首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reversible denaturation of the soybean Kunitz trypsin inhibitor   总被引:6,自引:0,他引:6  
The soybean Kunitz trypsin inhibitor (SKTI) is a beta-sheet protein with unusual stability to chemical and thermal denaturation. Different spectroscopic criteria were used to follow the thermal denaturation and renaturation of SKTI. Upon heating to 70 degrees C, changes in UV difference spectra showed increased absorbance at 292 and 297 nm, attributable to perturbation of aromatic residues. Cooling the protein resulted in restoration of the native spectrum unless reduced with dithiothreitol. Far- and near-UV CD spectra also indicate thermal unfolding involving the core tryptophan and tyrosine residues. Both CD and UV-absorbance data suggest a two-state transition with the midpoint at approximately 65 degrees C. CD data along with the increased fluorescence intensity of the reporter fluorophore, 1-anilino-8-naphthalenesulfonate with SKTI, between 60 and 70 degrees C, are consistent with a transition of the native inhibitor to an alternate conformation with a more molten state. Even after heating to 90 degrees C, subsequent cooling of SKTI resulted in >90% of native trypsin inhibition potential. These results indicate that thermal denaturation of SKTI is readily reversible to the native form upon cooling and may provide a useful system for future protein folding studies in the class of disordered beta-sheet proteins.  相似文献   

2.
Pressure-induced denaturation of yeast phosphoglycerate kinase was studied at various temperatures, as a model double-domain protein, using intrinsic fluorescence, 4th derivative absorbance, CD, and DSC. A thermodynamic transition intermediate was observed in the pressure-denaturation, as was reported for the cold denaturation. From the different response of Trp and Tyr residues, as monitored by fluorescence and 4th derivative absorbance changes, the C-terminal domain carrying all the Trp residues seemed to exert structural changes at relatively lower pressure. A further structural change involving both domains was observed at higher pressures. The two-step changes occurred almost simultaneously during heat denaturation.  相似文献   

3.
以紫外差光谱、荧光光谱为监测手段对金黄色葡萄球菌核酸酶类似物(SNase R)在胍溶液中构象与活力变化进行了比较.SNase R在Llmol L0.8mol L和0.5mol L胍溶液变性时变性过程均为两个一级反应,但是酶在上述胍浓度下失活的速度远快于构象变化的速度:酶在同一胍浓度下活力丧失的程度也远快于构象变化的程度.上述结果表明:SNase R的活性部位可能位于柔性较大的区域.  相似文献   

4.
R M Santella  H J Li 《Biochemistry》1975,14(16):3604-3611
A random copolymer of 58% L-lysine and 42% L-phenylalanine, poly(Lys58Phe42), was used as a model protein for studying the role of phenylalanine residues in protein-DNA interaction. Complexes between this copolypeptide and DNA, made by direct mixing, were studied by absorbance, circular dichroism (CD), fluorescence, and thermal denaturation. Complex formation results in an increase in absorbance, and an enhancement, red-shift, and broadening of phenylalanine fluorescence. The fluorescence enhancement is opposite to the quenching observed when a tyrosine copolypeptide is bound to DNA (R. M. Santella and H.J. Li (1974), Biopolymers 13, 1909). The positive CD band of DNA near 275 nm is reduced and red-shifted by the binding of the phenylalanine copolypeptide to a greater extent than by the tyrosine copolypeptide. Thermal denaturation of the complexes in 2.5 times 10(-4) M EDTA (pH 8.0) shows three characteristic melting bands. For complexes with calf thymus DNA, free base pairs melt at Tm,I (47-49 degrees) and copolypeptide-bound base pairs show two melting bands (Tm,II at 73-75 degrees, and Tm,III at 88 -90 degrees). Similar thermal denaturation results have been observed for complexes with Micrococcus luteus DNA. The fluorecence intensity of the complexes is greatly increased when the temperature is raised to the Tm,II region. In addition to fluorescence measurements, the effects of increasing temperature on absorption and CD spectra of the complexes were also studied. Stacking interaction between the phenylalanine chromophore and DNA bases, either partial or full intercalation, is implicated by the experimental results. Several mechanisms are proposed to describe the reaction between the copolypeptide and DNA, and thermal denaturation of the complex.  相似文献   

5.
The thermal denaturation of bacteriorhodopsin in the purple membrane of Halobacterium halobium has been studied by differential scanning calorimetry (DSC) and temperature-dependent spectroscopy in the pH range from 5 to 11. Monitoring of protein fluorescence and absorbance in the near-UV and visible regions indicates that changes primarily occur in tertiary structure with denaturation. Far-UV circular dichroism shows only small changes in the secondary structure, unlike most globular water-soluble proteins of comparable molecular weight. The DSC transition can best be described as a two-state denaturation of the trimer. Thermodynamic analysis of the calorimetric transition reveals some similarity between the unfolding of bacteriorhodopsin and water-soluble proteins. Specifically, a pH dependence of the midpoint temperature of denaturation is seen as well as a temperature-dependent enthalpy of denaturation. Proteolysis experiments on denatured purple membrane suggest that bacteriorhodopsin may be partially extruded from the membrane as it denatures. Exposure of buried hydrophobic residues to the aqueous environment upon denaturation is consistent with the observed temperature-dependent enthalpy.  相似文献   

6.
We have employed near ultraviolet derivative absorption spectroscopy to study the microenvironments of phenylalanine residues in proteins. The use of second-derivative uv spectra in the 250- to 270-nm range effectively suppresses spectral contributions from tryptophan and tyrosine residues. Fitting a polynomial to the numerically calculated second-derivative spectrum allows precise determination of the position of the negative derivative peak near 258 nm. This position is shown to be correlated with the polarity of the microenvironments of phenylalanine residues. This approach allows monitoring of changes in the state of phenylalanine side chains during folding/unfolding of the proteins. In addition, this method permits perturbation of protein samples with ethylene glycol to be used to establish the relative degree of solvent exposure of protein phenylalanine.  相似文献   

7.
Q Z Yao  M Tian  C L Tsou 《Biochemistry》1984,23(12):2740-2744
The denaturation of creatine kinase in urea solutions of different concentrations has been studied by following the changes in the ultraviolet absorbance and intrinsic fluorescence as well as by the exposure of hidden SH groups. In concentrated urea solutions, the denaturation of the enzyme results in negative peaks at 285 nm with shoulders at 280 and 290 nm and positive peaks at 244 and 302 nm in the denatured minus native enzyme difference spectrum. The fluorescence emission maximum of the enzyme red shifts with increasing intensity in urea solutions of increasing concentrations. At least part of these changes can be attributed to direct effects of urea on the exposed Tyr and Trp residues as shown by experiments with model compounds. The inactivation of this enzyme has been followed and compared with the conformational changes observed during urea denaturation. A marked decrease in enzyme activity is already evident at low urea concentrations before significant conformational changes can be detected by the exposure of hidden SH groups or by ultraviolet absorbance and fluorescence changes. At higher urea concentrations, the enzyme is inactivated at rates 3 orders of magnitude faster than the rates of conformational changes. The above results are in accord with those reported previously for guanidine denaturation of this enzyme [Yao, Q., Hou, L., Zhou, H., & Tsou, C.-L. (1982) Sci. Sin. (Engl. Ed.) 25, 1186-1193] and can best be explained by assuming that the active site of this enzyme is situated near the surface of the enzyme molecule and is sensitive to very slight conformational changes.  相似文献   

8.
1. The temperature and pH functions of the myeloma IgG(K) conformation were studied by optical rotatory dispersion, circular dichroism, thermal perturbation difference spectroscopy, solvent perturbation difference spectroscopy, electrochemical iodination and difference adiabatic scanning microcalorimetry. 2. The IgG studied was found to be capable of a fully reversible structural change between pH 6.5 and 6.0. A transition occurring at low pH is accompanied by an increase of exposure of the chromophores to the solvent. 3. The "alkaline state" was found to be capable of a fully reversible S-like transition at temperatures between 25 and 35 degrees C. The changes occurring at the higher temperature are accompanied by the screening of 14-15 tyrosine residues and probably by a small increase in the helicity of the protein. These changes are not accompanied by an appreciable heat effect. The thermal denaturation of the "alkaline state" occurs only at 64 degrees C in the narrow temperature interval (3-4 degrees C). 4. The "acid state" is not accompanied by S-like transition at 25-35 degrees C. The thermal denaturation of the "acid state" occurs at 54 degrees C in the wide temperature interval (8-9 degrees C). 5. It was proposed that the ionisation of the invariant histidine residues situated in the "cavity" between the constant and variable domains causes the pH transition studied. The temperature changes in the interval 25-35 degrees C are explained by the alteration of the domains interposition. Similar alterations were investigated as a result of antigen-antibody reaction.  相似文献   

9.
The kinetics of thermal inactivation of bovine carbonic anhydrase (BCA) was studied in a 50 mM Tris-HCl buffer, pH 7.8 using p-nitrophenyl acetate as substrate in absorbance of 400 nm by UV-VIS spectrophotometry. The number of conformational locks and inter-subunit amino acid residues of BCA were obtained by thermal inactivation analysis. The cleavage bonds between dimers of BCA during thermal dissociation and type of interactions between specific amino acid residues were also detected. The thermal inactivation curves were plotted in temperatures ranging between 40-70°C. It was shown several phases for inactivation of BCA at 65°C. Analyses of the curves were done by the conformational lock theory. The subunits are dissociated and several intermediates appear during inactivation through increasing the temperature in comparison with native state. Dynamic light scattering measurements was done to study the changes in hydrodynamic radius during thermal inactivation. Three distinct zones were shown in DLS data. Biochemical computation using ligplot is performed to find the inter-subunit amino acid residues for BCA.  相似文献   

10.
FTIR spectroscopy in combination with ATR sampling technique is the most accessible analytical technique to study secondary structure of proteins both in solid and aqueous solution. Although several studies have demonstrated the applications of ATR‐FTIR to study conformational changes of solid dried proteins due to dehydration, there are no reports that demonstrate the application of ATR‐FTIR in the study of thermally induced changes of secondary structure of biomolecules directly on the solid state. In this study, four biomolecules of pharmaceutical interest, lysozyme, myoglobine, chymotripsin and human growth hormone (hGH), were studied on the solid state before and after different thermal treatments in order to relate changes of secondary structure to partial or total thermal denaturation processes. The results obtained provide experimental evidence that protein thermal denaturation in the solid state can be detected by displacement of carbonyl bands which correspond to conformational transformations between α–helix to β‐sheet or intermolecular β‐sheet; the molecules studied undergo this transformation when exposed to a temperature close to their denaturation temperature which may become irreversible depending on the extent of the heating treatment. These findings demonstrate that ATR‐FTIR is an effective and time efficient technique that allows the monitoring of the protein thermal denaturation process of solid samples without further reconstitution or prior sample preparation. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 574–584, 2015.  相似文献   

11.
Several physicochemical parameters of ovalbumin were examined at acid pH. The intrinsic viscosity and far UV-CD spectrum at pH 2 did not differ from those at pH 7. But the near UV-CD spectrum, difference absorption spectrum around 250-320 nm, and fluorescence spectrum showed micro-environmental changes around the aromatic amino acid residues in acid solution. The reactivity of one of the four sulfhydryl groups with 2,2'-dithiodipyridine increased at pH below 5. The rate of denaturation by urea and that of surface tension decay were high in the low pH range. We concluded that at low pH (around 2), ovalbumin molecules kept their native globular conformation, but that their chain flexibility increased and they were very susceptible to denaturation. This state might be equivalent to the molten-globule state observed with some globular proteins in acidic region.  相似文献   

12.
The relative stabilities of bovine copper-zinc superoxide dismutase (SOD), its apoprotein form, and zinc-substituted derivatives were investigated by denaturation in guanidine-HCl solutions. Analysis of the kinetics of changes in the second-derivative spectral bands of both phenylalanine and tyrosine residues was simultaneously performed. It was found that reduction of the cupric site increases the stability of the enzyme. The apoprotein appears to be the least stable form, while addition of zinc ions not only increases stability, but appears to induce a native-like conformation from a disordered form at pH 3.8. By perturbing the solvent with up to 20% ethylene glycol, at pH 6.8, it was determined that the only tyrosyl side chain appears to be about 50% solvent-exposed in the apoprotein, 65% exposed in the zinc derivative, and 75% exposed in the native copper-zinc form. In contrast, all four phenylalanine residues appear to be fully buried in all of these species in the mid-pH range. At pH 2.5, as the apoprotein unfolds, the apparent solvent-exposure of the tyrosyl side chain approaches 100%, while the phenylalanyl side chains become only 70% exposed. Substantial differences in the unfolding rate constants of tyrosine and phenylalanine residues of native and zinc-substituted SOD, but not the apoprotein, suggest the presence of metal-stabilized unfolding intermediates. Unfolding as monitored by the exposure of phenylalanine residues follows first-order kinetics, indicating that Phe 48 located at the interface between the two subunits is being exposed to the solvent simultaneously with the remaining three phenylalanine residues buried in the protein core.  相似文献   

13.
The conformation of human chorionic somatomammotropin has been studied by means of circular dichroism spectra. The protein appears to contain about 45% α-helix in the native state. Circular dichroism bands in the region of side chain absorption have been assigned to phenylalanine and tryptophan residues. Tentative assignments has also been made to bands probably arising mostly from tyrosine residues. The stability of the native structure has been assessed by challenging the protein with four perturbing solvents. With the exception of 0.1 n NaOH which produced permanent denaturation, all conformational changes produced by the perturbants were fully reversible. In addition, the monomer molecular weight has been evaluated by gel filtration and osmotic pressure measurements. A value of 21,600 ± 900 was found by osmotic pressure at pH 8.4. The results have been compared with similar findings on human pituitary growth hormone and ovine pituitary lactogenic hormone.  相似文献   

14.
Thermodynamics and kinetics of the thermal unfolding of plastocyanin   总被引:2,自引:0,他引:2  
The thermal denaturation of plastocyanin in aqueous solution was investigated by means of DSC, ESR and absorbance techniques, with the aim of determining the thermodynamic stability of the protein and of characterizing the thermally induced conformational changes of its active site. The DSC and absorbance experiments indicated an irreversible and kinetically controlled denaturation path. The extrapolation of the heat capacity and optical data at infinite scan rate made it possible to calculate the kinetic and thermodynamic parameters associated with the denaturation steps. The denaturation pathway proposed, and the parameters found from the calorimetric data, were checked by computer simulation using an equation containing the information necessary to describe the denaturation process in detail. ESR and absorbance measurements have shown that structural changes of the copper environment occur during the protein denaturation. In particular, the geometry of the copper-ligand atoms changes from being tetrahedral to square planar and the disruption of the active site precedes the global protein denaturation. The thermodynamic enthalpic change, the half-width transition temperature, and the value of ΔCp, were used to calculate the thermodynamic stability, ΔG, of the reversible process over the entire temperature range of denaturation. The low thermal stability found for plastocyanin, is discussed in connection with structural factors stabilizing the native state of a protein. Received: 17 July 1997 / Revised version: 22 November 1997 / Accepted: 15 January 1998  相似文献   

15.
Torrent J  Connelly JP  Coll MG  Ribó M  Lange R  Vilanova M 《Biochemistry》1999,38(48):15952-15961
To investigate the characteristics of the postulated carboxy terminal chain-folding initiation site in bovine pancreatic ribonuclease A (RNase A) (residues 106-118), important in the early stages of the folding pathway, we have engineered by site-directed mutagenesis a set of 14 predominantly conservative hydrophobic variants of the protein. The stability of each variant has been compared by pressure and temperature-induced unfolding, monitored by fourth derivative UV absorbance spectroscopy. Apparently simple two-state, reversible unfolding transitions are observed, suggesting that the disruption of tertiary structure of each protein at high pressure or temperature is strongly cooperative. Within the limits of the technique, we are unable to detect significant differences between the two processes of denaturation. Both steady-state kinetic parameters for the enzyme reaction and UV CD spectra of each RNase A variant indicate that truncation of hydrophobic side chains in this region has, in general, little or no effect on the native structure and function of the enzyme. Furthermore, the decreases in free energy of unfolding upon pressure and thermal denaturation of all the variants, particularly those modified at residues 106 and 108, suggest that the hydrophobic residues and side chain packing interactions of this region play an important role in maintaining the conformational stability of RNase A. We also demonstrate the potential of Tyr115 replacement by Trp as a non-destabilizing fluorescence probe of conformational changes local to the region.  相似文献   

16.
It has been suggested by others that the spectrophotometric assay of phenylalanine ammonia-lyase based on changes in absorbance at 290 nm may be complicated by a side reaction involving transamination from phenylalanine onto α-keto acids. This would lead to the production of phenylpyruvate which would spontaneously tautomerize and form an enol borate complex absorbing at this wavelength. We find that the inclusion of 1 ml of either 60 μm α-ketoglutarate or 500 μm phenylpyruvate in our 3-ml reaction mixtures has no significant effect on the spectrophotometric assay of phenylalanine ammonia-lyase in shoots from young seedlings of barley (Hordeum vulgare), buckwheat (Fagopyrum esculentum), or pea (Pisum sativum). Although these side reactions may be involved in preparations with very low enzyme activity, the spectrophotometric determination of phenylalanine ammonia-lyase based on changes in absorbance at 290 nm appears to be a reliable and sensitive technique in these seedlings.  相似文献   

17.
To investigate the structural stability of proteins, we analyzed the thermodynamics of an artificially designed 30-residue peptide. The designed peptide, NH2-EELLPLAEALAPLLEALLPLAEALAPLLKK-COOH (PERI COIL-1), with prolines at i + 7 positions, forms a pentameric alpha-helical structure in aqueous solution. The thermal denaturation curves of the CD at 222 nm (pH 7.5) show an unusual cold denaturation occurring well above 0 degrees C and no thermal denaturation is observable under 90 degrees C. This conformational change is reversible and depends on peptide concentration. A 2-state model between the monomeric denatured state (5D) and the pentameric helical state (H5) was sufficient to analyze 5 thermal denaturation curves of PERI COIL-1 with concentrations between 23 and 286 microM. The analysis was carried out by a nonlinear least-squares method using 3 fitting parameters: the midpoint temperature, Tm, the enthalpy change, delta H(Tm), and the heat capacity change, delta Cp. The association number (n = 5) was determined by sedimentation equilibrium and was not used as a fitting parameter. The heat capacity change suggests that the hydrophobic residues are buried in the helical state and exposed in the denatured one, as it occurs normally for natural globular proteins. On the other hand, the enthalpy and the entropy changes have values close to those found for coiled-coils and are quite distinct from typical values reported for natural globular proteins. In particular, the enthalpy change extrapolated at 110 degrees C is about 3 kJ/mol per amino acid residue, i.e., half of the value found for globular proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The local environments of the four tryptophan residues of the extracellular domain of human tissue factor (sTF) were assessed from difference absorption and fluorescence spectra. The difference spectra were derived by subtracting spectra from single Trp-to-Phe or Trp-to-Tyr replacement mutants from the corresponding spectrum of the wild-type protein. Each of the mutants was capable of enhancing the proteolytic activity of factor VIIa showing that the mutations did not introduce major structural changes, although the mutants were more susceptible to denaturation by guanidinium chloride. The difference spectra indicate that the Trp residues are buried to different extents within the protein matrix. This evaluation was compared with the x-ray crystal structure of sTF. There is excellent agreement between predictions from the difference spectra and the environments of the Trp residues observed in the x-ray crystal structure, demonstrating that difference absorption and particularly fluorescence spectra derived from functional single-Trp replacement mutants can be used to obtain information about the local environments of individual Trp residues in multi-tryptophan proteins.  相似文献   

19.
The Escherichia coli L-leucine receptor is an aqueous protein and the first component in the distinct transport pathway for hydrophobic amino acids. L-leucine binding induces a conformational change, which enables the receptor to dock to the membrane components. To investigate the ligand-induced conformational change and binding properties of this protein, we used (19)F NMR to probe the four tryptophan residues located in the two lobes of the protein. The four tryptophan residues were labeled with 5-fluorotryptophan and assigned by site-directed mutagenesis. The (19)F NMR spectra of the partially ligand free proteins show broadened peaks which sharpen when L-leucine is bound, showing that the labeled wild-type protein and mutants are functional. The titration of L-phenylalanine into the 5-fluorotryptophan labeled wild-type protein shows the presence of closed and open conformers. Urea-induced denaturation studies support the NMR results that the wild-type protein binds L-phenylalanine in a different manner to L-leucine. Our studies showed that the tryptophan to phenylalanine mutations on structural units linked to the binding pocket produce subtle changes in the environment of Trp18 located directly in the binding cleft.  相似文献   

20.
Lifetimes of phenylalanine, tyrosine and tryptophan self-fluorescence of three Ca2+-binding proteins (parvalbumins pI 4.47 and 3.95 and bovine alpha-lactalbumin) in the Ca2+-saturated state and without Ca2+ were measured on a device functioning in a channel of synchrotron radiation of the Lebedev Physical Institute electron accelerator C-60 with a single photon counting system. The decay curve of phenylalanine fluorescence of Ca2+-saturated parvalbumin pI 4.47 is two-exponential, which results from the presence of two subsystems of phenylalanine residues in this protein. Radiation of these subsystems is almost independent of one another. Detachment of Ca2+ from protein disturbs these subsystems. In case of tyrosine fluorescence of carp parvalbumin pI 3.95 a change in the quantum yield value of the stationary fluorescence induced by elimination of Ca2+ proceeds without a change of fluorescence lifetime. This seems to be related to the existence of static quenching of fluorescence in this case at the expense of complex formation between the chromophore and some adjacent quenching groups. Detachment of Ca2+ from alpha-lactalbumin induces conformational changes in its structure. The latter result in a transition of a number of tryptophane residues from its interior to the surface of the globule which is reflected in an increase of fluorescence quantum yield duration. It is concluded that in Ca2+-saturated alpha-lactalbumin some tryptophane residues are located near the quenching groups (dynamic quenching), most likely the disulfide bridges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号