首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The change in the phenology of plants or animals reflects the response of living systems to climate change. Numerous studies have reported a consistent earlier spring phenophases in many parts of middle and high latitudes reflecting increasing temperatures with the exception of China. A systematic analysis of Chinese phenological response could complement the assessment of climate change impact for the whole Northern Hemisphere. Here, we analyze 1263 phenological time series (1960–2011, with 20+ years data) of 112 species extracted from 48 studies across 145 sites in China. Taxonomic groups include trees, shrubs, herbs, birds, amphibians and insects. Results demonstrate that 90.8% of the spring/summer phenophases time series show earlier trends and 69.0% of the autumn phenophases records show later trends. For spring/summer phenophases, the mean advance across all the taxonomic groups was 2.75 days decade?1 ranging between 2.11 and 6.11 days decade?1 for insects and amphibians, respectively. Herbs and amphibians show significantly stronger advancement than trees, shrubs and insect. The response of phenophases of different taxonomic groups in autumn is more complex: trees, shrubs, herbs and insects show a delay between 1.93 and 4.84 days decade?1, while other groups reveal an advancement ranging from 1.10 to 2.11 days decade?1. For woody plants (including trees and shrubs), the stronger shifts toward earlier spring/summer were detected from the data series starting from more recent decades (1980s–2000s). The geographic factors (latitude, longitude and altitude) could only explain 9% and 3% of the overall variance in spring/summer and autumn phenological trends, respectively. The rate of change in spring/summer phenophase of woody plants (1960s–2000s) generally matches measured local warming across 49 sites in China (= ?0.33, < 0.05).  相似文献   

2.
Various indications for shifts in plant and animal phenology resulting from climate change have been observed in Europe. This analysis of phenological seasons in Germany of more than four decades (1951–96) has several major advantages: (i) a wide and dense geographical coverage of data from the phenological network of the German Weather Service, (ii) the 16 phenophases analysed cover the whole annual cycle and, moreover, give a direct estimate of the length of the growing season for four deciduous tree species. After intensive data quality checks, two different methods – linear trend analyses and comparison of averages of subintervals – were applied in order to determine shifts in phenological seasons in the last 46 years. Results from both methods were similar and reveal a strong seasonal variation. There are clear advances in the key indicators of earliest and early spring (?0.18 to ?0.23 d y?1) and notable advances in the succeeding spring phenophases such as leaf unfolding of deciduous trees (?0.16 to ?0.08 d y?1). However, phenological changes are less strong during autumn (delayed by + 0.03 to + 0.10 d y?1 on average). In general, the growing season has been lengthened by up to ?0.2 d y?1 (mean linear trends) and the mean 1974–96 growing season was up to 5 days longer than in the 1951–73 period. The spatial variability of trends was analysed by statistical means and shown in maps, but these did not reveal any substantial regional differences. Although there is a high spatial variability, trends of phenological phases at single locations are mirrored by subsequent phases, but they are not necessarily identical. Results for changes in the biosphere with such a high resolution with respect to time and space can rarely be obtained by other methods such as analyses of satellite data.  相似文献   

3.
Climate change has resulted in major changes in the phenology—i.e. the timing of seasonal activities, such as flowering and bird migration—of some species but not others. These differential responses have been shown to result in ecological mismatches that can have negative fitness consequences. However, the ways in which climate change has shaped changes in biodiversity within and across communities are not well understood. Here, we build on our previous results that established a link between plant species'' phenological response to climate change and a phylogenetic bias in species'' decline in the eastern United States. We extend a similar approach to plant and bird communities in the United States and the UK that further demonstrates that climate change has differentially impacted species based on their phylogenetic relatedness and shared phenological responses. In plants, phenological responses to climate change are often shared among closely related species (i.e. clades), even between geographically disjunct communities. And in some cases, this has resulted in a phylogenetically biased pattern of non-native species success. In birds, the pattern of decline is phylogenetically biased but is not solely explained by phenological response, which suggests that other traits may better explain this pattern. These results illustrate the ways in which phylogenetic thinking can aid in making generalizations of practical importance and enhance efforts to predict species'' responses to future climate change.  相似文献   

4.
内蒙古主要草原类型植物物候对气候波动的响应   总被引:2,自引:0,他引:2  
苗百岭  梁存柱  韩芳  梁茂伟  张自国 《生态学报》2016,36(23):7689-7701
物候是气候变化的指示者,由于不同地区植被类型不同,导致其对气候波动的响应方式不同。利用2004—2013年内蒙古草原区生态监测站群落优势种物候观测资料和同时段的气象资料,分析了不同草原类型区优势种物候期变化及其与气候因子间的相互关系,结果表明:(1)2004—2013年内蒙古草原区各时段气候波动趋势均不显著,返青前以气温降低、降水增加趋势为主;黄枯前草甸草原、典型草原以气温降低、降水增加趋势为主,荒漠草原变化趋势相反。(2)2004—2013年典型草原植物返青期平均提前4.01 d,黄枯推后10.35 d,生长季延长14.36 d;草甸草原返青期提前2.04 d,黄枯期推后12.68 d,生长季延长14.72 d;荒漠草原物候变化趋势最小,返青期平均提前了1.32 d,黄枯期平均推后了9.58 d,生长季延长了10.90 d。(3)内蒙古草原区植物返青期主要受气温波动的影响,草甸草原返青期与前3个月平均气温的负相关最为显著,气温每升高1℃,返青期约提前1.123 d;典型草原、荒漠草原返青期与前2个月平均气温的负相关最为显著气,气温每升高1℃,返青期约提前1.137 d和1.743 d。(4)典型草原区植物黄枯期受前1—2月平均气温和累积降水的共同影响,与夏季平均气温和当月降水量的相关最为显著,夏季气温每升高1℃,黄枯期约提前2.250 d,当月降水每增加1 mm,黄枯期约推后0.119 d。草甸草原、荒漠草原植物黄枯期与各时段降水、气温的相关均不显著,影响黄枯机制比较复杂。  相似文献   

5.
The timing of the end of the vegetation growing season (EOS) plays a key role in terrestrial ecosystem carbon and nutrient cycles. Autumn phenology is, however, still poorly understood, and previous studies generally focused on few species or were very limited in scale. In this study, we applied four methods to extract EOS dates from NDVI records between 1982 and 2011 for the Northern Hemisphere, and determined the temporal correlations between EOS and environmental factors (i.e., temperature, precipitation and insolation), as well as the correlation between spring and autumn phenology, using partial correlation analyses. Overall, we observed a trend toward later EOS in ~70% of the pixels in Northern Hemisphere, with a mean rate of 0.18 ± 0.38 days yr?1. Warming preseason temperature was positively associated with the rate of EOS in most of our study area, except for arid/semi‐arid regions, where the precipitation sum played a dominant positive role. Interestingly, increased preseason insolation sum might also lead to a later date of EOS. In addition to the climatic effects on EOS, we found an influence of spring vegetation green‐up dates on EOS, albeit biome dependent. Our study, therefore, suggests that both environmental factors and spring phenology should be included in the modeling of EOS to improve the predictions of autumn phenology as well as our understanding of the global carbon and nutrient balances.  相似文献   

6.
Climate warming alters the seasonal timing of biological events. This raises concerns that species-specific responses to warming may de-synchronize co-evolved consumer-resource phenologies, resulting in trophic mismatch and altered ecosystem dynamics. We explored the effects of warming on the synchrony of two events: the onset of the phytoplankton spring bloom and the spring/summer maximum of the grazer Daphnia. Simulation of 16 lake types over 31 years at 1907 North African and European locations under 5 climate scenarios revealed that the current median phenological delay between the two events varies greatly (20–190 days) across lake types and geographic locations. Warming moves both events forward in time and can lengthen or shorten the delay between them by up to ±60 days. Our simulations suggest large geographic and lake-specific variations in phenological synchrony, provide quantitative predictions of its dependence on physical lake properties and geographic location and highlight research needs concerning its ecological consequences.  相似文献   

7.
Anthropogenic climate change has altered temperate forest phenology, but how these trends will play out in the future is controversial. We measured the effect of experimental warming of 0.6–5.0 °C on the phenology of a diverse suite of 11 plant species in the deciduous forest understory (Duke Forest, North Carolina, USA) in a relatively warm year (2011) and a colder year (2013). Our primary goal was to dissect how temperature affects timing of spring budburst, flowering, and autumn leaf coloring for functional groups with different growth habits, phenological niches, and xylem anatomy. Warming advanced budburst of six deciduous woody species by 5–15 days and delayed leaf coloring by 18–21 days, resulting in an extension of the growing season by as much as 20–29 days. Spring temperature accumulation was strongly correlated with budburst date, but temperature alone cannot explain the diverse budburst responses observed among plant functional types. Ring‐porous trees showed a consistent temperature response pattern across years, suggesting these species are sensitive to photoperiod. Conversely, diffuse‐porous species responded differently between years, suggesting winter chilling may be more important in regulating budburst. Budburst of the ring‐porous Quercus alba responded nonlinearly to warming, suggesting evolutionary constraints may limit changes in phenology, and therefore productivity, in the future. Warming caused a divergence in flowering times among species in the forest community, resulting in a longer flowering season by 10‐16 days. Temperature was a good predictor of flowering for only four of the seven species studied here. Observations of interannual temperature variability overpredicted flowering responses in spring‐blooming species, relative to our warming experiment, and did not consistently predict even the direction of flowering shifts. Experiments that push temperatures beyond historic variation are indispensable for improving predictions of future changes in phenology.  相似文献   

8.
欧洲典型树种展叶始期的时空变化及其对气候变化的响应   总被引:1,自引:0,他引:1  
近年来,全球变暖对植物春季物候期产生了显著影响.很多研究报道了中国地区木本植物春季物候期变化的时空格局,但在同处于北半球温带地区的欧洲则相关研究较少.为了增进物候变化及其对气候变化响应规律的区域对比,本研究利用欧洲地区展叶始期(1980-2014年)数据和相应的气象数据,研究欧洲七叶树、垂枝桦、欧洲山毛榉和夏栎4种典型...  相似文献   

9.
Using phenological and normalized difference vegetation index (NDVI) data from 1982 to 1993 at seven sample stations in temperate eastern China, we calculated the cumulative frequency of leaf unfolding and leaf coloration dates for deciduous species every 5 days throughout the study period. Then, we determined the growing season beginning and end dates by computing times when 50% of the species had undergone leaf unfolding and leaf coloration for each station year. Next, we used these beginning and end dates of the growing season as time markers to determine corresponding threshold NDVI values on NDVI curves for the pixels overlaying phenological stations. Based on a cluster analysis, we determined extrapolation areas for each phenological station in every year, and then implemented the spatial extrapolation of growing season parameters from the seven sample stations to all possible meteorological stations in the study area. Results show that spatial patterns of growing season beginning and end dates correlate significantly with spatial patterns of mean air temperatures in spring and autumn, respectively. Contrasting with results from similar studies in Europe and North America, our study suggests that there is a significant delay in leaf coloration dates, along with a less pronounced advance of leaf unfolding dates in different latitudinal zones and the whole area from 1982 to 1993. The growing season has been extended by 1.4–3.6 days per year in the northern zones and by 1.4 days per year across the entire study area on average. The apparent delay in growing season end dates is associated with regional cooling from late spring to summer, while the insignificant advancement in beginning dates corresponds to inconsistent temperature trend changes from late winter to spring. On an interannual basis, growing season beginning and end dates correlate negatively with mean air temperatures from February to April and from May to June, respectively.  相似文献   

10.
植被周期性的物候更替被公认为是全球气候变化的综合指示器,深入研究区域植被物候的变化趋势和时空特征,可以提高对该区生态系统稳定性及动态变化程度的认识。基于2001-2020年16天、250m分辨率的中分辨率成像光谱仪归一化植被指数(MODIS NDVI)数据,利用Savitzky-Golay滤波法(S-G)和相对阈值法提取黄河流域植被物候参数,结合谷歌地球引擎(GEE)平台提供的欧洲中期天气预报中心第五代陆地再分析数据集(ERA5-LAND)小时气候再分析数据集和气候危害组红外降水站数据(CHIRPS)日降水数据集数据,运用趋势分析和偏相关分析等方法,探究全球气候变化下黄河流域不同植被分区物候参数空间分布特征、变化趋势,及其对气候因子的响应。结果表明:(1)2001-2020年黄河流域气候整体呈暖湿化的发展趋势,年均温上升幅度为0.15℃/10a(P>0.05),年降水增加幅度为24mm/10a(P<0.05)。(2)黄河流域暖温带落叶阔叶林区域的生长季始期和中期最早,温带南部典型草原亚地带和温带南部荒漠草原亚地带最晚,温带灌木、禾草半荒漠亚地带的生长季结束期最晚,青藏高原高寒植被区域的生长季长度最短。(3)全流域内生长季始期和中期分别有69.3%和66.4%的面积呈提前趋势(P<0.05),生长季末期50.9%的面积结束期呈推迟趋势(P<0.05),66.1%的面积整个生长季长度呈延长趋势(P<0.05)。(4)不同植被地带气候对物候参数影响存在差异,温度因子对带北部典型草原亚地带、高寒草原地带和高寒草甸地带的物候参数影响较大,降水和太阳辐射因子对温带南部典型草原亚地带、温带灌木、禾草半荒漠地带、温带南部荒漠草原亚地带和中亚热带常绿阔叶林地带的物候参数影响较大。  相似文献   

11.
Climate change has resulted in major changes in plant phenology across the globe that includes leaf‐out date and flowering time. The ability of species to respond to climate change, in part, depends on their response to climate as a phenological cue in general. Species that are not phenologically responsive may suffer in the face of continued climate change. Comparative studies of phenology have found phylogeny to be a reliable predictor of mean leaf‐out date and flowering time at both the local and global scales. This is less true for flowering time response (i.e., the correlation between phenological timing and climate factors), while no study to date has explored whether the response of leaf‐out date to climate factors exhibits phylogenetic signal. We used a 52‐year observational phenological dataset for 52 woody species from the Forest Botanical Garden of Heilongjiang Province, China, to test phylogenetic signal in leaf‐out date and flowering time, as well as, the response of these two phenological traits to both temperature and winter precipitation. Leaf‐out date and flowering time were significantly responsive to temperature for most species, advancing, on average, 3.11 and 2.87 day/°C, respectively. Both leaf‐out and flowering, and their responses to temperature exhibited significant phylogenetic signals. The response of leaf‐out date to precipitation exhibited no phylogenetic signal, while flowering time response to precipitation did. Native species tended to have a weaker flowering response to temperature than non‐native species. Earlier leaf‐out species tended to have a greater response to winter precipitation. This study is the first to assess phylogenetic signal of leaf‐out response to climate change, which suggests, that climate change has the potential to shape the plant communities, not only through flowering sensitivity, but also through leaf‐out sensitivity.  相似文献   

12.
The pivotal question in the debate on the ecological effects of climate change is whether species will be able to adapt fast enough to keep up with their changing environment. If we establish the maximal rate of adaptation, this will set an upper limit to the rate at which temperatures can increase without loss of biodiversity.The rate of adaptation will primarily be set by the rate of microevolution since (i) phenotypic plasticity alone is not sufficient as reaction norms will no longer be adaptive and hence microevolution on the reaction norm is needed, (ii) learning will be favourable to the individual but cannot be passed on to the next generations, (iii) maternal effects may play a role but, as with other forms of phenotypic plasticity, the response of offspring to the maternal cues will no longer be adaptive in a changing environment, and (iv) adaptation via immigration of individuals with genotypes adapted to warmer environments also involves microevolution as these genotypes are better adapted in terms of temperature, but not in terms of, for instance, photoperiod.Long-term studies on wild populations with individually known animals play an essential role in detecting and understanding the temporal trends in life-history traits, and to estimate the heritability of, and selection pressures on, life-history traits. However, additional measurements on other trophic levels and on the mechanisms underlying phenotypic plasticity are needed to predict the rate of microevolution, especially under changing conditions.Using this knowledge on heritability of, and selection on, life-history traits, in combination with climate scenarios, we will be able to predict the rate of adaptation for different climate scenarios. The final step is to use ecoevolutionary dynamical models to make the link to population viability and from there to biodiversity loss for those scenarios where the rate of adaptation is insufficient.  相似文献   

13.
Bayesian analysis of climate change impacts in phenology   总被引:3,自引:0,他引:3  
The identification of changes in observational data relating to the climate change hypothesis remains a topic of paramount importance. In particular, scientifically sound and rigorous methods for detecting changes are urgently needed. In this paper, we develop a Bayesian approach to nonparametric function estimation. The method is applied to blossom time series of Prunus avium L., Galanthus nivalis L. and Tilia platyphyllos SCOP. The functional behavior of these series is represented by three different models: the constant model, the linear model and the one change point model. The one change point model turns out to be the preferred one in all three data sets with considerable discrimination of the other alternatives. In addition to the functional behavior, rates of change in terms of days per year were also calculated. We obtain also uncertainty margins for both function estimates and rates of change. Our results provide a quantitative representation of what was previously inferred from the same data by less involved methods.  相似文献   

14.
To understand the effects of climate change on the growing season of plants in Japan, we conducted trend analysis of phenological phases and examined the relationship between phenology and air temperatures. We used phenological data for Ginkgo biloba L., collected from 1953 to 2000. We defined the beginning and the end of the growing season (BGS and EGS) as the dates of budding and leaf fall, respectively. Changes in the air temperature in the 45 days before the date of BGS affected annual variation in BGS. The annual variation in air temperature over the 85 days before EGS affected the date of EGS. The average annual air temperature in Japan has increased by 1.3°C over the last four decades (1961–2000), and this increase has caused changes in ginkgo phenology. In the last five decades (1953–2000), BGS has occurred approximately 4 days earlier than previously, and EGS has occurred about 8 days later. Consequently, since 1953 the length of the growing season (LGS) has been extended by 12 days. Since around 1970, LGS and air temperatures have shown increasing trends. Although many researchers have stated that phenological events are not affected by the air temperature in the fall, we found high correlations not only between budding dates and air temperatures in spring but also between leaf‐fall dates and air temperatures in autumn. If the mean annual air temperature increases by 1°C, LGS could be extended by 10 days. We also examined the spatial distribution of the rate of LGS extension, but we did not find an obvious relationship between LGS extension and latitude.  相似文献   

15.
Climate warming has substantially advanced spring leaf flushing, but winter chilling and photoperiod co‐determine the leaf flushing process in ways that vary among species. As a result, the interspecific differences in spring phenology (IDSP) are expected to change with climate warming, which may, in turn, induce negative or positive ecological consequences. However, the temporal change of IDSP at large spatiotemporal scales remains unclear. In this study, we analyzed long‐term in‐situ observations (1951–2016) of six, coexisting temperate tree species from 305 sites across Central Europe and found that phenological ranking did not change when comparing the rapidly warming period 1984–2016 to the marginally warming period 1951–1983. However, the advance of leaf flushing was significantly larger in early‐flushing species EFS (6.7 ± 0.3 days) than in late‐flushing species LFS (5.9 ± 0.2 days) between the two periods, indicating extended IDSP. This IDSP extension could not be explained by differences in temperature sensitivity between EFS and LFS; however, climatic warming‐induced heat accumulation effects on leaf flushing, which were linked to a greater heat requirement and higher photoperiod sensitivity in LFS, drove the shifts in IDSP. Continued climate warming is expected to further extend IDSP across temperate trees, with associated implications for ecosystem function.  相似文献   

16.
As a consequence of warming temperatures around the world, spring and autumn phenologies have been shifting, with corresponding changes in the length of the growing season. Our understanding of the spatial and interspecific variation of these changes, however, is limited. Not all species are responding similarly, and there is significant spatial variation in responses even within species. This spatial and interspecific variation complicates efforts to predict phenological responses to ongoing climate change, but must be incorporated in order to build reliable forecasts. Here, we use a long-term dataset (1953–2005) of plant phenological events in spring (flowering and leaf out) and autumn (leaf colouring and leaf fall) throughout Japan and South Korea to build forecasts that account for these sources of variability. Specifically, we used hierarchical models to incorporate the spatial variability in phenological responses to temperature to then forecast species'' overall and site-specific responses to global warming. We found that for most species, spring phenology is advancing and autumn phenology is getting later, with the timing of events changing more quickly in autumn compared with the spring. Temporal trends and phenological responses to temperature in East Asia contrasted with results from comparable studies in Europe, where spring events are changing more rapidly than are autumn events. Our results emphasize the need to study multiple species at many sites to understand and forecast regional changes in phenology.  相似文献   

17.
To test models predicting biological reponse to future climate change, it is essential to find climatically-sensitive, easily monitored biological indicators that respond to climate change. Routine monitoring of airborne pollen, now undertaken on a near-global basis, could be adapted for this purpose. Analysis of spatial and seasonal variations in pollen levels in New Zealand suggests that the timing of onset and peak abundance of certain pollen taxa should be explored as possible bio-indicators of climate change. The onset of the airborne grass pollen season during the summer of 1988/89 varied consistently with latitude, and hence temperature, with the season in Southland commencing 8--9 days after Northland. However, these patterns were only apparent after sampling sites were separated into two groups reflecting predominantly urban or rural pollen sources. A less consistent north to south trend was apparent in the frequency of high (30 grains/m3) grass pollen levels, with high levels frequent in North Island localities in November, December and January and in southern localities during December and January. The successive onset of pollen seasons for the principal tree species during the spring-to-early summer warming interval may also be a useful bio-indicator of climate change. As well as assisting forecasts of the onset of the pollinosis season, these biogeographical patterns, reflecting climatic variation with latitude, suggest that routine aeropalynological monitoring might provide early signals of vegetation response to climate change. These conclusions are supported by recent investigations of long-term aeropalynological datasets in Europe that indicate earlier onset of pollen seasons in response to recent global warming.  相似文献   

18.
New analyses are presented addressing the global impacts of recent climate change on phenology of plant and animal species. A meta‐analysis spanning 203 species was conducted on published datasets from the northern hemisphere. Phenological response was examined with respect to two factors: distribution of species across latitudes and taxonomic affiliation or functional grouping of target species. Amphibians had a significantly stronger shift toward earlier breeding than all other taxonomic/functional groups, advancing more than twice as fast as trees, birds and butterflies. In turn, butterfly emergence or migratory arrival showed three times stronger advancement than the first flowering of herbs, perhaps portending increasing asynchrony in insect–plant interactions. Response was significantly stronger at higher latitudes where warming has been stronger, but latitude explained < 4% of the variation. Despite expectation, latitude was not yet an important predictor of climate change impacts on phenology. The only two previously published estimates of the magnitude of global response are quite different: 2.3 and 5.1 days decade−1 advancement. The scientific community has assumed this difference to be real and has attempted to explain it in terms of biologically relevant phenomena: specifically, differences in distribution of data across latitudes, taxa or time periods. Here, these and other possibilities are explored. All analyses indicate that the difference in estimated response is primarily due to differences between the studies in criteria for incorporating data. It is a clear and automatic consequence of the exclusion by one study of data on ‘stable’ (nonresponsive) species. Once this is accounted for, the two studies support each other, generating similar conclusions despite analyzing substantially nonoverlapping datasets. Analyses here on a new expanded dataset estimate an overall spring advancement across the northern hemisphere of 2.8 days decade−1. This is the first quantitative analysis showing that data‐sampling methodologies significantly impact global (synthetic) estimates of magnitude of global warming response.  相似文献   

19.
中国温带旱柳物候期对气候变化的时空响应   总被引:1,自引:0,他引:1  
陈效逑  庞程  徐琳  李静  张晴华  尉杨平 《生态学报》2015,35(11):3625-3635
为了揭示中国温带植物物候随时间变化和植物物候对气候变化响应的空间格局及其生态机制,利用52个站点1986—2005年的旱柳展叶始期、开花始期、果实成熟期、叶变色始期和落叶末期的物候数据,分析其时间序列的线性趋势,并通过建立基于最佳期间日均温的物候时间模型,确定物候发生日期对气温年际变化的响应。在研究的时段内,区域平均旱柳展叶始期、开花始期和果实成熟期的发生日期分别以-4.2 d/10 a、-3.8 d/10 a和-3.3 d/10 a的平均速率显著提前,而区域平均旱柳叶变色始期和落叶末期的发生日期则分别呈不显著推迟和以2.4 d/10 a的平均速率显著推迟的趋势。单站展叶始期、开花始期和果实成熟期发生日期的线性趋势以提前为主,显著提前的站点分别占40%、41%和29%;叶变色始期发生日期呈显著提前和显著推迟趋势的站点数相当,分别占17%和19%;落叶末期发生日期的线性趋势以推迟为主,显著推迟的站点占23%。各站展叶始期、开花始期和果实成熟期发生日期的线性趋势空间序列与相应的最佳期间日均温的线性趋势空间序列之间呈显著负相关,表明一个站点前期气温升高的速率越快,该站这些物候期发生日期提前的速率就越快。在物候期对气温年际变化的响应方面,区域平均春季最佳期间日均温每升高1℃,展叶始期、开花始期和果实成熟期的发生日期分别提前3.08 d、2.83 d和3.54 d;区域平均秋季最佳期间日均温每升高1℃,叶变色始期和落叶末期的发生日期分别推迟1.69 d和2.28 d。单站展叶始期和落叶末期发生日期对气温年际变化的响应表现出在温暖地区的站点比在寒冷地区的站点更为敏感的特点。总体上看,基于日均温的物候时间模型对春、夏季物候期的模拟精度明显高于对秋季物候期的模拟精度。建立了基于最佳期间日均温和日累积降水量的改进秋季物候模型,该模型使旱柳叶变色始期和落叶末期的模拟精度显著提高。由此可见,旱柳叶变色始期和落叶末期的发生日期受到前期气温和降水量的综合影响。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号