首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The Mur ligases (MurC, MurD, MurE and MurF) catalyze the stepwise synthesis of the UDP-N-acetylmuramoyl-pentapeptide precursor of peptidoglycan. The murC, murD, murE and murF genes from Staphylococcus aureus, a major pathogen, were cloned and the corresponding proteins were overproduced in Escherichia coli and purified as His6-tagged forms. Their biochemical properties were investigated and compared to those of the E. coli enzymes. Staphylococcal MurC accepted l-Ala, l-Ser and Gly as substrates, as the E. coli enzyme does, with a strong preference for l-Ala. S. aureus MurE was very specific for l-lysine and in particular did not accept meso-diaminopimelic acid as a substrate. This mirrors the E. coli MurE specificity, for which meso-diaminopimelic acid is the preferred substrate and l-lysine a very poor one. S. aureus MurF appeared less specific and accepted both forms (l-lysine and meso-diaminopimelic acid) of UDP-MurNAc-tripeptide, as the E. coli MurF does. The inverse and strict substrate specificities of the two MurE orthologues is thus responsible for the presence of exclusively meso-diaminopimelic acid and l-lysine at the third position of the peptide in the peptidoglycans of E. coli and S. aureus, respectively. The specific activities of the four Mur ligases were also determined in crude extracts of S. aureus and compared to cell requirements for peptidoglycan biosynthesis.  相似文献   

2.
Enzymes catalyzing the biosynthesis of bacterial peptidoglycan represent traditionally a collection of highly selective targets for novel antibacterial drug design. Four members of the bacterial Mur ligase family—MurC, MurD, MurE and MurF—are involved in the intracellular steps of peptidoglycan biosynthesis, catalyzing the synthesis of the peptide moiety of the Park’s nucleotide. In our previous virtual screening campaign, a chemical class of benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole derivatives exhibiting dual MurD/MurE inhibition properties was discovered. In the present study we further investigated this class of compounds by performing inhibition assays on all four Mur ligases (MurC–MurF). Furthermore, molecular dynamics (MD) simulation studies of one of the initially discovered compound 1 were performed to explore its geometry as well as its energetic behavior based on the Linear Interaction Energy (LIE) method. Further in silico virtual screening (VS) experiments based on the parent active compound 1 were conducted to optimize the discovered series. Selected hits were assayed against all Escherichia coli MurC–MurF enzymes in biochemical inhibition assays and molecules 1014 containing benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole coupled with five member-ring rhodanine moiety were found to be multiple inhibitors of the whole MurC–MurF cascade of bacterial enzymes in the micromolar range. Steady-state kinetics studies suggested this class to act as competitive inhibitors of the MurD enzyme towards d-Glu. These compounds represent novel valuable starting point in the development of novel antibacterial agents.  相似文献   

3.
4.
Enzymes MurD, MurE, MurF, folylpolyglutamate synthetase and cyanophycin synthetase, which belong to the Mur synthetase superfamily, possess an invariant lysine residue (K198 in the Escherichia coli MurD numbering). Crystallographic analysis of MurD and MurE has recently shown that this residue is present as a carbamate derivative, a modification presumably essential for Mg(2+) binding and acyl phosphate formation. In the present work, the importance of the carbamoylated residue was investigated in MurD, MurE and MurF by site-directed mutagenesis and chemical rescue experiments. Mutant proteins MurD K198A/F, MurE K224A and MurF K202A, which displayed low enzymatic activity, were rescued by incubation with short-chain carboxylic acids, but not amines. The best rescuing agent was acetate for MurD K198A, formate for K198F, and propionate for MurE K224A and MurF K202A. In the last of these, wild-type levels of activity were recovered. A complementarity between the volume of the residue replacing lysine and the length of the carbon chain of the acid was noted. These observations support a functional role for the carbamate in the three Mur synthetases. Experiments aimed at recovering an active enzyme by introducing an acidic residue in place of the invariant lysine residue were also undertaken. Mutant protein MurD K198E was weakly active and was rescued by formate, indicating the necessity of correct positioning of the acidic function with respect to the peptide backbone. Attempts at covalent rescue of mutant protein MurD K198C failed because of its lack of reactivity towards haloacids.  相似文献   

5.
The ATP-dependent Mur ligases (MurC, MurD, MurE and MurF) successively add l-Ala, d-Glu, meso-A2pm or l-Lys, and d-Ala-d-Ala to the nucleotide precursor UDP-MurNAc, and they represent promising targets for antibacterial drug discovery. We have used the molecular docking programme eHiTS for the virtual screening of 1990 compounds from the National Cancer Institute ‘Diversity Set’ on MurD and MurF. The 50 top-scoring compounds from screening on each enzyme were selected for experimental biochemical evaluation. Our approach of virtual screening and subsequent in vitro biochemical evaluation of the best ranked compounds has provided four novel MurD inhibitors (best IC50 = 10 μM) and one novel MurF inhibitor (IC50 = 63 μM).  相似文献   

6.
Chlamydiaceae are obligate intracellular bacteria that do not synthesise detectable peptidoglycan although they possess an almost complete arsenal of genes encoding peptidoglycan biosynthetic activities. In this paper, the murF gene from Chlamydia trachomatis was shown to be capable of complementing a conditional Escherichia coli mutant impaired in UDP-MurNAc-tripeptide:D-Ala-D-Ala ligase activity. Recombinant MurF from C. trachomatis was overproduced and purified from E. coli. It exhibited ATP-dependent UDP-MurNAc-X-γ-D-Glu-meso-A(2)pm:D-Ala-D-Ala ligase activity in vitro. No significant difference of kinetic parameters was seen when X was L-Ala, L-Ser or Gly. The L-Lys-containing UDP-MurNAc-tripeptide was a poorer substrate as compared to the meso-A(2)pm-containing one. Based on the respective substrate specificities of the chlamydial MurC, MurE, MurF and Ddl enzymes, a sequence L-Ala/L-Ser/Gly-γ-D-Glu-meso-A(2)pm-D-Ala-D-Ala is expected for the chlamydial pentapeptide stem, with Gly at position 1 being less likely.  相似文献   

7.
We cloned and sequenced the murC gene from Pseudomonas aeruginosa encoding a protein of 53 kDa. Multiple alignments with 20 MurC peptide sequences from different bacteria confirmed the presence of highly conserved regions having sequence identities ranging from 22-97% including conserved motifs for ATP-binding and the active site of the enzyme. Genetic complementation was done in Escherichia coli (murCts) suppressing the lethal phenotype. The murC gene was subcloned into the expression vector pET30a and overexpressed in E. coli BL21(lambdaDE3). Three PCR cloning strategies were used to obtain the three recombinant plasmids for expression of the native MurC, MurC His-tagged at N-terminal and at C-terminal, respectively. MurC His-tagged at C-terminal was chosen for large scale production and protein purification in the soluble form. The purification was done in a single chromatographic step on an affinity nickel column and obtained in mg quantities at 95% homogeneity. MurC protein was used to produce monoclonal antibodies for epitope mapping and for assay development in high throughput screenings. Detailed studies of MurC and other genes of the bacterial cell cycle will provide the reagents and strain constructs for high throughput screening and for design of novel antibacterials.  相似文献   

8.
Multi drug resistance capacity for Mycobacterium leprae (MDR-Mle) demands the profound need for developing new anti-leprosy drugs. Since most of the drugs target a single enzyme, mutation in the active site renders the antibiotic ineffective. However, structural and mechanistic information on essential bacterial enzymes in a pathway could lead to the development of antibiotics that targets multiple enzymes. Peptidoglycan is an important component of the cell wall of M. leprae. The biosynthesis of bacterial peptidoglycan represents important targets for the development of new antibacterial drugs. Biosynthesis of peptidoglycan is a multi-step process that involves four key Mur ligase enzymes: MurC (EC:6.3.2.8), MurD (EC:6.3.2.9), MurE (EC:6.3.2.13) and MurF (EC:6.3.2.10). Hence in our work, we modeled the three-dimensional structure of the above Mur ligases using homology modeling method and analyzed its common binding features. The residues playing an important role in the catalytic activity of each of the Mur enzymes were predicted by docking these Mur ligases with their substrates and ATP. The conserved sequence motifs significant for ATP binding were predicted as the probable residues for structure based drug designing. Overall, the study was successful in listing significant and common binding residues of Mur enzymes in peptidoglycan pathway for multi targeted therapy.  相似文献   

9.
Mur ligases are bacterial enzymes involved in the cytoplasmic steps of peptidoglycan biosynthesis and are viable targets for antibacterial drug discovery. We have performed virtual screening for potential ATP-competitive inhibitors targeting MurC and MurD ligases, using a protocol of consecutive hierarchical filters. Selected compounds were evaluated for inhibition of MurC and MurD ligases, and weak inhibitors possessing dual inhibitory activity have been identified. These compounds represent new scaffolds for further optimisation towards multiple Mur ligase inhibitors with improved inhibitory potency.  相似文献   

10.
Enzymes involved in the biosynthesis of bacterial peptidoglycan represent important targets for development of new antibacterial drugs. Among them, Mur ligases (MurC to MurF) catalyze the formation of the final cytoplasmic precursor UDP-N-acetylmuramyl-pentapeptide from UDP-N-acetylmuramic acid. We present the design, synthesis and biological evaluation of a series of phosphorylated hydroxyethylamines as new type of small-molecule inhibitors of Mur ligases. We show that the phosphate group attached to the hydroxyl moiety of the hydroxyethylamine core is essential for good inhibitory activity. The IC50 values of these inhibitors were in the micromolar range, which makes them a promising starting point for the development of multiple inhibitors of Mur ligases as potential antibacterial agents. In addition, 1-(4-methoxyphenylsulfonamido)-3-morpholinopropan-2-yl dihydrogen phosphate 7a was discovered as one of the best inhibitors of MurE described so far.  相似文献   

11.
The rnc operon from Pseudomonas aeruginosa has been cloned and characterized. The three genes comprising this operon, rnc, era, and recO, are arranged similarly to those in some other gram-negative bacteria. Multicopy plasmids carrying the rnc operon of P. aeruginosa functionally complement mutations of the rnc, era, and recO genes in Escherichia coli. In particular, the P. aeruginosa era homolog rescues the conditional lethality of era mutants in E. coli, and the presumptive protein has 60% identity with the Era of E. coli. We discuss these data and evidence suggesting that a GTPase previously purified from P. aeruginosa and designated Pra is not an Era homolog.  相似文献   

12.
13.
Bacterial cell walls contain peptidoglycan, an essential polymer made by enzymes in the Mur pathway. These proteins are specific to bacteria, which make them targets for drug discovery. MurC, MurD, MurE and MurF catalyze the synthesis of the peptidoglycan precursor UDP-N-acetylmuramoyl-L-alanyl-γ-D-glutamyl-meso-diaminopimelyl-D-alanyl-D-alanine by the sequential addition of amino acids onto UDP-N-acetylmuramic acid (UDP-MurNAc). MurC-F enzymes have been extensively studied by biochemistry and X-ray crystallography. In Gram-negative bacteria, ∼30–60% of the bacterial cell wall is recycled during each generation. Part of this recycling process involves the murein peptide ligase (Mpl), which attaches the breakdown product, the tripeptide L-alanyl-γ-D-glutamyl-meso-diaminopimelate, to UDP-MurNAc. We present the crystal structure at 1.65 Å resolution of a full-length Mpl from the permafrost bacterium Psychrobacter arcticus 273-4 (PaMpl). Although the Mpl structure has similarities to Mur enzymes, it has unique sequence and structure features that are likely related to its role in cell wall recycling, a function that differentiates it from the MurC-F enzymes. We have analyzed the sequence-structure relationships that are unique to Mpl proteins and compared them to MurC-F ligases. We have also characterized the biochemical properties of this enzyme (optimal temperature, pH and magnesium binding profiles and kinetic parameters). Although the structure does not contain any bound substrates, we have identified ∼30 residues that are likely to be important for recognition of the tripeptide and UDP-MurNAc substrates, as well as features that are unique to Psychrobacter Mpl proteins. These results provide the basis for future mutational studies for more extensive function characterization of the Mpl sequence-structure relationships.  相似文献   

14.
We have cloned the Pseudomonas aeruginosa folC gene coding for folylpolyglutamate synthetase-dihydrofolate synthetase, which was located between the trpF and purF loci, and determined the nucleotide sequence of the folC gene and its flanking region. The deduced amino acid sequence of P. aeruginosa FolC was highly homologous to that of Escherichia coli FolC. The cloned gene complemented E. coli folC mutations and was found to encode both folylpolyglutamate synthetase and dihydrofolate synthetase activities. The gene organization around the folC gene in P. aeruginosa was completely conserved with that in E. coli; the accD gene was located upstream of the folC gene, and dedD, cvpA and purF genes followed the folC gene in this order. The gene arrangement and the result of the promoter activity assay suggested that the P. aeruginosa accD and folC genes were co-transcribed.  相似文献   

15.
Abstract The glnAntrBC operon of Proteus vulgaris was cloned and heterologously expressed in Escherichia coli . The nucleotide sequence was determined. An open reading frame of 1407 bp was identified as the glnA gene and the deduced amino acid sequence showed 82% identity with the E. coli glutamine synthetase protein. Heterologous expression of the glnA gene in E. coli restored glutamine synthetase (GS) activity in a GS-negative mutant and a 52 kDa protein was detected and addressed as the GS subunit of P. vulgaris . Adjacent to the glnA gene the regulatory genes ntrB and ntrC were identified. Their coding regions comprised 1053 and 1452 bp, respectively, and the deduced gene products NRII (NtrB) and NRI (NtrC) shared 72% identity with the corresponding E. coli proteins. Heterologous expression in E. coli revealed only a 54 kDa protein which was shown to be NRI. NRII was not detectable using the methods employed.  相似文献   

16.
17.
Analysis of the spc ribosomal protein operon of Thermus aquaticus   总被引:5,自引:0,他引:5  
The gene region of Thermus aquaticus corresponding to the distal portion of the S10 operon and to the 5'-portion of the Escherichia coli spc operon was cloned, using the E. coli gene for the ribosomal protein L5 as hybridization probe. The gene arrangement was found to be identical to E. coli, i.e. S17, L14, L24, L5, S14, S8 and L6. Stop and start regions of contiguous cistrons overlap, except for the S14-S8 intergenic region, whose size (67 bases) even exceeds the corresponding spacer regions in E. coli and Bacillus subtilis. A G + C content of 94% in third positions of codons was found in the ribosomal protein genes of T. aquaticus analyzed here. The stop codon of gene S17 (the last gene of the S10 operon in E. coli) and the start codon of gene L14 (the first gene of the spc operon in E. coli) overlap in T. aquaticus, thus leaving no space to accommodate an intergenic promoter preceding spc-operon-encoded genes in T. aquaticus. A possible promoter, localized within the S17 coding region, yielded only weak resistance (20 micrograms/ml) to chloramphenicol in E. coli and therefore could be largely excluded as the main promoter for spc-operon-encoded genes. We failed to detect a structure resembling the protein S8 translational repressor site, located at the beginning of the L5 gene in E. coli, in the corresponding region or any other region in the cloned T. aquaticus spc DNA.  相似文献   

18.
19.
The rpoH gene encoding the heat-shock sigma factor of Pseudomonas putida was cloned by using its ability to complement the temperature-sensitive growth of the Escherichia coli rpoH mutant. The cloned DNA contained an open reading frame for a 284 amino acid sequence exhibiting high homology to the sigmaH proteins of P. aeruginosa and E. coli. Moreover, homologs to the cell division genes ftsX and ftsE were found immediately upstream of the rpoH gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号