首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
酸铝胁迫是限制植物正常生长发育的重要非生物胁迫因子,严重制约了我国酸性土壤地区的农业生产水平。植物抵御酸铝胁迫的形式复杂多样,如分泌有机酸、提高根际pH、分泌黏液、细胞壁对Al3+的固定、有机酸对细胞溶质中Al3+的螯合与液泡区隔化等。现有研究多集中于常规生理特征分析,缺乏深入的分子生物学解析。基于此,本文对国内外植物适应酸铝胁迫机理的相关研究进行了归纳和总结,从酸铝胁迫对植物生长与生理代谢的影响、植物适应酸铝胁迫最主要的两种生理机制(Al排除机制、Al耐受机制)以及分子水平上调控相关耐铝基因进行了综述。最后针对现有研究的不足提出了展望,以期为深入揭示植物适应酸铝胁迫的机理以及挖掘适于酸土生长的优质作物资源提供理论依据。  相似文献   

3.
Shigella flexneri is endemic in most underdeveloped countries, causing diarrheal disease and dysentery among young children. In order to reach its target site, the colon, Shigella must overcome the acid environment of the stomach. Shigella is able to persist in this stressful environment and, because of this ability it can initiate infection following the ingestion of very small inocula. Thus, acid resistance is considered an important virulence trait of this bacterium. It has been reported that moderate acid conditions regulate the expression of numerous components of the bacterial envelope. Because the lipopolysaccharide (LPS) is the major component of the bacterial surface, here we have addressed the role of LPS in acid resistance of S. flexneri 2a. Defined deletion mutants in genes encoding proteins involved in the synthesis, assembly and length regulation of the LPS O antigen were constructed and assayed for resistance to pH 2.5 after adaptation to pH 5.5. The results showed that a mutant lacking O antigen was significantly more sensitive to extreme acid conditions than the wild type. Not only the presence of polymerized O antigen, but also a particular polymer length (S-OAg) was required for acid resistance. Glucosylation of the O antigen also contributed to this property. In addition, a moderate acidic pH induced changes in the composition of the lipid A domain of LPS. The main modification was the addition of phosphoethanolamine to the 1' phosphate of lipid A. This modification increased resistance of S. flexneri to extreme acid conditions, provide that O antigen was produced. Overall, the results of this work point out to an important role of LPS in resistance of Shigella flexneri to acid stress.  相似文献   

4.
Thermophilic bacterium Bacillus stearothermophilus TLS33, isolated from a hot spring in Chiang Mai, Thailand, usually produces many enzymes that are very useful for industrial applications. However, the functional properties and mechanisms of this bacterium under stress conditions are rarely reported and still need more understanding on how the bacterium can survive in stress environments. In this study, we examined the oxidative stress induced proteins of this bacterium by proteomic approach combining two-dimensional electrophoresis and mass spectrometry. When the bacterium encountered oxidative stress, peroxiredoxin, as an antioxidant enzyme, is one of the interesting stressed proteins which appeared to be systematically increased with different pI. There are four isoforms of peroxiredoxin, denoted as Prx I, Prx II, Prx III and Prx IV, which are observed at the same molecular weight of 27 kDa but differ in pI values of 5.0, 4.87, 4.81 and 4.79, respectively. The H2O2 concentration directly increased Prx II, Prx III and Prx IV intensities, but decreased Prx I intensity. These shifting of peroxiredoxin isoforms may occur by a post-translational modification. Otherwise, the longer time of oxidative stress had not affected the expression level of peroxiredoxin isoforms. Therefore, this finding of peroxiredoxin intends to know the bacterial adaptation under oxidative stress. Otherwise, this protein plays an important role in many physiological processes and able to use in the industrial applications.  相似文献   

5.
6.
Using two types of genome-wide analysis to investigate yeast genes involved in response to lactic acid and acetic acid, we found that the acidic condition affects metal metabolism. The first type is an expression analysis using DNA microarrays to investigate 'acid shock response' as the first step to adapt to an acidic condition, and 'acid adaptation' by maintaining integrity in the acidic condition. The other is a functional screening using the nonessential genes deletion collection of Saccharomyces cerevisiae. The expression analysis showed that genes involved in stress response, such as YGP1, TPS1 and HSP150, were induced under the acid shock response. Genes such as FIT2, ARN1 and ARN2, involved in metal metabolism regulated by Aft1p, were induced under the acid adaptation. AFT1 was induced under acid shock response and under acid adaptation with lactic acid. Moreover, green fluorescent protein-fused Aft1p was localized to the nucleus in cells grown in media containing lactic acid, acetic acid, or hydrochloric acid. Both analyses suggested that the acidic condition affects cell wall architecture. The depletion of cell-wall components encoded by SED1, DSE2, CTS1, EGT2, SCW11, SUN4 and YNL300W and histone acetyltransferase complex proteins encoded by YID21, EAF3, EAF5, EAF6 and YAF9 increased resistance to lactic acid. Depletion of the cell-wall mannoprotein Sed1p provided resistance to lactic acid, although the expression of SED1 was induced by exposure to lactic acid. Depletion of vacuolar membrane H+-ATPase and high-osmolarity glycerol mitogen-activated protein kinase proteins caused acid sensitivity. Moreover, our quantitative PCR showed that expression of PDR12 increased under acid shock response with lactic acid and decreased under acid adaptation with hydrochloric acid.  相似文献   

7.
Tolerance of yeast to acid stress is important for many industrial processes including organic acid production. Therefore, elucidating the molecular basis of long term adaptation to acidic environments will be beneficial for engineering production strains to thrive under such harsh conditions. Previous studies using gene expression analysis have suggested that both organic and inorganic acids display similar responses during short term exposure to acidic conditions. However, biological mechanisms that will lead to long term adaptation of yeast to acidic conditions remains unknown and whether these mechanisms will be similar for tolerance to both organic and inorganic acids is yet to be explored. We therefore evolved Saccharomyces cerevisiae to acquire tolerance to HCl (inorganic acid) and to 0.3 M L-lactic acid (organic acid) at pH 2.8 and then isolated several low pH tolerant strains. Whole genome sequencing and RNA-seq analysis of the evolved strains revealed different sets of genome alterations suggesting a divergence in adaptation to these two acids. An altered sterol composition and impaired iron uptake contributed to HCl tolerance whereas the formation of a multicellular morphology and rapid lactate degradation was crucial for tolerance to high concentrations of lactic acid. Our findings highlight the contribution of both the selection pressure and nature of the acid as a driver for directing the evolutionary path towards tolerance to low pH. The choice of carbon source was also an important factor in the evolutionary process since cells evolved on two different carbon sources (raffinose and glucose) generated a different set of mutations in response to the presence of lactic acid. Therefore, different strategies are required for a rational design of low pH tolerant strains depending on the acid of interest.  相似文献   

8.
Listeria monocytogenes is capable of withstanding low pH after initial exposure to sublethal acidic conditions, a phenomenon termed the acid tolerance response (B. O'Driscoll, C. G. M. Gahan, and C. Hill, Appl. Environ. Microbiol. 62:1693-1698, 1996). Treatment of L. monocytogenes LO28 with chloramphenicol during acid adaptation abrogated the protective effect, suggesting that de novo protein synthesis is required for the acid tolerance response. Analysis of protein expression during acid adaptation by two-dimensional gel electrophoresis revealed changes in the levels of 53 proteins. Significant protein differences were also evident between nonadapted L. monocytogenes LO28 and a constitutively acid-tolerant mutant, ATM56. In addition, the analysis[S_TABC] revealed differences in protein expression between cells induced with a weak acid (lactic acid) and those induced with a strong acid (HCl). Comparison of both acid-adapted LO28 and ATM56 revealed that both are capable of maintaining their internal pH (pH(infi)) at higher levels than nonadapted control cells during severe acid stress. Collectively, the data demonstrate the profound alterations in protein synthesis which take place during acid adaptation in L. monocytogenes and ultimately lead to an increased ability to survive severe stress conditions.  相似文献   

9.
冯婧玮  冯万艳  孙学广 《菌物学报》2022,41(7):1055-1067
低磷和酸铝胁迫是酸性土壤限制植物生长的主要因素。有研究指出外生菌根(ectomycorrhiza,ECM)可提高宿主植物对铝毒害和低磷胁迫的适应性。然而,目前有关ECM真菌自身对低磷和酸铝环境的适应机理还不清楚。基于此,本研究以我国南方酸性土壤广泛分布的ECM真菌——粘盖乳牛肝菌Suillus bovinus为研究对象,在纯培养条件下研究了低磷、酸铝胁迫对其生长、营养吸收及菌丝分泌物的影响。结果表明,粘盖乳牛肝菌是一种耐铝型真菌,酸铝胁迫(1 mmol/L)不影响其菌丝生长,而低磷胁迫(20 μmol/L)则显著限制其菌丝生长(P<0.05)。值得注意的是,低磷胁迫的抑制效应可被酸铝胁迫逆转。低磷胁迫显著降低了粘盖乳牛肝菌对磷的吸收(P<0.05),而酸铝胁迫则对菌丝钾的吸收有促进作用。低磷、酸铝胁迫同样改变了菌丝分泌物组成。在低磷胁迫下,大量酚酸类、有机酸及脂质代谢物的积累量下调;而酸铝胁迫下则有大量酚酸类物质上调,有机酸和脂质中上调代谢物数量也高于下调数量;低磷酸铝复合胁迫下酚酸和有机酸类代谢物积累量均显著上调。另外,吲哚-3-乙酸(IAA)在各胁迫下均显著上调。以上结果可在一定程度上解释粘盖乳牛菌对低磷、酸铝环境的适应机理,并对后续进一步阐明ECM的共生适应机理有一定指导意义。  相似文献   

10.
Acid-induced expression of an LPS-associated gene in Helicobacter pylori   总被引:3,自引:2,他引:1  
To investigate urease-independent mechanisms by which Helicobacter pylori resists acid stress, subtractive RNA hybridization was used to identify H. pylori genes whose expression is induced after exposure to acid pH. This approach led to the isolation of a gene that encoded a predicted 34.8 kDa protein (WbcJ), which was homologous to known bacterial O-antigen biosynthesis proteins involved in the conversion of GDP-mannose to GDP-fucose. An isogenic wbcJ null mutant strain failed to express O-antigen and Lewis X or Lewis Y determinants and was more sensitive to acid stress than was the wild-type strain. Qualitative differences in LPS profiles were observed in H. pylori cells grown at pH 5 compared with pH 7, which suggests that H. pylori may alter its LPS structure in response to acidic pH. This may be an important adaptation facilitating H. pylori colonization of the acidic gastric environment.  相似文献   

11.
Yangbo Hu  Pei Lu  Yong Zhang  Shiyun Chen 《FEBS letters》2010,584(11):2311-2314
Enteric bacteria have developed various survival systems that protect against acid stress. In this study, an aspartate-dependent acid survival system is characterized in Yersinia pseudotuberculosis. The expression of aspartase (AspA) was confirmed to be increased at acidic pH by proteomic and lacZ fusion analyses. Addition of aspartate increased acid survival of the wild type but not the aspA knockout mutant. AspA increases acid survival by producing ammonia as demonstrated by mutation and in vitro enzyme activity analyses. This is the first demonstration that an enzyme involved in aspartate metabolism plays a role in acid survival in an enteric bacterium.  相似文献   

12.
Diplorickettsia massiliensis is an obligate intracellular bacterium from the Coxiellaceae family recently isolated from Ixodes ricinus ticks. The inhibitory effects of antimicrobial agents were assessed by two different methods, immunofluorescence and Gimenez staining assay. Different markers (EEA1, Lamp-1, Cathepsin D, and LysoTracker Red DND99) were used to reveal the nature of the vacuole containing the bacterium. Ciprofloxacin, levofloxacin, and rifampin had MIC values of 2 lg mL(-1). We found that 4 lg mL(-1) of Doxycycline inhibited the growth of D. massiliensis strain. Surprisingly, D. massiliensis was resistant to chloramphenicol up to the concentration of 64 lg mL(-1). We found that penicillin G, ammonium chloride, gentamycin, omeprazole, bafilomycin A1, and chloroquine were not active against D. massiliensis. Studies performed with markers EEA1, Lamp-1, Cathepsin D, and LysoTracker Red DND99 showed that D. massiliensis is localized within an acidic compartment that is not an early phagosome, but a late phagosome or a phagolysosome. Gimenez staining stays a good method that will work with a very low number of bacteria and can be used to determine the MICs of new therapeutic antibiotics precisely. The resistance profile of D. massiliensis was found to be quite unusual for intracellular Gram-negative bacterium with marked resistance to chloramphenicol. Despite of localization in acidic compartment, pH-neutralizing agents do not significantly inhibit intracellular growth of bacterium. The results of these studies prove that antibiotic resistance does not depend on pH of vacuole. This pH-related mechanism seems not to play a contributing role in the overall resistance of D. massiliensis.  相似文献   

13.
Enterococcus faecalis is a commensal bacterium of the mammalian intestine that can persist in soil and aquatic systems and can be a nosocomial pathogen to humans. It employs multiple stress adaptation strategies in order to survive such a wide range of environments. Within this study, we sought to elucidate whether membrane fatty acid composition changes are an important component for stress adaptation. We noted that E. faecalis OG1RF was capable of changing its membrane composition depending upon growth phase and temperature. The organism also readily incorporated fatty acids from bile, serum, and medium supplemented with individual fatty acids, often dramatically changing the membrane composition such that a single fatty acid was predominant. Growth in either low levels of bile or specific individual fatty acids was found to protect the organism from membrane challenges such as high bile exposure. In particular, we observed that when grown in low levels of bile, serum, or the host-derived fatty acids oleic acid and linoleic acid, E. faecalis was better able to survive the antibiotic daptomycin. Interestingly, the degree of membrane saturation did not appear to be important for protection from the stressors examined here; instead, it appears that a specific fatty acid or combination of fatty acids is critical for stress resistance.  相似文献   

14.
The present study describes the response of a bacterial strain, isolated from a hot spring in an area with the highest levels of natural radiation, under radium ((226)Ra) stress. The bacterium has been characterized as a novel and efficient radium biosorbent and identified as a variant of Serratia marcescens by biochemical tests and molecular recognition. In order to gain insights into key cellular events that allow this strain to survive and undergo (226)Ra adaptation and biosorption, the strain was tested under two experimental conditions of 1000 and 6000 Bq (226)Ra stress. A proteomic approach involving two-dimensional polyacrylamide gel electrophoresis and mass spectrometry was used to identify the differentially expressed proteins under (226)Ra stress. Functional assessment of identified proteins with significantly altered expression levels revealed several mechanisms thought to be involved in (226)Ra adaptation and conferring resistant phenotype to the isolate, including general stress adaptation, anti-oxidative stress, protein and nucleic acid synthesis, energy metabolism, efflux and transport proteins. It suggests that this strain through evolution is particularly well adapted to the high background radiation environment and could represent an alternative source to remove (226)Ra from such areas as well as industrial radionuclide polluted wastewaters.  相似文献   

15.
Marassi FM 《Proteins》2011,79(10):2946-2955
The Mycobacterium tuberculosis membrane protein Rv0899 confers adaptation of the bacterium to acidic environments. Due to strong sequence homology of its C-terminus to bacterial OmpA-like domains, Rv0899 has been proposed to constitute an outer membrane porin of M. tuberculosis. However, OmpA-like domains are widespread in a wide variety of bacterial proteins with different functions. Furthermore, the three-dimensional structure of Rv0899 does not contain a transmembrane β-barrel, and recent evidence demonstrates that it does not have porin activity. Instead, the rv0899 gene is part of an operon (rv0899-rv0901) that is required for fast ammonia secretion, pH neutralization, and growth of M. tuberculosis in acidic environments. The mechanism whereby these functions are accomplished is not known. To gain further functional insights, a targeted search of the genomic databases was performed for proteins with sequence similarity beyond the OmpA-like C-terminus. The results presented here, show that Rv0899-like proteins are widespread in bacteria with functions in nitrogen metabolism, adaptation to nutrient poor environments, and/or establishing symbiosis with the host organism, and appear to form a protein family. These findings suggest that M. tuberculosis Rv0899 may also assist similar processes and lend further support to its role in ammonia secretion and M. tuberculosis adaptation to the host environment.  相似文献   

16.
17.
Understanding the conditions under which rapid evolutionary adaptation can prevent population extinction in deteriorating environments (i.e. evolutionary rescue) is a crucial aim in the face of global climate change. Despite a rapidly growing body of work in this area, little attention has been paid to the importance of interspecific coevolutionary interactions. Antagonistic coevolution commonly observed between hosts and parasites is likely to retard evolutionary rescue because it often reduces population sizes, and results in the evolution of costly host defence and parasite counter-defence. We used experimental populations of a bacterium Pseudomonas fluorescens SBW25 and a bacteriophage virus (SBW25Φ2), to study how host-parasite coevolution impacts viral population persistence in the face of gradually increasing temperature, an environmental stress for the virus but not the bacterium. The virus persisted much longer when it evolved in the presence of an evolutionarily constant host genotype (i.e. in the absence of coevolution) than when the bacterium and virus coevolved. Further experiments suggest that both a reduction in population size and costly infectivity strategies contributed to viral extinction as a result of coevolution. The results highlight the importance of interspecific evolutionary interactions for the evolutionary responses of populations to global climate change.  相似文献   

18.
Medium- and long-chain fatty acids are present in organisms in esterified forms that serve as cell membrane constituents and storage compounds. A large number of organisms are known to accumulate lipophilic materials as a source of energy and carbon. We found a bacterium, designated GK12, that intrinsically accumulates free fatty acids (FFAs) as intracellular droplets without exhibiting cytotoxicity. GK12 is an obligatory anaerobic, mesophilic lactic acid bacterium that was isolated from a methanogenic reactor. Phylogenetic analysis based on 16S rRNA gene sequences showed that GK12 is affiliated with the family Erysipelotrichaceae in the phylum Firmicutes but is distantly related to type species in this family (less than 92% similarity in 16S rRNA gene sequence). Saturated fatty acids with carbon chain lengths of 14, 16, 18, and 20 were produced from glucose under stress conditions, including higher-than-optimum temperatures and the presence of organic solvents that affect cell membrane integrity. FFAs were produced at levels corresponding to up to 25% (wt/wt) of the dry cell mass. Our data suggest that FFA accumulation is a result of an imbalance between excess membrane fatty acid biosynthesis due to homeoviscous adaptation and limited β-oxidation activity due to anaerobic growth involving lactic acid fermentation. FFA droplets were not further utilized as an energy and carbon source, even under conditions of starvation. A naturally occurring bacterium that accumulates significant amounts of long-chain FFAs with noncytotoxicity would provide useful strategies for microbial biodiesel production.  相似文献   

19.
The review deals with lactic acid bacteria in characterizing the stress adaptation with cross-protection effects, mainly associated with Lactobacillus, Bifidobacterium and Lactococcus. It focuses on adaptation and cross-protection in Lactobacillus, Bifidobacterium and Lactococcus, including heat shocking, cold stress, acid stress, osmotic stress, starvation effect, etc. Web of Science, Google Scholar, Science Direct, and PubMed databases were used for the systematic search of literature up to the year 2020. The literature suggests that a lower survival rate during freeze-drying is linked to environmental stress. Protective pretreatment under various mild stresses can be applied to lactic acid bacteria which may enhance resistance in a strain-dependent manner. We investigate the mechanism of damage and adaptation under various stresses including heat, cold, acidic, osmotic, starvation, oxidative and bile stress. Adaptive mechanisms include synthesis of stress-induced proteins, adjusting the composition of cell membrane fatty acids, accumulating compatible substances, etc. Next, we reveal the cross-protective effect of specific stress on the other environmental stresses. Freeze-drying is discussed from three perspectives including the regulation of membrane, accumulation of compatible solutes and the production of chaperones and stress-responsive proteases. The resistance of lactic acid bacteria against technological stress can be enhanced via cross-protection, which improves industrial efficiency concerning the survival of probiotics. However, the adaptive responses and cross-protection are strain-dependent and should be optimized case by case.  相似文献   

20.
The relationship between alkaline adaptation and the resistance against environmental stresses was examined in Vibrio parahaemolyticus. Alkali-adapted cells were found to have increased resistance against various stresses, including heat, crystal violet, deoxycholic acid, and hydrogen peroxide. However, alkali-adapted cells showed no increased resistance against acid stress and heat-adapted cells did not show increased resistance against alkaline stress. Furthermore, alkaline treatment induced cell elongation with heterogenous size of the bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号