共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The interaction bacterial and phage proteins with immobilized Escherichia coli RNA polymerase 总被引:20,自引:0,他引:20
D Ratner 《Journal of molecular biology》1974,88(2):373-383
3.
4.
5.
We studied the inhibition of tryptic digestion of the subassembly alpha 2 beta of Escherichia coli DNA-dependent RNA polymerase to investigate its interaction with RNA and rifampicin. Both agents decreased distinctly the cleavage of subunit beta in the subassembly as well as the degradation of the transiently formed polypeptides (Mr greater than 80000). Short RNAs with a chain length of approximately 35 nucleotides were most protective at a concentration of 1 mg/ml while long RNAs were less effective at the same concentration. DNA did not exert any observable protective effects. The association of RNA with alpha 2 beta was shown by chromatography on phosphocellulose, which separates alpha 2 beta bound to RNA from free alpha 2 beta. The association of alpha 2 beta with RNA was inhibited by rifampicin. 相似文献
6.
7.
8.
9.
Srivastava A Talaue M Liu S Degen D Ebright RY Sineva E Chakraborty A Druzhinin SY Chatterjee S Mukhopadhyay J Ebright YW Zozula A Shen J Sengupta S Niedfeldt RR Xin C Kaneko T Irschik H Jansen R Donadio S Connell N Ebright RH 《Current opinion in microbiology》2011,14(5):532-543
A new drug target - the 'switch region' - has been identified within bacterial RNA polymerase (RNAP), the enzyme that mediates bacterial RNA synthesis. The new target serves as the binding site for compounds that inhibit bacterial RNA synthesis and kill bacteria. Since the new target is present in most bacterial species, compounds that bind to the new target are active against a broad spectrum of bacterial species. Since the new target is different from targets of other antibacterial agents, compounds that bind to the new target are not cross-resistant with other antibacterial agents. Four antibiotics that function through the new target have been identified: myxopyronin, corallopyronin, ripostatin, and lipiarmycin. This review summarizes the switch region, switch-region inhibitors, and implications for antibacterial drug discovery. 相似文献
10.
11.
Specificity factor of yeast mitochondrial RNA polymerase. Purification and interaction with core RNA polymerase 总被引:17,自引:0,他引:17
A H Schinkel M J Koerkamp E P Touw H F Tabak 《The Journal of biological chemistry》1987,262(26):12785-12791
We have identified a mitochondrial protein from Saccharomyces cerevisiae which confers the ability to recognize mitochondrial promoters onto a nonspecifically transcribing mitochondrial core RNA polymerase and we have purified this specificity factor 10,700-fold from a whole cell extract. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified fraction followed by elution and renaturation of protein activity shows that the specificity factor is a 43-kDa polypeptide which directs mitochondrial core RNA polymerase to promoters belonging to rRNA-, tRNA-, and protein-encoding genes, as well as to mitochondrial replication origins. Gel filtration and glycerol gradient sedimentation studies indicate that the specificity factor shows little association with core RNA polymerase in the absence of DNA, and that it behaves like a monomeric 43-kDa protein. 相似文献
12.
13.
14.
15.
Regulated secretion of neurotransmitter at the synapse is likely to be mediated by dynamic protein interactions involving components of the vesicle (vesicle-associated membrane protein; VAMP) and plasma membrane (syntaxin and synaptosomal associated protein of 25 kDa (SNAP-25)) along with additional molecules that allow for the regulation of this process. Recombinant Hrs-2 interacts with SNAP-25 in a calcium-dependent manner (they dissociate at elevated calcium levels) and inhibits neurotransmitter release. Thus, Hrs-2 has been hypothesized to serve a negative regulatory role in secretion through its interaction with SNAP-25. In this report, we show that Hrs-2 and SNAP-25 interact directly through specific coiled-coil domains in each protein. The presence of syntaxin enhances the binding of Hrs-2 to SNAP-25. Moreover, while both Hrs-2 and VAMP can separately bind to SNAP-25, they cannot bind simultaneously. Additionally, the presence of Hrs-2 reduces the incorporation of VAMP into the syntaxin.SNAP-25.VAMP (7 S) complex. These findings suggest that Hrs-2 may modulate exocytosis by regulating the assembly of a protein complex implicated in membrane fusion. 相似文献
16.
J Ryan B Wolitzky E Heimer T Lambrose A Felix J P Tam L H Huang P Nawroth G Wilner W Kisiel 《The Journal of biological chemistry》1989,264(34):20283-20287
Previous studies have indicated that Factor IX/IXa interacts in a specific and high affinity manner with a binding site on the endothelial cell surface. In this study, the contributions of the gamma-carboxyglutamic acid-containing (GLA) and growth factor domains to the finding of Factor IX to the endothelium were assessed. While GLA-containing peptides from Factors IX, X, and prothrombin were inhibitors of 125I-Factor IX-endothelial cell binding, the GLA peptide from Factor IX was about 250-800-fold more effective than those from prothrombin and Factor X, respectively. In contrast to its relative efficacy as an inhibitor of Factor IX-cell surface interaction, the Factor IX-GLA peptide neither bound to lipid vesicles nor inhibited Factor IX-lipid interaction. A synthetic peptide comprising the entire first epidermal growth factor (EGF) exon was also an inhibitor of 125I-Factor IX-endothelial cell binding, although it did not interact with lipid vesicles. Experiments with synthetic peptides comprising each of the three loops of the first EGF domain or the entire first EGF region with specific substitutions indicated the importance of determinants in both the first and probably third loops for Factor IX-endothelial interaction. In contrast, the second loop of the first EGF domain and the first loop of the second EGF exon are probably not involved in Factor IX-endothelial interaction based on their inability to block 125I-Factor IX binding to cells. These results indicate that determinants in both the GLA and the first EGF domain contribute to the specific binding of Factor IX to the endothelial cell surface and that structural requirements for Factor IX-cell surface interaction are distinct from those for Factor IX binding to lipids. 相似文献
17.
18.
Mekler V Kortkhonjia E Mukhopadhyay J Knight J Revyakin A Kapanidis AN Niu W Ebright YW Levy R Ebright RH 《Cell》2002,108(5):599-614
We have used systematic fluorescence resonance energy transfer and distance-constrained docking to define the three-dimensional structures of bacterial RNA polymerase holoenzyme and the bacterial RNA polymerase-promoter open complex in solution. The structures provide a framework for understanding sigma(70)-(RNA polymerase core), sigma(70)-DNA, and sigma(70)-RNA interactions. The positions of sigma(70) regions 1.2, 2, 3, and 4 are similar in holoenzyme and open complex. In contrast, the position of sigma(70) region 1.1 differs dramatically in holoenzyme and open complex. In holoenzyme, region 1.1 is located within the active-center cleft, apparently serving as a "molecular mimic" of DNA, but, in open complex, region 1.1 is located outside the active center cleft. The approach described here should be applicable to the analysis of other nanometer-scale complexes. 相似文献
19.
R Negri F Della Seta A G Ficca G Camilloni E Di Mauro 《Basic and applied histochemistry》1987,31(3):275-280
We have analyzed the relationship between the alterations of the DNA structure induced by topological constraint and the template properties of promoters in vitro. A cause-effect relationship has been defined in several instances. Experimental protocols have been developed for the study of the topological properties of RNA polymerase II promoters. The goal of these studies is the definition of the intrinsic structural informations of DNA. 相似文献
20.
Various complexes formed between purified RNA polymerase II and simian virus 40 DNA have been characterized with respect to rates of formation, rates of dissociation, and initial velocity of RNA synthesis. Two different types of complexes can form on intact DNA templates. One of these is formed rapidly, but is quite labile; the other forms more slowly, but is moderately stable once formed. The introduction of a single strand break into DNA leads to rapid and stable complex formation, and thus is expected to create the favored binding site. The observed properties of these complexes provide a general framework for describing the interactions of RNA polymerase II at non-promoter DNA sites. This framework appears to be similar to that established for Escherichia coli RNA polymerase interactions, suggesting that the fundamental mode of non-promoter DNA binding is similar for the bacterial, plant, and mammalian enzymes. 相似文献