a finite element multi-component cell model in which the cell and its nucleus are considered as different hyperelastic materials. We additionally take into account the mechanical properties of the basal cell cortex, which can be affected by the interaction of the basal cell membrane with the extracellular substrate. In agreement with data obtained on epithelial cells, the simulated behaviour of the cell model relates the hyperelastic response observed at the entire cell scale to the distribution of stresses and strains within the nucleus and the cytoskeleton, up to cell adhesion areas. These results, which indicate how mechanical forces are transmitted at distant points through the cytoskeleton, are compared to recent data imaging the highly localized distribution of intracellular stresses.  相似文献   

9.
The elastic behaviour of trabecular bone is a function not only of bone volume and architecture, but also of tissue material properties. Variation in tissue modulus can have a substantial effect on the biomechanical properties of trabecular bone. However, the nature of tissue property variation within a single trabecula is poorly understood. This study uses nanoindentation to determine the mechanical properties of bone tissue in individual trabeculae. Using an ovariectomised ovine model, the modulus and hardness distribution across trabeculae were measured. In both normal and ovariectomised bone, the modulus and hardness were found to increase towards the core of the trabeculae. Across the width of the trabeculae, the modulus was significantly less in the ovariectomised bone than in the control bone. However, in contrast to this hardness was found not to differ significantly between the two groups. This study provides valuable information on the variation of mechanical material properties in healthy and diseased trabecular bone tissue. The results of the current study will be useful in finite element modelling where more accurate values of trabecular bone modulus will enable the prediction of the macroscale behaviour of trabecular bone.  相似文献   

10.
Fabrication of three‐dimensional (3D) scaffolds with appropriate mechanical properties and desired architecture for promoting cell growth and new tissue formation is one of the most important efforts in tissue engineering field. Scaffolds fabricated from bioactive ceramic materials such as hydroxyapatite and tricalcium phosphate show promise because of their biological ability to support bone tissue regeneration. However, the use of ceramics as scaffold materials is limited because of their inherent brittleness and difficult processability. The aim of this study was to create robust ceramic scaffolds, which have a desired architecture. Such scaffolds were successfully fabricated by projection‐based microstereolithography, and dilatometric analysis was conducted to study the sintering behavior of the ceramic materials. The mechanical properties of the scaffolds were improved by infiltrating them with a polycaprolactone solution. The toughness and compressive strength of these ceramic/polymer scaffolds were about twice those of ceramic scaffolds. Furthermore, the osteogenic gene expression on ceramic/polymer scaffolds was better than that on ceramic scaffolds. Through this study, we overcame the limitations of previous research on fabricating ceramic scaffolds and these new robust ceramic scaffolds may provide a much improved 3D substrate for bone tissue regeneration. Biotechnol. Bioeng. 2013; 110: 1444–1455. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
In adaptive bone remodeling, it is believed that bone cells such as osteoblasts, osteocytes and osteoclasts can sense mechanical stimuli and modulate their remodeling activities. However, the mechanosensing mechanism by which these cells sense mechanical stimuli and transduce mechanical signals into intracellular biochemical signals is still not clearly understood. From the viewpoint of cell biomechanics, it is important to clarify the mechanical conditions under which the cellular mechanosensing mechanism is activated. The aims of this study were to evaluate a mechanical condition, that is, the local strain on the cell membrane, at the initiation point of the intracellular calcium signaling response to the applied mechanical stimulus in osteoblast-like MC3T3-E1 cells, and to investigate the effect of deformation velocity on the characteristics of the cellular response. To apply a local deformation to a single cell, a glass microneedle was directly indented to the cell and moved horizontally on the cell membrane. To observe the cellular response and the deformation of the cell membrane, intracellular calcium ions and the cell membrane were labeled using fluorescent dyes and simultaneously observed by confocal laser scanning microscopy. The strain distribution on the cell membrane attributable to the applied local deformation and the strain magnitude at the initiation point of the calcium signaling responses were analyzed using obtained fluorescence images. From two-dimensionally projected images, it was found that there is a local compressive strain at the initiation point of calcium signaling. Moreover, the cellular response revealed velocity dependence, that is, the cells seemed to respond with a higher sensitivity to a higher deformation velocity. From the viewpoint of cell biomechanics, these results provide us a fundamental understanding of the mechanosensing mechanism of osteoblast-like cells.  相似文献   

12.
In this review, different barrier membranes for guided bone regeneration (GBR) are described as a useful surgical technique to enhance bone regeneration in damaged alveolar sites before performing implants and fitting other dental appliances. The GBR procedure encourages bone regeneration through cellular exclusion and avoids the invasion of epithelial and connective tissues that grow at the defective site instead of bone tissue. The barrier membrane should satisfy various properties, such as biocompatibility, non-immunogenicity, non-toxicity, and a degradation rate that is long enough to permit mechanical support during bone formation. Other characteristics such as tissue integration, nutrient transfer, space maintenance and manageability are also of interest. In this review, various non-resorbable and resorbable commercially available membranes are described, based on expanded polytetrafluoroethylene, poly(lactic acid), poly(glycolic acid) and their copolymers. The polyester-based membranes are biodegradable, permit a single-stage procedure, and have higher manageability than non-resorbable membranes; however, they have shown poor biocompatibility. In contrast, membranes based on natural materials, such as collagen, are biocompatible but are characterized by poor mechanical properties and stability due to their early degradation. Moreover, new approaches are described, such as the use of multi-layered, graft-copolymer-based and composite membranes containing osteoconductive ceramic fillers as alternatives to conventional membranes.  相似文献   

13.
The mechanical properties of single cells play important roles in regulating cell-matrix interactions, potentially influencing the process of mechanotransduction. Recent studies also suggest that cellular mechanical properties may provide novel biological markers, or "biomarkers," of cell phenotype, reflecting specific changes that occur with disease, differentiation, or cellular transformation. Of particular interest in recent years has been the identification of such biomarkers that can be used to determine specific phenotypic characteristics of stem cells that separate them from primary, differentiated cells. The goal of this study was to determine the elastic and viscoelastic properties of three primary cell types of mesenchymal lineage (chondrocytes, osteoblasts, and adipocytes) and to test the hypothesis that primary differentiated cells exhibit distinct mechanical properties compared to adult stem cells (adipose-derived or bone marrow-derived mesenchymal stem cells). In an adherent, spread configuration, chondrocytes, osteoblasts, and adipocytes all exhibited significantly different mechanical properties, with osteoblasts being stiffer than chondrocytes and both being stiffer than adipocytes. Adipose-derived and mesenchymal stem cells exhibited similar properties to each other, but were mechanically distinct from primary cells, particularly when comparing a ratio of elastic to relaxed moduli. These findings will help more accurately model the cellular mechanical environment in mesenchymal tissues, which could assist in describing injury thresholds and disease progression or even determining the influence of mechanical loading for tissue engineering efforts. Furthermore, the identification of mechanical properties distinct to stem cells could result in more successful sorting procedures to enrich multipotent progenitor cell populations.  相似文献   

14.
Osteocytes are believed to be the primary sensor of mechanical stimuli in bone, which orchestrate osteoblasts and osteoclasts to adapt bone structure and composition to meet physiological loading demands. Experimental studies to quantify the mechanical environment surrounding bone cells are challenging, and as such, computational and theoretical approaches have modelled either the solid or fluid environment of osteocytes to predict how these cells are stimulated in vivo. Osteocytes are an elastic cellular structure that deforms in response to the external fluid flow imposed by mechanical loading. This represents a most challenging multi-physics problem in which fluid and solid domains interact, and as such, no previous study has accounted for this complex behaviour. The objective of this study is to employ fluid–structure interaction (FSI) modelling to investigate the complex mechanical environment of osteocytes in vivo. Fluorescent staining of osteocytes was performed in order to visualise their native environment and develop geometrically accurate models of the osteocyte in vivo. By simulating loading levels representative of vigorous physiological activity ( $3,000\,\upmu \upvarepsilon $ compression and 300 Pa pressure gradient), we predict average interstitial fluid velocities $(\sim 60.5\,\upmu \text{ m/s })$ and average maximum shear stresses $(\sim 11\, \text{ Pa })$ surrounding osteocytes in vivo. Interestingly, these values occur in the canaliculi around the osteocyte cell processes and are within the range of stimuli known to stimulate osteogenic responses by osteoblastic cells in vitro. Significantly our results suggest that the greatest mechanical stimulation of the osteocyte occurs in the cell processes, which, cell culture studies have indicated, is the most mechanosensitive area of the cell. These are the first computational FSI models to simulate the complex multi-physics mechanical environment of osteocyte in vivo and provide a deeper understanding of bone mechanobiology.  相似文献   

15.
Most recent breakthroughs in understanding cell adhesion, cell migration, and cellular mechanosensitivity have been made possible by the development of engineered cell substrates of well-defined surface properties. Traditionally, these substrates mimic the extracellular matrix (ECM) environment by the use of ligand-functionalized polymeric gels of adjustable stiffness. However, such ECM mimetics are limited in their ability to replicate the rich dynamics found at cell-cell contacts. This review focuses on the application of cell surface mimetics, which are better suited for the analysis of cell adhesion, cell migration, and cellular mechanosensitivity across cell-cell interfaces. Functionalized supported lipid bilayer systems were first introduced as biomembrane-mimicking substrates to study processes of adhesion maturation during adhesion of functionalized vesicles (cell-free assay) and plated cells. However, while able to capture adhesion processes, the fluid lipid bilayer of such a relatively simple planar model membrane prevents adhering cells from transducing contractile forces to the underlying solid, making studies of cell migration and cellular mechanosensitivity largely impractical. Therefore, the main focus of this review is on polymer-tethered lipid bilayer architectures as biomembrane-mimicking cell substrate. Unlike supported lipid bilayers, these polymer-lipid composite materials enable the free assembly of linkers into linker clusters at cellular contacts without hindering cell spreading and migration and allow the controlled regulation of mechanical properties, enabling studies of cellular mechanosensitivity. The various polymer-tethered lipid bilayer architectures and their complementary properties as cell substrates are discussed.  相似文献   

16.
Hydrostatic pressure (HP) is a mechanical stimulus that has received relatively little attention in the field of the cell biology of mechanotransduction. Generalized models, such as the tensegrity model, do not provide a detailed explanation of how HP might be detected. This is significant, because HP is an important mechanical stimulus, directing cell behaviour in a variety of tissues, including cartilage, bone, airways, and the vasculature. HP sensitivity may also be an important factor in certain clinical situations, as well as under unique environmental conditions such as microgravity. While downstream cellular effects have been well characterized, the initial HP sensation mechanism remains unclear. In vitro evidence shows that HP affects cytoskeletal polymerization, an effect that may be crucial in triggering the cellular response. The balance between free monomers and cytoskeletal polymers is shifted by alterations in HP, which could initiate a cellular response by releasing and (or) activating cytoskeleton-associated proteins. This new model fits well with the basic tenets of the existing tensegrity model, including mechanisms in which cellular HP sensitivity could be tuned to accommodate variable levels of stress.  相似文献   

17.
18.
Abstract

The material components and configurations inside biological materials (e.g. bone and tooth) are quite dissimilar compared to conventional engineering materials. Besides hydroxyapatite minerals and collagen proteins, non-collagenous proteins such as osteopontin are also a very important component in bone. The aim of this paper is to study the role of osteopontin on the mechanical strength of biological composites. The MD simulations were performed to investigate the failure energy of osteopontin in two different directions, i.e. the direction normal to surface (thickness direction) and the direction tangential to surface (interface direction). The FE simulations were then performed to investigate the effects of failure energy in different directions on biological composites. The results show that the failure energy of osteopontin is higher in the interface direction. Significant improvement in the mechanical behaviour of biological composites is also found with the increased failure energy in the interface direction. Contrarily, although lower failure energy of osteopontin is observed in the thickness direction, but it is also found that the mechanical behaviour of biological composites does not greatly affected by the failure energy in the thickness direction. The numerical investigation provides important insights into how the osteopontin affects the mechanical behaviour of biological composites.  相似文献   

19.
Repair success for injuries to the flexor tendon in the hand is often limited by the in vivo behaviour of the suture used for repair. Common problems associated with the choice of suture material include increased risk of infection, foreign body reactions, and inappropriate mechanical responses, particularly decreases in mechanical properties over time. Improved suture materials are therefore needed. As high-performance materials with excellent tensile strength, spider silk fibres are an extremely promising candidate for use in surgical sutures. However, the mechanical behaviour of sutures comprised of individual silk fibres braided together has not been thoroughly investigated. In the present study, we characterise the maximum tensile strength, stress, strain, elastic modulus, and fatigue response of silk sutures produced using different braiding methods to investigate the influence of braiding on the tensile properties of the sutures. The mechanical properties of conventional surgical sutures are also characterised to assess whether silk offers any advantages over conventional suture materials. The results demonstrate that braiding single spider silk fibres together produces strong sutures with excellent fatigue behaviour; the braided silk sutures exhibited tensile strengths comparable to those of conventional sutures and no loss of strength over 1000 fatigue cycles. In addition, the braiding technique had a significant influence on the tensile properties of the braided silk sutures. These results suggest that braided spider silk could be suitable for use as sutures in flexor tendon repair, providing similar tensile behaviour and improved fatigue properties compared with conventional suture materials.  相似文献   

20.
Comparative Mechanical Properties and Histology of Bone   总被引:1,自引:0,他引:1  
Different bone tissues differ in their amounts of porosity,mineralization,reconstruction, and preferred orientation. Allthese have important effects on mechanical properties. Veryporous, cancellous bone is always weaker and morecompliant thancompact bone on a weight for weight basis, yet it occurs inplaceswhere its energyabsorbing ability, or its low density,is advantageous. Bonevaries considerably in its mineralization,and such variations have quite disproportionate effects on mechanicalproperties. These variations can be shown to be adaptive. Inparticular, there must always be a compromise between stiffnessandresistanceto fracture; these two properties run contrary to each other.The reason for secondary remodeling is an unresolved problem,though in a few places the role of such remodeling in changingthe grain of the bone is clearly mechanically adaptive. Themechanical properties of non-mammalian bone are obscure, andas the histology of such bone is often quite different fromthat of mammalian bone, we are no doubt in for some surpriseswhen the mechanical properties ofnonmammalian bone are discovered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号