首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lamellar gel/liquid-crystalline and the lamellar liquid-crystalline/reversed hexagonal phase transitions of aqueous dispersions of a number of synthetic phosphatidylethanolamines containing linear saturated, branched chain, and alicyclic fatty acyl chains of varying length were studied by differential scanning calorimetry, 31P nuclear magnetic resonance spectroscopy, and X-ray diffraction. For any given homologous series of phosphatidylethanolamines containing a single chemical class of fatty acids, the lamellar gel/liquid-crystalline phase transition temperature increases and the lamellar liquid-crystalline/reversed hexagonal phase transition temperature decreases with increases in hydrocarbon chain length. For a series of phosphatidylethanolamines of the same hydrocarbon chain length but with different chemical structures, both the lamellar gel/liquid-crystalline and the lamellar liquid-crystalline/reversed hexagonal phase transition temperatures vary markedly and in the same direction. In particular, at comparable effective hydrocarbon chain lengths, both the lamellar gel/liquid-crystalline and the lamellar liquid-crystalline/reversed hexagonal phase transition temperatures vary in parallel, such that the temperature difference between these two phase transitions is nearly constant. Moreover, at comparable effective acyl chain lengths, the d spacings of the lamellar liquid-crystalline phases and of the inverted hexagonal phases are all similar, implying that the thickness of the phosphatidylethanolamine bilayers at the onset of the lamellar liquid-crystalline/reversed hexagonal phase transition and the diameter of the water-filled cylinders formed at the completion of this phase transition are comparable and independent of the chemical structure of the acyl chain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Lecithin bilayers. Density measurement and molecular interactions.   总被引:20,自引:15,他引:5       下载免费PDF全文
Density measurement are reported for bilayer dispersions of a series of saturated lecithins. For chain lengths with, respectively, 14, 15, 16, 17, and 18 carbons per chain, the values for the volume changes at the main transition are 0.027, 0.031, 0.037, 0.040 and 0.045 ml/g. The main transition temperature extrapolates with increasing chain length to the melting temperature of polyethylene. Volume changes at the lower transition are an order of magnitude smaller than the main transition. Single phase thermal expansion coefficients are also reported. The combination of X-ray data and density data indicated that the volume changes are predominantly due to the hydrocarbon chains, thus enabling the volume vCH2 of the methylene groups to be computed as a function of temperature. From this and knowledge of intermolecular interactions in hydrocarbon chains, the change in the interchain van der Waals energy, delta UvdW, at the main transition is computed for the lecithins and also for the alkanes and polyethylene at the melting transition. Using the experimental enthalpies of transition and delta UvdW, the energy equation is consistently balanced for all three systems. This yields estimates of the change in the number of gauche rotamers in the lecithins at the main transition. The consistency of these calculations supports the conclusion that the most important molecular energies for the main transition in lecithin bilayers are the hydrocarbon chain interactions and the rotational isomeric energies, and the conclusion that the main phase transition is analogous to the melting transition in the alkanes from the hexagonal phase to the liquid phase, but with some modifications.  相似文献   

3.
By the use of frequency domain cross-correlation fluorometry, the fluorescence lifetime of the water soluble probe 8,1-anilinonapthalene sulfonic acid (ANS) in aqueous dispersions of dioleoylphosphatidylethanolamine (DOPE) and phosphatidylethanolamine transphosphatidylated from egg phosphatidylcholine (TPE) was measured. The orientational order parameter and rotational diffusion constant of the lipophilic probe 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) were also determined in TPE dispersions. In agreement with a previous study on DOPE (Cheng (1989) Biophys. J. 55, 1025-1031), abrupt changes in both the order packing and rotational diffusion constant were found at the lamellar liquid crystalline (L alpha) to inverted hexagonal (HII) phase transition of TPE. Owing to the subnanosecond resolution capability of this frequency domain fluorometric technique, the heterogeneous fluorescence decay of ANS was resolved into three distinct components with different decay lifetimes (tau's). They were 0 less than tau less than 0.5 ns, 2 less than tau less than 9 ns and tau greater than 15 ns. These lifetime regions were attributed to the partitioning of ANS into the bulk aqueous medium, the lipid/water interface and the lipid hydrocarbon region, respectively. These classifications of lifetime regions were further supported by the sensitivity of those lifetime components with the solvent isotopic shift of D2O. Similar to the changes of orientational order and rotational diffusion of lipophilic probe, the lifetime and intensity fraction of ANS associated with the lipid/water interfacial region declined abruptly at the L alpha-HII transition of both DOPE and TPE. This observation suggested that a dehydration of the lipid headgroup surface occurs at the L alpha-HII transition. This study provided evidence that both the lipid headgroup surface hydration and the lipid dynamics change drastically as a result of the macroscopic rearrangement of lipids at the L alpha-HII transition.  相似文献   

4.
F J?hnig  K Harlos  H Vogel  H Eibl 《Biochemistry》1979,18(8):1459-1468
The changes in bilayer structure induced by surface charges in the case of an ionizable lipid were studied by X-ray diffraction, Raman spectroscopy, and film-balance measurements. With increasing surface charge in the ordered phase, the X-ray results show a decrease in bilayer thickness, whereas the hydrocarbon chain packing stays essentially constant, the Raman data signify that the internal chain ordering does not change, and the monolayer studies show a lateral expansion of the bilayer. These results are interpreted in terms of a tilt of the chains caused by the surface charges on the polar heads. The tilt angle between the direction of the chains and the bilayer normal is obtained by a detailed theoretical evaluation. The tilt allows for a better understanding of the electrostatically induced shift of the phase transition temperature and of the shift induced by the binding of water in the case of lecithin in contrast ethanolamine.  相似文献   

5.
6.
A statistical thermodynamic model of phospholipid bilayers is developed. In the model, a new concept of a closely packed system is applied, i.e., a system of hard cylinders of equal radii, the radius being a function of the average number of gauche rotations in a hydrocarbon chain. Using this concept of a closely packed system, reasonable values are obtained for the change in specific volume at the order-disorder transition of lecithin bilayers. In addition to interactions between the lipid matrix and water molecules, between the head groups themselves and between hydrocarbon chains, as well as the intramolecular energy associated with chain conformation, the Hamiltonian of the membrane also includes the energy of the pressure field. Thus, the phase transition of phospholipid membranes induced not only by temperature hut also by hydrostatic pressure is described by this model simultaneously. In accordance with the experimental results, a linear relationship is obtained between the phase transition temperature and phase transition pressure. The other calculated phase transition properties of lecithin homologues. e.g., changes in enthalpy, surface area. thickness and gauche number per chain are in agreement with the available experimental data. The ratio of kink to interstitial conduction of bilayers is also estimated.  相似文献   

7.
The studies by the scanning electron microscopy have shown that there are small amounts of membrane-like structures in the dry preparation of tissues thromboplastin obtained from the human brain. In water phospholipids of thromboplastin form hexagonal (H11) cylinders. Protein moiety of the tissue factor essentially influences on the phase state of phospholipids and on the dynamic properties of their fatty acid chains' radicals. The interaction of Ca2+ with the tissue thromboplastin does not change the phase state of phospholipids and at the same time rises rigidity of polar parts of phospholipids and their hydrophobic segments in the internal structures.  相似文献   

8.
We have studied the biosynthetic regulation of the membrane lipid polar headgroup distribution in Acholeplasma laidlawii B cells made fatty acid auxotrophic by growth in the presence of the biotin-binding agent avidin to test whether this organism has the ability to coherently regulate the lamellar/nonlamellar phase propensity of its membrane lipids. The addition of various single normal growth-supporting exogenous fatty acids to such cell cultures produces fatty acid-homogeneous cells in which the hydrocarbon chain length and structure of the fatty acyl chains of the membrane lipids can be independently varied. Moreover, in analyzing our results, we consider the fact that the individual membrane lipid classes of this organism can form either normal micellar, lamellar, or reversed cubic or hexagonal phases in isolation (Lewis, R. N. A. H., and McElhaney, R. N. (1995) Biochemistry 34, 13818-13824). When A. laidlawii cells are highly enriched in one of a homologous series of methyl isobranched, methyl anteisobranched, or omega-cyclohexyl fatty acids, neither the ratio of normal micellar/lamellar nor of inverted cubic or hexagonal/lamellar phase-forming lipids are coherently regulated, and in fact in the former case, the changes in lipid polar headgroup composition observed are generally in a direction opposite to that required to maintain the overall lamellar/nonlamellar phase preference of the total membrane lipids constant when hydrocarbon chain length is varied. Similarly, when lipid hydrocarbon structure is varied at a constant effective chain length, a similar lack of coherent regulation of membrane lipid polar headgroup distribution is also observed, although in this case a weak overall trend in the expected direction occurs. We also confirm our previous finding (Foht, P. J., Tran, Q. M., Lewis, R. N. A. H., and McElhaney, R. N. (1995) Biochemistry 34, 13811-13817) that the ratio of inverted phase-forming monoglucosyl diacylglycerol to the lamellar phase-forming glycolipid diglucosyl diacylglycerol, previously used to estimate membrane lipid phase preference in A. laidlawii A and B, is not by itself a reliable indicator of the overall lamellar/nonlamellar phase propensity of the total membrane lipids of these organisms. Our results indicate that A. laidlawii B lacks a coherent mechanism to biosynthetically regulate the polar headgroup distribution of its membrane lipids to maintain the micellar/lamellar/inverted phase propensity constant in the face of induced variations in either the chain length or the structure of its lipid hydrocarbon chains. Finally, we suggest that the lack of a coherent regulatory mechanism to regulate the overall phase-forming propensity of the total membrane lipids of this organism under these circumstances may result in part from its inability to optimize all of the biologically relevant physical properties of its membrane lipid bilayer simultaneously.  相似文献   

9.
The effect of alpha-tocopherol on the thermotropic phase transition behaviour of aqueous dispersions of dimyristoylphosphatidylethanolamine was examined using synchrotron X-ray diffraction methods. The temperature of gel to liquid-crystalline (Lbeta-->Lalpha) phase transition decreases from 49.5 to 44.5 degrees C and temperature range where gel and liquid-crystalline phases coexist increases from 4 to 8 degrees C with increasing concentration of alpha-tocopherol up to 20 mol%. Codispersion of dimyristoylphosphatidylethanolamine containing 2.5 mol% alpha-tocopherol gives similar lamellar diffraction patterns as those of the pure phospholipid both in heating and cooling scans. With 5 mol% alpha-tocopherol in the phospholipid, however, an inverted hexagonal phase is induced which coexists with the lamellar gel phase at temperatures just before transition to liquid-crystalline lamellar phase. The presence of 10 mol% alpha-tocopherol shows a more pronounced inverted hexagonal phase in the lamellar gel phase but, in addition, another non-lamellar phase appears with the lamellar liquid-crystalline phase at higher temperature. This non-lamellar phase coexists with the lamellar liquid-crystalline phase of the pure phospholipid and can be indexed by six diffraction orders to a cubic phase of Pn3m or Pn3 space groups and with a lattice constant of 12.52+/-0.01 nm at 84 degrees C. In mixed aqueous dispersions containing 20 mol% alpha-tocopherol, only inverted hexagonal phase and lamellar phase were observed. The only change seen in the wide-angle scattering region was a transition from sharp symmetrical diffraction peak at 0.43 nm, typical of gel phases, to broad peaks centred at 0.47 nm signifying disordered hydrocarbon chains in all the mixtures examined. Electron density calculations through the lamellar repeat of the gel phase using six orders of reflection indicated no difference in bilayer thickness due to the presence of 10 mol% alpha-tocopherol. The results were interpreted to indicate that alpha-tocopherol is not randomly distributed throughout the phospholipid molecules oriented in bilayer configuration, but it exists either as domains coexisting with gel phase bilayers of pure phospholipid at temperatures lower than Tm or, at higher temperatures, as inverted hexagonal phase consisting of a defined stoichiometry of phospholipid and alpha-tocopherol molecules.  相似文献   

10.
The thermotropic phase behavior and organization of aqueous dispersions of the quadruple-chained, anionic phospholipid tetramyristoyl diphosphatidylglycerol or tetramyristoyl cardiolipin (TMCL) was studied by differential scanning calorimetry, x-ray diffraction, (31)P NMR, and Fourier-transform infrared (FTIR) spectroscopy. At physiological pH and ionic strength, our calorimetric studies indicate that fully equilibrated aqueous dispersions of TMCL exhibit two thermotropic phase transitions upon heating. The lower temperature transition is much less cooperative but of relatively high enthalpy and exhibits marked cooling hysteresis, whereas the higher temperature transition is much more cooperative and also exhibits a relatively high enthalpy but with no appreciable cooling hysteresis. Also, the properties of these two-phase transitions are sensitive to the ionic strength of the dispersing buffer. Our spectroscopic and x-ray diffraction data indicate that the lower temperature transition corresponds to a lamellar subgel (L(c)') to gel (L(beta)) phase transition and the higher temperature endotherm to a L(beta) to lamellar liquid-crystalline (L(alpha)) phase transition. At the L(c)'/L(beta) phase transition, there is a fivefold increase of the thickness of the interlamellar aqueous space from approximately 11 A to approximately 50 A, and this value decreases slightly at the L(beta)/L(alpha) phase transition. The bilayer thickness (i.e., the mean phosphate-phosphate distance across the bilayer) increases from 42.8 A to 43.5 A at the L(c)'/L(beta) phase transition, consistent with the loss of the hydrocarbon chain tilt of approximately 12 degrees , and decreases to 37.8 A at the L(beta)/L(alpha) phase transition. The calculated cross-sectional areas of the TMCL molecules are approximately 79 A(2) and approximately 83 A(2) in the L(c)' and L(beta) phases, respectively, and we estimate a value of approximately 100 A(2) in the L(alpha) phase. The combination of x-ray and FTIR spectroscopic data indicate that in the L(c)' phase, TMCL molecules possess tilted all-trans hydrocarbon chains packed into an orthorhombic subcell in which the zig-zag planes of the chains are parallel, while in the L(beta) phase the untilted, all-trans hydrocarbon chains possess rotational mobility and are packed into a hexagonal subcell, as are the conformationally disordered hydrocarbon chains in the L(alpha) phase. Our FTIR spectroscopic results demonstrate that the four carbonyl groups of the TMCL molecule become progressively more hydrated as one proceeds from the L(c)' to the L(beta) and then to the L(alpha) phase, while the two phosphate moieties of the polar headgroup are comparably well hydrated in all three phases. Our (31)P-NMR results indicate that although the polar headgroup retains some mobility in the L(c)' phase, its motion is much more restricted in the L(beta) and especially in the L(alpha) phase than that of other phospholipids. We can explain most of our experimental results on the basis of the relatively small size of the polar headgroup of TMCL relative to other phospholipids and the covalent attachment of the two phosphate moieties to a single glycerol moiety, which results in a partially immobilized polar headgroup that is more exposed to the solvent than in other glycerophospholipids. Finally, we discuss the biological relevance of the unique properties of TMCL to the structure and function of cardiolipin-containing biological membranes.  相似文献   

11.
The molecular structure of the human brain tissue thromboplastin was studied by the method of NMR-31P and 1H using the shifting reagent. Molecular model of the tissue thromboplastin is suggested. According to the model only 10-20% of polar phosphate-containing heads are exposed outside. Phospholipids located deeper form hexagonal (HII) cylinders which may consist only of lipids or of complexes with proteins.  相似文献   

12.
M F Brown  J Seelig 《Biochemistry》1978,17(2):381-384
The structural changes in the polar head group region of unsonicated bilayer membranes of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine produced by addition of cholesterol have been determined using deuterium and phosphorus-31 NMR. Incorportion of up to 50 mol percent cholesterol produces little change in the phosphorus-31 chemical shielding anisotropies, compared with the values in pure bilayers above the phase transition temperatures, while some of the deuterium quadrupole splittings are reduced by almost a factor of two. Adjustment of the head group torsion angles by only a few degrees accounts for the observed spectral changes. Addition of cholesterol therefore has opposite effects on the hydrocarbon and polar regions of membranes: although cholesterol makes the hydrocarbon region gel-like, with an increased probability of trans conformations, the conformation of the polar head groups is very similar to that found in the liquid crystalline phase of pure phospholipid bilayers.  相似文献   

13.
For the first time the electron density of the lamellar liquid crystalline as well as of the inverted hexagonal phase could be retrieved at the transition temperature. A reliable decomposition of the d-spacings into hydrophobic and hydrophilic structure elements could be performed owing to the presence of a sufficient number of reflections. While the hydrocarbon chain length, d(C), in the lamellar phase with a value of 14.5 A lies within the extreme limits of the estimated chain length of the inverse hexagonal phase 10 A < d(C) < 16 A, the changes in the hydrophilic region vary strongly. During the lamellar-to-inverse hexagonal phase transition the area per lipid molecule reduces by approximately 25%, and the number of water molecules per lipid increases from 14 to 18. On the basis of the analysis of the structural components of each phase, the interface between the coexisting mesophases between 66 and 84 degrees C has been examined in detail, and a model for the formation of the first rods in the matrix of the lamellar phospholipid stack is discussed. Judging from the structural relations between the inverse hexagonal and the lamellar phase, we suggest a cooperative chain reaction of rod formation at the transition midpoint, which is mainly driven by minimizing the interstitial region.  相似文献   

14.
The phase behaviour of aqueous dispersions of a series of synthetic 1,2-di-O-alkyl-3-O-(beta-D-glucosyl)-rac-glycerols with both odd and even hydrocarbon chain lengths was studied by differential scanning calorimetry and low angle X-ray diffraction (XRD). Thermograms of these lipids show a single, strongly energetic phase transition, which was shown to correspond to either a lamellar gel/liquid crystalline (L(beta)/L(alpha)) phase transition (short chain compounds, n < or =14 carbon atoms) or a lamellar gel/inverted hexagonal (L(beta)/H(II)) phase transition (longer chain compounds, n > or =15 carbon atoms) by XRD. The shorter chain compounds may exhibit additional transitions at higher temperatures, which have been identified as lamellar/nonlamellar phase transitions by XRD. The nature of these nonlamellar phases and the number of associated intermediate transitions can be seen to vary with chain length. The thermotropic phase properties of these lipids are generally similar to those reported for the corresponding 1,2-sn-diacyl alpha- and beta-D-glucosyl counterparts, as well as the recently published 1, 2-dialkyl-3-O-(beta-D-glycosyl)-sn-glycerols. However, the racemic lipids studied here show no evidence of the complex patterns of gel phase polymorphism exhibited by the above mentioned compounds. This suggests that the chirality of the glycerol molecule, by virtue of its position in the interfacial region, may significantly alter the phase properties of a lipid, perhaps by controlling the relative positions of hydrogen bond donors and acceptors in the polar region of the membrane.  相似文献   

15.
Diacylglycerol, a biological membrane second messenger, is a strong perturber of phospholipid planar bilayers. It converts multibilayers to the reverse hexagonal phase (HII), composed of highly curved monolayers. We have used x-ray diffraction and osmotic stress of the HII phase to measure structural dimensions, spontaneous curvature, and bending moduli of dioleoylphosphatidylethanolamine (DOPE) monolayers doped with increasing amounts of dioleoylglycerol (DOG). The diameter of the HII phase cylinders equilibrated in excess water decreases significantly with increasing DOG content. Remarkably, however, all structural dimensions at any specific water/lipid ratio that is less than full hydration are insensitive to DOG. By plotting structural parameters of the HII phase with changing water content in a newly defined coordinate system, we show that the elastic deformation of the lipid monolayers can be described as bending around a pivotal plane of constant area. This dividing surface includes 30% of the lipid volume independent of the DOG content (polar heads and a small fraction of hydrocarbon chains). As the mole fraction of DOG increases to 0.3, the radius of spontaneous curvature defined for the pivotal surface decreases from 29 A to 19 A, and the bending modulus increases from approximately 11 to 14 (+/-0.5) kT. We derive the conversion factors and estimate the spontaneous curvatures and bending moduli for the neutral surface which, unlike the pivotal plane parameters, are intrinsic properties that apply to other deformations and geometries. The spontaneous curvature of the neutral surface differs from that of the pivotal plane by less than 10%, but the difference in the bending moduli is up to 40%. Our estimate shows that the neutral surface bending modulus is approximately 9kT and practically does not depend on the DOG content.  相似文献   

16.
When LHCII forms aggregates, the internal conformational changes will result in chlorophyll fluorescence quenching. Uncovering the molecular mechanism of this phenomenon will help us to understand how plants dissipate the excess excitation energy through non-photochemical quenching (NPQ) process. The crystal structure of spinach and pea LHCII have been published, and recently, we solved another crystal structure of LHCII from cucumber at 2.66A resolution. Here we present the first direct structural evidence indicating that the two lutein(Lut) molecules bound in each LHCII monomer have different conformations, Lut621 has a more twisted conformation than that of Lut620. The intimate interaction between the Lut620 and Chla612/Chla611 dimer leads to form a hetero-trimer, which is considered to be a potential quenching site. We also discovered that the dehydration of the LHCII crystals resulted in a notable shrinkage of the crystal unit cell dimensions which was accompanied by a red-shift of the fluorescence emission spectra of the crystals. These phenomena suggest the changes in the crystal packing during dehydration might be the cause of internal conformational changes within LHCII. We proposed a conformational change related NPQ model based on the structure analysis.  相似文献   

17.
The interaction of squalene with liposomes and monolayers of dipalmitoyl phosphatidylcholine (DPL) has been studied by differential scanning calorimetry, Raman spectroscopy, and surface potential measurements. Mole ratios of squalene to DPL up to 9 to 1 were studied. In contrast to small, nonpolar molecules, which profoundly influence the structure of lipid bilayers as detected by changes in both their thermodynamic phase transition parameters and membrane fluidity, this large, nonpolar, linear hydrocarbon is devoid of such influences. It is clear from our data that a large nonpolar molecule such as squalene, having no polar group that might anchor it to the aqueous interface, cannot intercalate between the acyl chains either below or above the phase transition of DPL. This behavior is not compatible with models that treat the bilayer interior as a bulk hydrocarbon, and suggests that great caution should be exercised in extrapolating partition coefficients based on bulk hydrocarbon measurements to lipid bilayers.  相似文献   

18.
For the first time, phospholid monolayers at the air/water interface have been studied by x-ray diffraction and reflection all along the isotherm from the laterally isotropic fluid (the so-called LE phase) to the ordered phases. The model used to analyze the data, and the accuracy of the parameters deduced, were tested by comparing the results obtained with two lipids having the same head group but different chain lengths. Compression of the fluid phase leads predominantly to a change of thickness of the hydrophobic moiety, much less of its density, with the head group extension remaining constant. The main transition involves a considerable increase (approximately 10%) of the electron density in the hydrophobic region, a dehydration of the head group and a positional ordering of the aliphatic tails, albeit with low coherence lengths (approximately 10 spacings). On further compression of the film, the ordered phase undergoes a continuous transition. This is characterized by an increase in positional ordering, a discontinuous decrease in lateral compressibility, a decrease in chain tilt angle with respect to the surface normal towards zero and probably also a head group dehydration and ordering.  相似文献   

19.
The thermotropic phase behaviour of aqueous dispersions of some synthetic 1,2-di-O-alkyl-3-O-(beta-D-galactosyl)-rac-glycerols (rac-beta-D-GalDAGs) with both odd and even hydrocarbon chain lengths was studied by differential scanning calorimetry (DSC), small-angle (SAXS) and wide-angle (WAXS) X-ray diffraction. DSC heating curves show a complex pattern of lamellar (L) and nonlamellar (NL) phase polymorphism dependent on the sample's thermal history. On cooling from 95 degrees C and immediate reheating, rac-beta-D-GalDAGs typically show a single, strongly energetic phase transition, corresponding to either a lamellar gel/liquid-crystalline (L(beta)/L(alpha)) phase transition (N< or =15 carbon atoms) or a lamellar gel/inverted hexagonal (L(beta)/H(II)) phase transition (N> or =16). At higher temperatures, some shorter chain compounds (N=10-13) exhibit additional endothermic phase transitions, identified as L/NL phase transitions using SAXS/WAXS. The NL morphology and the number of associated intermediate transitions vary with hydrocarbon chain length. Typically, at temperatures just above the L(alpha) phase boundary, a region of phase coexistence consisting of two inverted cubic (Q(II)) phases are observed. The space group of the cubic phase seen on initial heating has not been determined; however, on further heating, this Q(II) phase disappears, enabling the identification of the second Q(II) phase as Pn3 m (space group Q(224)). Only the Pn3 m phase is seen on cooling. Under suitable annealing conditions, rac-beta-D-GalDAGs rapidly form highly ordered lamellar-crystalline (L(c)) phases at temperatures above (N< or =15) or below (N=16-18) the L(beta)/L(alpha) phase transition temperature (T(m)). In the N< or =15 chain length lipids, DSC heating curves show two overlapping, highly energetic, endothermic peaks on heating above T(m); corresponding changes in the first-order spacings are observed by SAXS, accompanied by two different, complex patterns of reflections in the WAXS region. The WAXS data show that there is a difference in hydrocarbon chain packing, but no difference in bilayer dimensions or hydrocarbon chain tilt for these two L(c) phases (termed L(c1) and L(c2), respectively). Continued heating of suitably annealed, shorter chain rac-beta-D-GalDAGs from the L(c2) phase results in a phase transition to an L(alpha) phase and, on further heating, to the same Q(II) or H(II) phases observed on first heating. On reheating annealed samples with longer chain lengths, a subgel phase is formed. This is characterized by a single, poorly energetic endotherm visible below the T(m). SAXS/WAXS identifies this event as an L(c)/L(beta) phase transition. However, the WAXS reflections in the di-16:0 lipid do not entirely correspond to the reflections seen for either the L(c1) or L(c2) phases present in the shorter chain rac-beta-D-GalDAGs; rather these consist of a combination of L(c1), L(c2) and L(beta) reflections, consistent with DSC data where all three phase transitions occur within a span of 5 degrees C. At very long chain lengths (N> or =19), the L(beta)/L(c) conversion process is so slow that no L(c) phases are formed over the time scale of our experiments. The L(beta)/L(c) phase conversion process is significantly faster than that seen in the corresponding rac-beta-D-GlcDAGs, but is slower than in the 1,2-sn-beta-D-GalDAGs already studied. The L(alpha)/NL phase transition temperatures are also higher in the rac-beta-D-GalDAGs than in the corresponding rac-beta-D-GlcDAGs, suggesting that the orientation of the hydroxyl at position 4 and the chirality of the glycerol molecule in the lipid/water interface influence both the L(c) and NL phase properties of these lipids, probably by controlling the relative positions of hydrogen bond donors and acceptors in the polar region of the membrane.  相似文献   

20.
Trehalose is a sugar which plays an important protectant role in organisms against damage due to dehydration. To explore the basic molecular mechanism which governs the protective function exerted on lipid membranes, X-ray diffraction and osmotic stress experiments have been performed on l--dioleoyl-phosphatidyl-ethanolamine (DOPE) in trehalose solutions of different concentrations. In pure water, DOPE forms an inverted hexagonal (HII) phase; in sugar solutions, a strong dehydration, which induces a large reduction of the HII lattice parameter, has been detected, but nevertheless no phase transitions occur. Structural data, directly obtained from reconstructed electron density maps, show that the bending of the lipid monolayer induced by the sugar is coupled to changes in the DOPE molecular shape. By osmotic stress, the work required to dehydrate the monolayer has been obtained and the overall free energy described as a function of trehalose concentration. Three results should be stressed: (1) dehydration experiments performed in the presence of sugar demonstrate that the protective effect cannot be purely osmotic; (2) the pivotal surface, that location on the molecule whose area is invariant upon isothermal bending, has been analyzed by two different methods: the approach by Rand and co-workers and the approach by Templer and co-workers; in both cases its presence along the DOPE molecule has been revealed and its position estimated; (3) the spontaneous radius of curvature and the rigidity constant of the lipid monolayer, measured at the pivotal plane, changes from 3.06 nm (in pure water) to 2.82 nm (in 1.4 M trehalose), and from 0.55×10–19 to 0.74×10–19 J, respectively. We assume that these modifications are related to direct interactions between trehalose and DOPE that alter the interface geometry, reducing the repulsion between the polar heads. However, the increased bending rigidity also accounts for the changes of the property of the aqueous compartment, reflecting the rigidity and stiffness of the sugar matrix around and inside the lipid phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号