首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Net blotch of barley (Hordeum vulgare L.), caused by the fungal phytopathogen Pyrenophora teres Drechs. f. teres Smedeg., constitutes one of the most serious constraints to barley production worldwide. Two forms of the disease, the net form, caused by P. teres f. teres, and the spot form, caused by P. teres f. maculata, are differentiated by the type of symptoms on leaves. Several barley lines with major gene resistance to net blotch have been identified. Earlier, one of these was mapped in the Rolfi x CI 9819 cross to barley chromosome 6H, using a mixture of 4 Finnish isolates of P. teres f. teres. In this study, we used the same barley progeny to map resistance to 4 spot-type isolates and 4 net-type isolates of P. teres. With all net-type isolates, a major resistance gene was located on chromosome 6H, in the same position as described previously, explaining up to 88% of the phenotypic variation in infection response in the progeny. We designate this gene Rpt5. Several minor resistance genes were located on chromosomes 1H, 2H, 3H, 5H, and 7H. These minor genes were not genuinely isolate-specific, but their effect varied among isolates and experiments. When the spot-type isolates were used for infection, a major isolate-specific resistance gene was located on chromosome 5H, close to microsatellite marker HVLEU, explaining up to 84% of the phenotypic variation in infection response in the progeny. We designate this gene Rpt6. No minor gene effects were detected in spot-type isolates. The Ethiopian 2-rowed barley line CI 9819 thus carries at least 2 independent major genes for net-blotch resistance: Rpt5, active against net-type isolates; and Rpt6, active against specific spot-type isolates.  相似文献   

2.
Seedlings of 62 Australian barley cultivars and two exotic barley genotypes were assessed for resistance to a variant of Puccinia striiformis, referred to as “Barley Grass Stripe Rust” (BGYR), first detected in Australia in 1998, which is capable of infecting wild Hordeum species and some genotypes of cultivated barley. Fifty-three out of 62 cultivated barley cultivars tested were resistant to the pathogen. Genetic analyses of seedling resistance to BGYR in six Australian barley cultivars and one Algerian barley landrace indicated that they carried either one or two major resistance genes to the pathogen. A single recessive seedling resistance gene, rpsSa3771, identified in Sahara 3771, was located on the long arm of chromosome 1 (7 H), flanked by the restriction fragment length polymorphism (RFLP) markers Xwg420 and Xcdo347 at genetic distances of 12.8 and 21.9 cM, respectively. Mapping resistance to BGYR at adult plant growth stages using the doubled haploid (DH) population Clipper × Sahara 3771 identified two major quantitative trait loci (QTL), one on the long arm of chromosome 3 (3 H) and the second on the long arm of chromosome 1 (7 H), accounting for 26 % and 18 % of the total phenotypic variation, respectively. The QTL located on chromosome 7HL corresponded to seedling resistance gene rpsSa3771 and the second QTL was concluded to correspond to a single APR gene, designated rpsCl, contributed by cultivar Clipper.  相似文献   

3.
The root-lesion nematode Pratylenchus neglectus can cause severe losses in barley cultivation. Multiplication rates had been found to vary greatly between different barley accessions. Two winter barley cultivars, Igri and Franka, had been found to differ in their ability to resist this parasite. An existing Igri?×?Franka doubled haploid population was chosen to genetically map resistance genes after artificial inoculation with P. neglectus in the greenhouse and climate chamber. A continuous phenotypic variation was found indicating a quantitative inheritance of P. neglectus resistance. An existing map was enriched by 527 newly developed Diversity Array Technology markers (DArTs). The new genetic linkage map was comprised of 857 molecular markers that cover 1,157?cM on seven linkage groups. Using phenotypic data collected from four different experiments in 3?years, five quantitative trait loci were mapped by composite interval mapping on four (3H, 5H, 6H and 7H) linkage groups. A quantitative trait locus with a large phenotypic effect of 16% and likelihood of odds (LOD) score of 6.35 was mapped on linkage group 3H. The remaining four QTLs were classified as minor or moderate with LOD scores ranging from 2.71 to 3.55 and R 2 values ranging from 8 to 10%. The DNA markers linked to the resistance QTLs should be quite useful for marker-assisted selection in barley breeding because phenotypic selection is limited due to time constraints and labor costs.  相似文献   

4.
A genetic map of 92 RFLP loci and two storage protein loci was made using 94 doubled-haploid lines from a cross between the winter barley variety Igri and the spring variety Triumph. The markers were combined with data from two field experiments (one spring sown and one autumn (fall) sown) and a glasshouse experiment to locate a total of 13 genes (five major genes and eight quantitative trait loci (QTL)) controlling flowering time. Two photoperiod response genes were found; Ppd-H1 on chromosome 2(2H)S regulated flowering time under long days, while Ppd-H2 on chromosome 5(1H)L was detected only under short days. In the field experiments Ppd-H1 strongly affected flowering time from spring and autumn sowings, while Ppd-H2 was detected only in the autumn sowing. The glasshouse experiment also located two vernalization response genes, probably Sh and Sh2, on chromosomes 4(4H)L and 7(5H)L, respectively. The vernalization response genes had little effect on flowering time in the field. Variation in flowering time was also affected by nine additional genes, whose effects were not specifically dependent on photoperiod or vernalization. One was the denso dwarfing gene on chromosome 3(3H)L. The remaining eight were QTLs of smaller effect. One was located on chromosome 2(2H), one on 3(3H), one on 4(4H), one on 7(5H), two on 6(6H), and two on 1(7H). Model fitting showed that the 13 putative genes, and their interactions, could account for all the observed genetical variation from both spring and autumn sowings, giving a complete model for the control of flowering time in this cross.  相似文献   

5.
A number of mutations affecting seed development in barley (Hordeum vulgare L.) have been known for many years; however, to date, no research has been reported that elucidates the molecular structure of the causal genes. As a first step, we initiated the linkage mapping of the two shrunken endosperm genes seg8 and sex1 using microsatellite markers. The recessive gene seg8 was mapped in the centromeric region of chromosome 7H to a 4.6 cM interval flanked by markers GBM1516 and Bmag341. The recessive sex1 gene showed xenia effects and was located in the centromeric region of barley chromosome 6H, which is in accordance to the previously reported chromosomal location in the classical linkage map. It was flanked by markers GBM5012 and GBM1063 in a 4.2 cM interval. EST-derived microsatellite markers were used to establish the syntenic relationships to the genomic rice sequences. Two orthologous sites on rice chromosome 2 flanking a 4.1 Mb sequence had homology to the respective barley markers in the sex1 region. For the markers in the seg8 region orthologous sites on rice chromosome 6 were detected.  相似文献   

6.
Net blotch, which is caused by the fungus Pyrenophoral teres Drechs. f. teres Smedeg., presents a serious problem for barley production worldwide, and the identification and deployment of sources of resistance to it are key objectives for many breeders. Here, we report the identification of a major resistance gene, accounting for 65% of the response variation, in a cross between the resistant line C19819 and the susceptible cv. Rolfi. The resistance gene was mapped to chromosome 6H with the aid of two recently developed systems of retrotransposon-based molecular markers, REMAP and IRAP. A total of 239 BARE-1 and Sukkula retrotransposon markers were mapped in the cross, and the 30-cM segment containing the locus with significant resistance effect contained 26 of the markers. The type and local density of the markers should facilitate future map-based cloning of the resistance gene as well as manipulation of the resistance through backcross breeding.  相似文献   

7.
Net blotch, caused by Pyrenophora teres, is one of the most economically important diseases of barley worldwide. Here, we used a barley doubled-haploid population derived from the lines SM89010 and Q21861 to identify major quantitative trait loci (QTLs) associated with seedling resistance to P. teres f. teres (net-type net blotch (NTNB)) and P. teres f. maculata (spot-type net blotch (STNB)). A map consisting of simple sequence repeat (SSR) and amplified fragment length polymorphism (AFLP) markers was used to identify chromosome locations of resistance loci. Major QTLs for NTNB and STNB resistance were located on chromosomes 6H and 4H, respectively. The 6H locus (NTNB) accounted for as much as 89% of the disease variation, whereas the 4H locus (STNB resistance) accounted for 64%. The markers closely linked to the resistance gene loci will be useful for marker-assisted selection.  相似文献   

8.
9.
Aluminium (Al) toxicity is an important limitation to barley (Hordeum vulgare L.) on acid soil. Al-resistant cultivars of barley detoxify Al externally by secreting citrate from the roots. To link the genetics and physiology of Al resistance in barley, genes controlling Al resistance and Al-activated secretion of citrate were mapped. An analysis of Al-induced root growth inhibition from 100 F2 seedlings derived from an Al-resistant cultivar (Murasakimochi) and an Al-sensitive cultivar (Morex) showed that a gene associated with Al resistance is localized on chromosome 4H, tightly linked to microsatellite marker Bmag353. Quantitative trait locus (QTL) analysis from 59 F4 seedlings derived from an F3 plant heterozygous at the region of Al resistance on chromosome 4H showed that a gene responsible for the Al-activated secretion of citrate was also tightly linked to microsatellite marker Bmag353. This QTL explained more than 50% of the phenotypic variation in citrate secretion in this population. These results indicate that the gene controlling Al resistance on barley chromosome 4H is identical to that for Al-activated secretion of citrate and that the secretion of citrate is one of the mechanisms of Al resistance in barley. The identification of the microsatellite marker associated with both Al resistance and citrate secretion provides a valuable tool for marker-assisted selection of Al-resistant lines.  相似文献   

10.
S J Molnar  L E James  K J Kasha 《Génome》2000,43(2):224-231
A doubled haploid barley (Hordeum vulgare L.) population that was created from a cross between cultivars 'Léger' and 'CI 9831' was characterized by RAPD (random amplified polymorphic DNA) markers for resistance to isolate WRS857 of Pyrenophora teres Drechs. f. sp. maculata Smedeg., the causal agent of the spot form of net blotch. Resistance, which initially appeared to be conferred by a single gene from the approximate 1:1 (resistant : susceptible) segregation ratio of the doubled-haploid (DH) progeny, was found to be associated with three different genomic regions by RAPD analysis. Of 500 RAPD random primers that were screened against the parents, 195 revealed polymorphic bands, seven showed an association to the resistance in bulks, and these seven markers were mapped to three unlinked genomic regions. Two of these regions, one of which was mapped to chromosome 2, have major resistance genes. The third region has some homology to the chromosome 2 region. This study demonstrates the simultaneous location of markers for more than one gene governing a trait by using RAPD and bulked segregant analysis (BSA).  相似文献   

11.
Leaf stripe is a seed-borne disease of barley (Hordeum vulgare) caused by Pyrenophora graminea. Little is known about the genetics of resistance to this pathogen. In the present work, QTL analysis was applied on two recombinant inbred line (RIL) populations derived from two- and six-rowed barley genotypes with different levels of partial resistance to barley leaf stripe. Quantitative trait loci for partial resistance were identified using the composite interval mapping (CIM) method of PLABQTL software, using the putative QTL markers as cofactors. In the L94 x 'Vada' mapping population, one QTL for resistance was detected on chromosome 2H; the same location as the leaf-stripe resistance gene Rdg1 mapped earlier in 'Alf', where it confers complete resistance to the pathogen. An additional minor-effect QTL was identified by further analyses in this segregating population on chromosome 7H. In L94 x C123, two QTLs for resistance were mapped, one each on chromosomes 7H and 2H.  相似文献   

12.
Quantitative trait loci (QTLs) for downy mildew resistance in maize were identified based on co-segregation with linked restriction fragment length polymorphisms or simple sequence repeats in 220 F2 progeny from a cross between susceptible and resistant parents. Disease response was assessed on F3 families in nurseries in Egypt, Thailand, and South Texas and after inoculation in a controlled greenhouse test. Heritability of the disease reaction was high (around 93% in Thailand). One hundred and thirty polymorphic markers were assigned to the ten chromosomes of maize with LOD scores exceeding 4.9 and covering about 1,265 cM with an average interval length between markers of 9.5 cM. About 90% of the genome is located within 10 cM of the nearest marker. Three putative QTLs were detected in association with resistance to downy mildew in different environments using composite interval mapping. Despite environmental and symptom differences, one locus on chromosome 2 had a major effect and explained up to 70% of the phenotypic variation in Thailand where disease pressure was the highest. The other two QTLs on chromosome 3 and chromosome 9 had minor effects; each explained no more than 4% of the phenotypic variation. The three QTLs appeared to have additive effects on resistance, identifying one major gene and two minor genes that contribute to downy mildew resistance.  相似文献   

13.
Pre-harvest sprouting (PHS) is a complex trait controlled by multiple genes with strong interaction between environment and genotype that makes it difficult to select breeding materials by phenotypic assessment. One of the most important genes for pre-harvest sprouting resistance is consistently identified on the long arm of chromosome 4A. The 4AL PHS tolerance gene has therefore been targeted by Australian white-grained wheat breeders. A new robust PCR marker for the PHS QTL on wheat chromosome 4AL based on candidate genes search was developed in this study. The new marker was mapped on 4AL deletion bin 13-0.59-0.66 using 4AL deletion lines derived from Chinese Spring. This marker is located on 4AL between molecular markers Xbarc170 and Xwg622 in the doubled-haploid wheat population Cranbrook × Halberd. It was mapped between molecular markers Xbarc170 and Xgwm269 that have been previously shown to be closely linked to grain dormancy in the doubled haploid wheat population SW95-50213 × Cunningham and was co-located with Xgwm269 in population Janz × AUS1408. This marker offers an additional efficient tool for marker-assisted selection of dormancy for white-grained wheat breeding. Comparative analysis indicated that the wheat chromosome 4AL QTL for seed dormancy and PHS resistance is homologous with the barley QTL on chromosome 5HL controlling seed dormancy and PHS resistance. This marker will facilitate identification of the gene associated with the 4A QTL that controls a major component of grain dormancy and PHS resistance.  相似文献   

14.
The intervals containing two major quantitative trait loci (QTL) from a Spanish barley landrace conferring broad spectrum resistance to Blumeria graminis were subjected to marker saturation. First, all the available information on recently developed marker resources for barley was exploited. Then, a comparative genomic analysis of the QTL regions with other sequenced grass model species was performed. As a result of the first step, 32 new markers were added to the previous map and new flanking markers closer to both QTL were identified. Next, syntenic integration revealed that the barley target regions showed homology with regions on chromosome 6 of rice (Oryza sativa), chromosome 10 of Sorghum bicolor and chromosome 1 of Brachypodium distachyon. A nested insertion of ancestral syntenic blocks on Brachypodium chromosome 1 was confirmed. Based on sequence information of the most likely candidate orthologous genes, 23 new barley unigene-derived markers were developed and mapped within the barley target regions. The assessment of colinearity revealed an inversion on chromosome 7HL of barley compared to the other three grass species, and nearly perfect colinearity on chromosome 7HS. This two-step marker enrichment allowed for the refinement of the two QTL into much smaller intervals. Inspection of all predicted proteins for the barley unigenes identified within the QTL intervals did not reveal the presence of resistance gene candidates. This study demonstrates the usefulness of sequenced genomes for fine mapping and paves the way for the use of these two loci in barley breeding programs.  相似文献   

15.
The Rh2 resistance gene of barley (Hordeum vulgare) confers resistance against the scald pathogen (Rhynchosporium secalis). A high-resolution genetic map of the Rh2 region on chromosome I (7H) was established by the use of molecular markers. Tightly linked markers from this region were used to screen existing and a newly constructed yeast artificial chromosome (YAC) library of barley cv. Franka composed of 45,000 clones representing approximately two genome equivalents. Corresponding YAC clones were identified for most markers, indicating that the combined YAC library has good representation of the barley genome. The contiguous sets of YAC clones with the most tightly linked molecular markers represent entry points for map-based cloning of this resistance gene.  相似文献   

16.
17.
Net blotch of barley, caused by Pyrenophora teres Drechs., is an important foliar disease worldwide. Deployment of resistant cultivars is the most economic and eco-friendly control method. This report describes mapping of quantitative trait loci (QTL) associated with net blotch resistance in a doubled-haploid (DH) barley population using diversity arrays technology (DArT) markers. One hundred and fifty DH lines from the cross CDC Dolly (susceptible)/TR251 (resistant) were screened as seedlings in controlled environments with net-form net blotch (NFNB) isolates WRS858 and WRS1607 and spot-form net blotch (SFNB) isolate WRS857. The population was also screened at the adult-plant stage for NFNB resistance in the field in 2005 and 2006. A high-density genetic linkage map of 90 DH lines was constructed using 457 DArT and 11 SSR markers. A major NFNB seedling resistance QTL, designated QRpt6, was mapped to chromosome 6H for isolates WRS858 and WRS1607. QRpt6 was associated with adult-plant resistance in the 2005 and 2006 field trials. Additional QTL for NFNB seedling resistance to the more virulent isolate WRS858 were identified on chromosomes 2H, 4H, and 5H. A seedling resistance QTL (QRpts4) for the SFNB isolate WRS857 was detected on chromosome 4H as was a significant QTL (QRpt7) on chromosome 7H. Three QTL (QRpt6, QRpts4, QRpt7) were associated with resistance to both net blotch forms and lines with one or more of these demonstrated improved resistance. Simple sequence repeat (SSR) markers tightly linked to QRpt6 and QRpts4 were identified and validated in an unrelated barley population. The major 6H QTL, QRpt6, may provide adequate NFNB field resistance in western Canada and could be routinely selected for using molecular markers in a practical breeding program.  相似文献   

18.
Three quantitative trait loci (QTL) conferring broad spectrum resistance to powdery mildew, caused by the fungus Blumeria graminis f. sp. hordei, were previously identified on chromosomes 7HS, 7HL and 6HL in the Spanish barley landrace-derived lines SBCC097 and SBCC145. In the present work, a genome-wide putative linear gene index of barley (Genome Zipper) and the first draft of the physical, genetic and functional sequence of the barley genome were used to go one step further in the shortening and explicit demarcation on the barley genome of these regions conferring resistance to powdery mildew as well as in the identification of candidate genes. First, a comparative analysis of the target regions to the barley Genome Zippers of chromosomes 7H and 6H allowed the development of 25 new gene-based molecular markers, which slightly better delimit the QTL intervals. These new markers provided the framework for anchoring of genetic and physical maps, figuring out the outline of the barley genome at the target regions in SBCC097 and SBCC145. The outermost flanking markers of QTLs on 7HS, 7HL and 6HL defined a physical area of 4 Mb, 3.7 Mb and 3.2 Mb, respectively. In total, 21, 10 and 16 genes on 7HS, 7HL and 6HL, respectively, could be interpreted as potential candidates to explain the resistance to powdery mildew, as they encode proteins of related functions with respect to the known pathogen defense-related processes. The majority of these were annotated as belonging to the NBS-LRR class or protein kinase family.  相似文献   

19.
几个水稻品种抽穗期主效基因与微效基因的定位研究   总被引:18,自引:1,他引:17  
林鸿宣  钱惠荣 《遗传学报》1996,23(3):205-213
在构建2张RFLP图谱的基础上,定位分析了控制水稻抽穗期的主效基因和微效基因。在特三矮2号/C.B.群体中定位到2个主效基因和2个微效基因。该2个主基因分别位于第3、8染色体上,累加贡献率约达50%,加性效应值分别为7天和6天,而分别位于第1、12染色体的2个微效基因的贡献率仅分别为8.3%和9.6%,加性效应值仅为3天和4天。在外引2号/C.B.群体中定位了2个连锁于第6染色体的主效基因和1个位于第8染色体的微效基因,该2个主效基因的贡献率分别为35.5%和27.4%,来自外引2号的该2个基因其效应均为明显推迟抽穗,因而可推测它们为感光性基因,微效基因的贡献率仅为8.9%,基因效应值较小。  相似文献   

20.
The majority of verified plant disease resistance genes isolated to date are of the NBS-LRR class, encoding proteins with a predicted nucleotide binding site (NBS) and a leucine-rich repeat (LRR) region. We took advantage of the sequence conservation in the NBS motif to clone, by PCR, gene fragments from barley representing putative disease resistance genes of this class. Over 30 different resistance gene analogs (RGAs) were isolated from the barley cultivar Regatta. These were grouped into 13 classes based on DNA sequence similarity. Actively transcribed genes were identified from all classes but one, and cDNA clones were isolated to derive the complete NBS-LRR protein sequences. Some of the NBS-LRR genes exhibited variation with respect to whether and where particular introns were spliced, as well as frequent premature polyadenylation. DNA sequences related to the majority of the barley RGAs were identified in the recently expanded public rice genomic sequence database, indicating that the rice sequence can be used to extract a large proportion of the RGAs from barley and other cereals. Using a combination of RFLP and PCR marker techniques, representatives of all barley RGA gene classes were mapped in the barley genome, to all chromosomes except 4H. A number of the RGA loci map in the vicinity of known disease resistance loci, and the association between RGA S-120 and the nematode resistance locus Ha2 on chromosome 2H was further tested by co-segregation analysis. Most of the RGA sequences reported here have not been described previously, and represent a useful resource as candidates or molecular markers for disease resistance genes in barley and other cereals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号