首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The hairpin ribozyme   总被引:4,自引:0,他引:4  
The hairpin ribozyme is a member of a family of small RNA endonucleases, which includes hammer-head, human hepatitis delta virus, Neurospora VS, and the lead-dependent catalytic RNAs. All these catalytic RNAs reversibly cleave the phosphodiester bond of substrate RNA to generate 5'-hydroxyl and 2',3'-cyclic phosphate termini. Whereas the reaction products from family members are similar, large structural and mechanistic differences exist. Structurally the hairpin ribozyme has two principal domains that interact to facilitate catalysis. The hairpin ribozyme uses a catalytic mechanism that does not require metals for cleavage or ligation of substrate RNA. In this regard it is presently unique among RNA catalysts. Targeting rules for cleavage of substrate have been determined and required bases for catalysis have been identified. The hairpin ribozyme has been developed and used for gene therapy and was the first ribozyme to be approved for human clinical trials.  相似文献   

2.
Shih Ih  Been MD 《The EMBO journal》2001,20(17):4884-4891
Hepatitis delta virus (HDV) ribozymes employ multiple catalytic strategies to achieve overall rate enhancement of RNA cleavage. These strategies include general acid-base catalysis by a cytosine side chain and involvement of divalent metal ions. Here we used a trans-acting form of the antigenomic ribozyme to examine the contribution of the 5' sequence in the substrate to HDV ribozyme catalysis. The cleavage rate constants increased for substrates with 5' sequence alterations that reduced ground-state binding to the ribozyme. Quantitatively, a plot of activation free energy of chemical conversion versus Gibb's free energy of substrate binding revealed a linear relationship with a slope of -1. This relationship is consistent with a model in which components of the substrate immediately 5' to the cleavage site in the HDV ribozyme-substrate complex destabilize ground-state binding. The intrinsic binding energy derived from the ground-state destabilization could contribute up to 2 kcal/mol toward the total 8.5 kcal/mol reduction in activation free energy for RNA cleavage catalyzed by the HDV ribozyme.  相似文献   

3.
The Neurospora VS ribozyme recognizes and cleaves a substrate RNA that contains a GC-rich stem loop. In contrast to most RNA secondary structures that are stable during tertiary or quaternary folding, this substrate undergoes extensive ribozyme-induced rearrangement in the presence of magnesium in which the base pairings of at least seven of the ten nucleotides in the stem are changed. This conformational switch is essential for catalytic activity with the wild-type substrate and creates a metal-binding secondary structure motif near the cleavage site. Base pair rearrangement is accompanied by bulging a cytosine from the middle of the stem, indicating that ribozymes may perform base flipping, an activity previously observed only with protein enzymes that modify DNA.  相似文献   

4.
Lambert D  Heckman JE  Burke JM 《Biochemistry》2006,45(23):7140-7147
Native hammerhead ribozymes contain RNA domains that enable high catalytic activity under physiological conditions, where minimal hammerheads show little activity. However, little is known about potential differences in native versus minimal ribozyme folding. Here, we present results of photocross-linking analysis of native and minimal hammerheads containing photoreactive nucleobases 6-thioguanosine, 2,6-diaminopurine, 4-thiouridine, and pyrrolocytidine, introduced at specific sites within the catalytic core. Under conditions where catalytic activity is observed, the two substrate nucleobases spanning the cleavage site approach and stack upon G8 and G12 of the native hammerhead, two conserved nucleobases that show similar behavior in minimal constructs, have been implicated in general acid-base catalysis, and are >15 A from the cleavage site in the crystal structures. Pyrrolocytidine at cleavage site position 17 forms an efficient crosslink to G12, and the crosslinked RNA retains catalytic activity. Multiple cross-linked species point to a structural rearrangement within the U-turn, positioning residue G5 in the vicinity of cleavage site position 1.1. Intriguing crosslinks were triggered by nucleotide analogues at positions distal to the crosslinked residues; for example, 6-thioguanosine at position 5 induced a crosslink between G12 and C17, suggesting an intimate functional communication among these three nucleobases. Together, these results support a model in which the native hammerhead folds to an active structure similar to that of the minimal ribozyme, and significantly different from the crystallographic structures.  相似文献   

5.
Guo F  Gooding AR  Cech TR 《Molecular cell》2004,16(3):351-362
The Tetrahymena intron is an RNA catalyst, or ribozyme. As part of its self-splicing reaction, this ribozyme catalyzes phosphoryl transfer between guanosine and a substrate RNA strand. Here we report the refined crystal structure of an active Tetrahymena ribozyme in the absence of its RNA substrate at 3.8 A resolution. The 3'-terminal guanosine (omegaG), which serves as the attacking group for RNA cleavage, forms a coplanar base triple with the G264-C311 base pair, and this base triple is sandwiched by three other base triples. In addition, a metal ion is present in the active site, contacting or positioned close to the ribose of the omegaG and five phosphates. All of these phosphates have been shown to be important for catalysis. Therefore, we provide a picture of how the ribozyme active site positions both a catalytic metal ion and the nucleophilic guanosine for catalysis prior to binding its RNA substrate.  相似文献   

6.
Mg2+-independent hairpin ribozyme catalysis in hydrated RNA films   总被引:1,自引:1,他引:0       下载免费PDF全文
The hairpin ribozyme catalyzes RNA cleavage in partially hydrated RNA films in the absence of added divalent cations. This reaction exhibits the characteristics associated with the RNA cleavage reaction observed under standard conditions in solution. Catalysis is a site-specific intramolecular transesterification reaction, requires the 2'-hydroxyl group of substrate nucleotide A(-1), and generates 2',3'-cyclic phosphate and 5'-hydroxyl termini. Mutations in both ribozyme and substrate abolish catalysis in hydrated films. The reaction is accelerated by cations that may enhance binding, conformational stability, and catalytic activity, and is inhibited by Tb3+. The reaction has an apparent temperature optimum of 4 degrees C. At this temperature, cleavage is slow (k(obs): 2 d(-1)) and progressive, with accumulation of cleavage products to an extent of 40%. The use of synthetic RNAs, chelators, and analysis of all reaction components by inductively coupled plasma-optical spectrophotometry (ICPOES) effectively rules out the possibility of contaminating divalent metals in the reactions. Catalysis is minimal under conditions of extreme dehydration, indicating that the reaction requires hydration of RNA by atmospheric water. Our results provide a further caution for those studying the biochemical activity of ribozymes in vitro and in cells, as unanticipated catalysis could occur during RNA manipulation and lead to misinterpretation of data.  相似文献   

7.
8.
Ribozymes correctly cleave a model substrate and endogenous RNA in vivo   总被引:22,自引:0,他引:22  
The alpha-sarcin domain of 28 S RNA in Xenopus oocytes is attacked by several catalytic toxins (e.g. alpha-sarcin and ricin) that abolish protein synthesis. We synthesized 6 ribozymes targeted to the alpha-sarcin domain and to an oligoribonucleotide (34-mer) that mimics this domain. Sarcin ribozyme 5 (SR5) efficiently cleaved after the CUC site in the synthetic 34-mer in vitro at 50 degrees C. SR5 also cut the same site when both substrate and ribozyme were coinjected or injected separately into oocytes at 18 degrees C. Correct cleavage in vivo was shown by isolating and sequencing the large cleavage fragment. The cleavage reaction appeared to function equally well in the oocyte nucleus and cytoplasm. SR5 also correctly cleaved endogenous 28 S RNA in oocytes, although cutting was much less efficient than with alpha-sarcin. We therefore demonstrated that a ribozyme specifically cuts both a model substrate and a cellular RNA in vivo. Earlier work showed that certain injected deoxyoligonucleotides complementary to the alpha-sarcin region abolish protein synthesis. Oocyte protein synthesis was also abolished by an SR5 containing a single G----U substitution that inactivates RNA catalysis, indicating that SR5's translational suppression was perhaps due to antisense function rather than ribozyme cleavage.  相似文献   

9.
The hepatitis delta virus (HDV), an infectious human pathogen affecting millions of people worldwide, leads to intensified disease symptoms, including progression to liver cirrhosis upon coinfection with its helper virus, HBV. Both the circular RNA genome of HDV and its complementary antigenome contain a common cis-cleaving catalytic RNA motif, the HDV ribozyme, which plays a crucial role in viral replication. Previously, the crystal structure of the product form of the cis-acting genomic HDV ribozyme has been determined, and the precursor form has been suggested to be structurally similar. In contrast, solution studies by fluorescence resonance energy transfer (FRET) on a trans-cleaving form of the ribozyme have shown significant global conformational changes upon catalysis, while 2-aminopurine (AP) fluorescence assays have detected concomitant local conformational changes in the catalytic core. Here, we augment these studies by using terbium(III) to probe the structure of the trans-acting HDV ribozyme at nucleotide resolution. We observe significant structural differences between the precursor and product forms, especially in the P1.1 helix and the trefoil turn in the single-stranded region connecting P4 and P2 (termed J4/2) of the catalytic core. We show, using terbium(III) footprinting and sensitized luminescence spectroscopy as well as steady-state, time-resolved, and gel-mobility FRET assays on a systematic set of substrates, that the substrate sequence immediately 5' to the cleavage site significantly modulates these local as well as resultant global structural differences. Our results suggest a structural basis for the previously observed impact of the 5' substrate sequence on catalytic activity.  相似文献   

10.
We have previously shown that a protein derived from the p7 nucleocapsid (NC) protein of HIV type-1 increases kcat/Km and kcat for cleavage of a cognate substrate by a hammerhead ribozyme. Here we show directly that the increase in kcat/Km arises from catalysis of the annealing of the RNA substrate to the ribozyme and the increase in kcat arises from catalysis of dissociation of the RNA products from the ribozyme. A peptide polymer derived from the consensus sequence of the C-terminal domain of the hnRNP A1 protein (A1 CTD) provides similar enhancements. Although these effects apparently arise from non-specific interactions, not all non-specific binding interactions led to these enhancements. NC and A1 CTD exert their effects by accelerating attainment of the thermodynamically most stable species throughout the ribozyme catalytic cycle. In addition, NC protein is shown to resolve a misfolded ribozyme-RNA complex that is otherwise long lived. These in vitro results suggest that non-specific RNA binding proteins such as NC and hnRNP proteins may have a biological role as RNA chaperones that prevent misfolding of RNAs and resolve RNAs that have misfolded, thereby ensuring that RNA is accessible for its biological functions.  相似文献   

11.
The two forms of the hepatitis delta virus ribozyme are derived from the genomic and antigenomic RNA strands of the human hepatitis delta virus (HDV), where they serve a crucial role in pathogen replication by catalyzing site-specific self-cleavage reactions. The HDV ribozyme requires divalent metal ions for formation of its tertiary structure, consisting of a tight double-nested pseudoknot, and for efficient self- (or cis-) cleavage. Comparison of recently solved crystal structures of the cleavage precursor and 3' product indicates that a significant conformational switch is required for catalysis by the genomic HDV ribozyme. Here, we have used the lanthanide metal ion terbium(III) to footprint the precursor and product solution structures of the cis-acting antigenomic HDV ribozyme. Inhibitory Tb(3+) binds with high affinity to similar sites on RNA as Mg(2+) and subsequently promotes slow backbone scission. We find subtle, yet significant differences in the terbium(III) footprinting pattern between the precursor and product forms of the antigenomic HDV ribozyme, consistent with differences in conformation as observed in the crystal structures of the genomic ribozyme. In addition, UV melting profiles provide evidence for a less tight tertiary structure in the precursor. In both the precursor and product we observe high-affinity terbium(III) binding sites in joining sequence J4/2 (Tb(1/2) approximately 4 microM) and loop L3, which are key structural components forming the catalytic core of the HDV ribozyme, as well as in several single-stranded regions such as J1/2 and the L4 tetraloop (Tb(1/2) approximately 50 microM). Sensitized luminescence spectroscopy confirms that there are at least two affinity classes of Tb(3+) binding sites. Our results thus demonstrate that a significant conformational change accompanies catalysis in the antigenomic HDV ribozyme in solution, similar to the catalytic conformational switch observed in crystals of the genomic form, and that structural and perhaps catalytic metal ions bind close to the catalytic core.  相似文献   

12.
Heckman JE  Lambert D  Burke JM 《Biochemistry》2005,44(11):4148-4156
The hammerhead ribozyme has been intensively studied for approximately 15 years, but its cleavage mechanism is not yet understood. Crystal structures reveal a Y-shaped molecule in which the cleavage site is not ideally aligned for an S(N)2 reaction and no RNA functional groups are positioned appropriately to perform the roles of acid and base or other functions in the catalysis. If the ribozyme folds to a more compact structure in the transition state, it probably does so only transiently. We have used photocrosslinking as a tool to trap hammerhead ribozyme-substrate complexes in various stages of folding. Results suggest that the two substrate residues flanking the cleavage site approach and stack upon two guanosines (G8 and G12) in domain 2, moving 10-15 A closer to domain 2 than they appear in the crystal structure. Most crosslinks obtained with the nucleotide analogues positioned in the ribozyme core are catalytically inactive; however, one cobalt(III) hexaammine-dependent crosslink of an unmodified ribozyme retains catalytic activity and confirms the close stacking of cleavage site residue C17 with nucleotide G8 in domain 2. These findings suggest that residues involved in the chemistry of hammerhead catalysis are likely located in that region containing G8 and G12.  相似文献   

13.
Delta ribozyme has the ability to cleave in transan mRNA.   总被引:3,自引:0,他引:3       下载免费PDF全文
We report here the first demonstration of the cleavage of an mRNA in trans by delta ribozyme derived from the antigenomic version of the human hepatitis delta virus (HDV). We characterized potential delta ribozyme cleavage sites within HDV mRNA sequence (i.e. C/UGN6), using oligonucleotide binding shift assays and ribonuclease H hydrolysis. Ribozymes were synthesized based on the structural data and then tested for their ability to cleave the mRNA. Of the nine ribozymes examined, three specifically cleaved a derivative HDV mRNA. All three active ribozymes gave consistent indications that they cleaved single-stranded regions. Kinetic characterization of the ability of ribozymes to cleave both the full-length mRNA and either wild-type or mutant small model substrate suggests: (i) delta ribozyme has turnovers, that is to say, several mRNA molecules can be successively cleaved by one ribozyme molecule; and (ii) the substrate specificity of delta ribozyme cleavage is not restricted to C/UGN6. Specifically, substrates with a higher guanosine residue content upstream of the cleavage site (i.e. positions -4 to -2) were always cleaved more efficiently than wild-type substrate. This work shows that delta ribozyme constitutes a potential catalytic RNA for further gene-inactivation therapy.  相似文献   

14.
The hairpin ribozyme is a small catalytic RNA with reversible phosphodiester cleavage activity. Biochemical and structural studies exclude a requirement for divalent metal cation cofactors and implicate one active site nucleobase in particular, G8, in the catalytic mechanism. Our previous work demonstrated that the cleavage activity that is lost when G8 is replaced by an abasic residue is restored when certain nucleobases are provided in solution. The specificity and pH dependence of exogenous nucleobase rescue were consistent with several models of the rescue mechanism, including general acid base catalysis, electrostatic stabilization of negative charge in the transition state or a requirement for protonation to facilitate exogenous nucleobase binding. Detailed analyses of exogenous nucleobase rescue for both cleavage and ligation reactions now allow us to refine models of the rescue mechanism. Activity increased with increasing pH for both unmodified ribozyme reactions and unrescued reactions of abasic variants lacking G8. This similarity in pH dependence argues against a role for G8 as a general base catalyst, because G8 deprotonation could not be responsible for the pH-dependent transition in the abasic variant. Exogenous nucleobase rescue of both cleavage and ligation activity increased with decreasing pH, arguing against a role for rescuing nucleobases in general acid catalysis, because a nucleobase that contributes general acid catalysis in the cleavage pathway should provide general base catalysis in ligation. Analysis of the concentration dependence of cytosine rescue at high and low pH demonstrated that protonation promotes catalysis within the nucleobase-bound ribozyme complex but does not stabilize nucleobase binding in the ground state. These results support an electrostatic stabilization mechanism in which exogenous nucleobase binding counters negative charge that develops in the transition state.  相似文献   

15.
A trans-acting system has been designed in order to explore the three-dimensional structure of the anti-genomic HDV ribozyme. In this system, the substrate (SANT) is associated by base-pairing to the catalytic RNA (RzANT) forming helix H1. RzANT is able to cleave specifically the RNA substrate as well as a deoxysubstrate analogue containing a single ribocytidine at the cleavage site (position -1). This demonstrates that such deoxysubstrate analogues are valuable tools for structural studies of this ribozyme domain. They form however weak complexes with RzANT which is due in part to their ability to fold as stable hairpins unlike the RNA substrate. Using a set of full deoxy or of mixed deoxy-ribo substrate analogues site-specific substituted with the photoaffinity probe deoxy-4-thiouridine, ds4U, at a defined position, we were able to determine a number of long range contacts between the substrate and the ribozyme core. In particular, crosslinks between substrate position -1 and position -2 with residues C15, G19 and C67, thought to be involved in the ribozyme catalytic site, were detected. A three dimensional model of the antigenomic ribozyme system, derived from the structure proposed by Tanner et al. [Current Biol (1994) 4, 488-498] for the genomic system was constructed. Apart from residue deletion or insertion, only minor accommodations were needed to account for all photocrosslinks but one which is attributed to an alternative hybridization of the substrate with the ribozyme. This study therefore further supports the structure proposed by Tanner et al. for the pseudoknot model.  相似文献   

16.
A Flynn-Charlebois  N Lee  H Suga 《Biochemistry》2001,40(45):13623-13632
Catalytically active RNA molecules rely on metal ions for structural and/or catalytic functions. Our in vitro selected aminoacyl-transferase ribozyme is no exception, as it employs a single fully hydrated Mg2+ ion for catalysis [Suga, H., et al. (1998) Biochemistry 37, 10118-10125]. Here we report the essential catalytic residues of the ribozyme and their spatial arrangement in the relation to the metal binding site. Evidence obtained using a combination of Pb2+ and Tb3+ hydrolytic cleavage assays on wild type and mutant ribozymes revealed a cooperative metal binding site that consists of the tandem G:U wobble pairs in P1 and consecutive G:U and U:A pairs in P3. The formation of this concerted Mg2+ binding site positions the P1 and P3 helices in a parallel manner, placing the L3 tetraloop in close proximity to the internal guide sequence (IGS, substrate binding site), which is adjacent to P1. Certain monovalent metal ions inhibit catalysis at low concentrations but support catalysis at high concentrations. These analyses imply that the Mg2+ ion plays both structural and chemical roles and that it brings about the significant rate acceleration in aminoacyl-transfer in concert with the L3-IGS long-range interaction.  相似文献   

17.
The kinetic pathway of a trans-acting delta ribozyme includes an essential structural rearrangement involving the P1 stem, a stem that is formed between the substrate and the ribozyme. We performed cross-linking experiments to determine the substrate position within the catalytic center of an antigenomic, trans-acting, delta ribozyme. Substrates that included a 4-thiouridine either in position -1, +4, or +8 (i.e., adjacent to the cleavage site, or located either in the middle of or at the 3'-end of the P1 stem, respectively) were synthesized and shown to be efficiently cleaved. Examination of the cross-linking conditions, the use of various mutated ribozymes, as well as the probing and characterization of the resulting ribozyme-substrate complexes, revealed several new features of the molecular mechanism: (1) the close proximity of several bases between nucleotides of the substrate and ribozyme; (2) the active ribozyme-substrate complex folds in a manner that docks the middle of the P1 stem on the P3 stem, while concomitantly the scissile phosphate is in close proximity to the catalytic cytosine; and, (3) some complexes appear to be compatible with being active intermediates along the folding pathway, while others seem to correspond to misfolded structures. To provide a model representation of these data, a three-dimensional structure of the delta ribozyme was developed using several RNA bioinformatic software packages.  相似文献   

18.
Non-coding RNAs of complex tertiary structure are involved in numerous aspects of the replication and processing of genetic information in many organisms; however, an understanding of the complex relationship between their structural dynamics and function is only slowly emerging. The Neurospora Varkud Satellite (VS) ribozyme provides a model system to address this relationship. First, it adopts a tertiary structure assembled from common elements, a kissing loop and two three-way junctions. Second, catalytic activity of the ribozyme is essential for replication of VS RNA in vivo and can be readily assayed in vitro. Here we exploit single molecule FRET to show that the VS ribozyme exhibits previously unobserved dynamic and heterogeneous hierarchical folding into an active structure. Readily reversible kissing loop formation combined with slow cleavage of the upstream substrate helix suggests a model whereby the structural dynamics of the VS ribozyme favor cleavage of the substrate downstream of the ribozyme core instead. This preference is expected to facilitate processing of the multimeric RNA replication intermediate into circular VS RNA, which is the predominant form observed in vivo.  相似文献   

19.
Small catalytic RNAs like the hairpin ribozyme are proving to be useful intracellular tools; however, most attempts to demonstrate trans-cleavage of RNA by ribozymes in cells have been frustrated by rapid cellular degradation of the cleavage products. Here, we describe a fluorescence resonance energy transfer (FRET) assay that directly monitors cleavage of target RNA in tissue-culture cells. An oligoribonucleotide substrate was modified to inhibit cellular ribonuclease degradation without interfering with ribozyme cleavage, and donor (fluorescein) and acceptor (tetramethylrhodamine) fluorophores were introduced at positions flanking the cleavage site. In simple buffers, the intact substrate produces a strong FRET signal that is lost upon cleavage, resulting in a red-to-green shift in dominant fluorescence emission. Hairpin ribozyme and fluorescent substrate were microinjected into murine fibroblasts under conditions in which substrate cleavage can occur only inside the cell. A strong FRET signal was observed by fluorescence microscopy when substrate was injected, but rapid decay of the FRET signal occurred when an active, cognate ribozyme was introduced with the substrate. No acceleration in cleavage rates was observed in control experiments utilizing a noncleavable substrate, inactive ribozyme, or an active ribozyme with altered substrate specificity. Subsequently, the fluorescent substrates were injected into clonal cell lines that expressed cognate or noncognate ribozymes. A decrease in FRET signal was observed only when substrate was microinjected into cells expressing its cognate ribozyme. These results demonstrate trans-cleavage of RNA within mammalian cells, and provide an experimental basis for quantitative analysis of ribozyme activity and specificity within the cell.  相似文献   

20.
This work is an in vitro study of the efficiency of catalytic antisense RNAs whose catalytic domain is the wild-type sequence of the hairpin ribozyme, derived from the minus strand of the tobacco ringspot virus satellite RNA. The sequence in the target RNA recognized by the antisense molecule was the stem-loop structure of the human immunodeficiency virus-1 (HIV-1) TAR region. This region was able to form a complex with its antisense RNA with a binding rate of 2 x 10(4) M(-1)s(-1). Any deletion of the antisense RNA comprising nucleotides of the stem-loop resulted in a decrease in binding rate. Sequences 3' of the stem in the sense RNA also contributed to binding. This stem-loop TAR-antisense segment, covalently linked to a hairpin ribozyme, enhanced its catalytic activity. The highest cleavage rate was obtained when the stem-loop structure was present in both ribozyme and substrate RNAs and they were complementary. Similarly, an extension at the 5'-end of the hairpin ribozyme increased the cleavage rate when its complementary sequence was present in the substrate. Inclusion of the stem-loop at the 3'-end and the extension at the 5'-end of the hairpin ribozyme abolished the positive effect of both antisense units independently. These results may help in the design of hairpin ribozymes for gene silencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号