首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Synaptosomes were isolated from Yakutian ground squirrel brain cortex of summer and winter hibernating animals in active and torpor states. Synaptosomal membrane cholesterol and phospholipids were determined. The seasonal changes of synaptosomal lipid composition were found. Synaptosomes isolated from hibernating Yakutian ground squirrel brain cortex maintained the cholesterol sphingomyelin, phosphatidylethanolamine, lysophosphatidylcholine, cardiolipin, phosphatidylinositol and phosphatidylserine contents 2.5, 1.8, 2.6, 1.8, 1.6, and 1.3 times less, respectively, and the content of phosphatidylcholine twice as much as the one in summer season. The synaptosomal membrane lipid composition of summer animals was shown to be markedly different from that as hibernating ground squirrels and non-hibernating rodents. It is believed that phenotypic changes of synaptosomal membrane lipid composition in summer Yakutian ground squirrel are the important preparation step for hibernation. The phosphatidylethanolamine content was increased in torpor state compared with winter-active state and the molar ratio of cholesterol/phospholipids in synaptosomal membrane of winter torpor ground squirrels was lower than that in active winter and summer animals. These events were supposed to lead to increase of the synaptosomal membrane fluidity during torpor. Synaptosomes isolated from torpor animals have larger sizes and contain a greater number of synaptic vesicles on the synaptosomal profile area. The synaptosomal membrane lipid composition and synaptosome morphology were involved in phenotypic adaptation of Yakutian ground squirrel to hibernation.  相似文献   

2.
In hibernating Yakutian ground squirrels S. undulatus, the content of total phospholipids in the nuclei of liver increased by 40% compared to that in animals in summer. In torpid state, the amount of sphingomyelin increased almost 8 times; phosphatidylserine, 7 times; and cardiolipin, 4 times. In active “winter” ground squirrels, the amount of sphingomyelin, phosphatidylserine, and cardiolipin decreased compared to the hibernating individuals but remained high compared to the “summer” ones. The torpor state did not affect the amount of lysophosphatidylcholine and phosphatidylinositol.  相似文献   

3.
Phospholipids and cholesterol were assayed in homogenates and microsomal fractions from the cerebral cortex of summer-active, winter-torpid, and winter-active Yakutian ground squirrels (Citellus undulatus). Ultrastructural analysis of both microsomal fraction and intact neurons was performed by serial ultramicrotomy. The levels of sphingomyelin (SM), phosphatidylserine (PS), and phosphatidylethanolamine (PEA) were decreased in homogenates from the cerebral cortex of winter ground squirrels compared with the summer-active animals, while the levels of phosphatidylcholine (PC) and cardiolipin (CL) were increased. The level of cholesterol was decreased in the cerebral cortex of winter-torpid animals compared with both winter-active and summer-active animals, and the level of total phospholipids was decreased in comparison to the summer-active animals. Three-dimensional reconstruction of serial membrane profiles displayed the microsomal fraction to be an interconnected system of cisterns and vesicles, which corresponds to endoplasmic reticulum and dictyosomes (Golgi stacks) of intact neurons. In winter the content of PC was increased in the microsomal fraction, while the contents of lysophosphatidylcholine (LPC), PS, phosphatidylinositol (PI), and SM were decreased. In winter-torpid animals compared with the winter-active ones the contents of total phospholipids, PEA, LPC, and cholesterol were decreased. As for the winter-active ground squirrels, their lipid contents did not differ from those in the summer-active animals, but LPC content was decreased. The changes in microsomal lipid contents in intact pyramidal neurons throughout the hibernation were accompanied by disassembly of dictyosomes and endoplasmic reticulum (ER), including the decomposition of polyribosomes to monosomes. The ultrastructural analysis of nucleoli, ER, and dictyosomes of both winter-active and torpid ground squirrels showed a direct correlation between the increasing contents of both cholesterol and total phospholipids (mainly PEA and LPC) in microsomes and the structural recovery of endoplasmic reticulum, Golgi stacks, and nucleoli in intact pyramidal neurons. A role of seasonal variations in lipid contents of brain cells in their adaptation to low temperature is discussed. We also propose an involvement of cholesterol in the activation of protein-synthesizing function of endoplasmic reticulum and Golgi stacks in intact neurons.  相似文献   

4.
We demonstrated that the level of phospholipids in the liver mitochondrial fraction is increased by 60% during the winter hibernation season in the Yakut ground squirrel S. undulatus; the phospholipid composition in sleeping animals is characterized by an increase in phosphatidylethanolamine compared with summer animals. A sharp increase in the level of cholesterol, as well as fatty acid, monoglycerides, and diglycerides was found in the mitochondrial fraction of hibernating ground squirrels in relation to summer ground squirrels. Functional changes during hibernation concern the level of phosphatidylserine (the growth in sleeping animals compared with active animals). Seasonal modification of the lipid composition of the liver mitochondria (particularly, an increase in the level of cholesterol) can play a role in the resistance of mitochondria to the seasonal increase in the level of fatty acids in the liver. Lipids of the liver mitochondrial fraction are involved in the ground squirrel adaptation to the hibernation season.  相似文献   

5.
The phospholipids of intact microsomal membranes were hydrolysed 50% by phospholipase C of Clostridium welchii, without loss of the secretory protein contents of the vesicle, which are therefore not permeable to the phospholipase. Phospholipids extracted from microsomes and dispersed by sonication were hydrolysed rapidly by phospholipase C-Cl. welchii with the exception of phosphatidylinositol. Assuming that only the phospholipids of the outside of the bilayer of the microsomal membrane are hydrolysed in intact vesicles, the composition of this leaflet was calculated as 84% phosphatidylcholine, 8% phosphatidylethanolamine, 9% sphingomyelin and 4% phosphatidylserine, and that of the inner leaflet 28% phosphatidylcholine, 37% phosphatidylethanolamine, 6% phosphatidylserine and 5% sphingomyelin. Microsomal vesicles were opened and their contents released in part by incubation with deoxycholate (0.098%) lysophosphatidylcholine (0.005%) or treatment with the French pressure cell. Under these conditions, hydrolysis of the phospholipids by phospholipase C-Cl. welchii was increased and this was mainly due to increased hydrolysis of those phospholipids assigned to the inner leaflet of the bilayer, phosphatidylethanolamine and phosphatidylserine. Phospholipase A2 of bee venom and phospholipase C of Bacillus cereus caused rapid loss of vesicle contents and complete hydrolysis of the membrane phospholipids, with the exception of sphingomyelin which is not hydrolysed by the former enzyme.  相似文献   

6.
Summary The composition of phospholipids and phospholipid fatty acids in isolated rat serous fluid mast cells was analyzed by thin layer chromatography, gas-liquid chromatography and mass spectrometry. The phospholipids constituted about 50% of the mast cell lipids and phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidylcholine, sphingomyelin and lysophosphatidylcholine were identified. The phosphatidylethanolamine fraction contained aldehydes and the highest proportion of unsaturated fatty acids. Sphingomyelin contained predominantly saturated fatty acids whereas the ratio unsaturated fatty acids: saturated fatty acids for the other phospholipids was more close to 1.  相似文献   

7.
During hibernation, fat is known to be the preferred source of energy. A detailed analysis of different phospholipids, as well as free and esterified cholesterol, was conducted to investigate lipid abnormalities during hibernation. The levels of total phospholipids and total cholesterol in the serum of black bears were found to increase significantly in hibernation as compared with the active state. Both free and esterified cholesterol were increased in the hibernating state in comparison with the active state (P < 0.05). The percentage increase during hibernation was more in free cholesterol (57%) than in esterified cholesterol (27%). Analysis of subclasses of serum phospholipids showed that choline containing phospholipids, i.e., sphingomyelin (SPG) (14%) and phosphatidylcholine (PC) (76%), are the major phospholipids in the serum of bear. The minor phospholipids included 8% of phosphatidylserine (PS) + phosphatidylinositol (PI), while phosphatidylethanolamine (PE) was only 2% of the total phospholipids. A comparison of phospholipid subclasses showed that PC, PS + PI and SPG were significantly increased, while PE was significantly decreased (P < 0.05) in the hibernating state as compared with the active state in black bears. These results suggest that the catabolism of phospholipids and cholesterol is decreased during hibernation in black bears, leading to their increased levels in the hibernating state as compared with the active state. In summary, our results indicate that serum cholesterol and phospholipid fractions (except PE) are increased during hibernation in bears. It is proposed that the increase of these lipids may be due to the altered metabolism of lipoproteins that are responsible for the clearance of the lipids.  相似文献   

8.
This study was designed to investigate the effects of light on pineal gland function and phospholipids contents in the blood serum of rabbits. The level of melatonin in the blood serum was significantly reduced and endogenous rhythm of the melatonin secretion brok down under constant illumination conditions. Two-month treatment of rabbits with light led to a significant and short-term decrease of the phosphatidylethanolamine and phosphatidylinositol + phosphatidylserine levels in the serum. The contents of the other lipids under study (phosphatidylcholine, lysophosphatidylcholine and sphingomyelin) in blood increased later under 3-5 month-long constant illumination conditions. The results obtained demonstrate important role of pineal gland in the regulation of phospholipids metabolism.  相似文献   

9.
1. Analyses of platelet lipid composition were carried out on material pooled from male and female miniature pigs. 2. The cholesterol/phospholipid molar ratio was 0.6. 3. Phosphatidylcholine represents the major class of phospholipids (47%) and phosphatidylinositol the minor (2%). 4. The main fatty acids of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol and sphingomyelin were: palmitic, stearic, oleic, linoleic and arachidonic acids. 5. The ratios of saturated to unsaturated fatty acids were: sphingomyelin, 1.7; phosphatidylcholine, 1.2; phosphatidylserine, 0.9; phosphatidylethanolamine and phosphatidylinositol, 0.6. 6. Our results suggests that human and miniature pig platelet lipids bear several characteristics in common. This fact would allow miniature pig to be used as a new experimental model.  相似文献   

10.
The lipid fractions were studied in the testicular tissue of mature bulls, of the lowland black-and-white breed. It was found that the main component of neutral lipids was cholesterol (48%) followed by triglycerides (24%), cholesterol esters (16%) and free fatty acids (12%). In cholesterol esters the main component was palmitic acid (41%) followed by oleic acid (22%), stearic acid (14%) and linoleic acid (14%). In phospholipids the main fraction was composed of lecithins (48%) followed by phosphatidylethanolamine (20%) and phosphatidic acids and phosphatidylglycerol (13%). Palmitic acid was found mainly in the fractions of lecithins and sphingomyelins, stearic acid in fractions of phosphatidylethanolamine, phosphatidylserine and phosphatidylinositol. Linoleic acid was found in the fractions of phosphatidylethanolamine, phosphatidylcholine and sphingomyelin. Arachidonic, docosatetraenoic and docosapentaenoic acids in the fractions of phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol and phosphatidylcholine.  相似文献   

11.
An operative method using HPTLC which makes possible the determination of nine phospholipids in the amniotic fluid individually is described: lysophosphatidylcholine, sphingomyelin, phosphatidylcholine, phosphatidylinositol, phosphatidylserine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidic acid and cardiolipine. Since a simple and reliable method for clinical practice was sought, the working techniques, materials, chromatographic solvents and staining reagents were chosen accordingly. The standardization method was made by using standard phospholipids. This method was tested with 34 samples of amniotic fluid. A discussion of the practical application in the determination of some ratios of fetal pulmonary maturity is made.  相似文献   

12.
Changes in brain lipid composition have been determined in 24 months-old Fischer rats with respect to 6 months-old ones. The cerebral levels of sphingomyelin and cholesterol were found to be significantly increased in aged rats, whereas the amount of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and phosphatidic acid appear to be unaffected by aging. Long-term feeding with acetyl-L-carnitine was able to reduce the age-dependent increase of both sphingomyelin and cholesterol cerebral levels with no effect on the other measured phospholipids. These findings shown that changes in membrane lipid metabolism and/or composition represent one of the alterations occurring in rat brain with aging, and that long-term feeding with acetyl-L-carnitine can be useful in normalizing these age-dependent disturbances.  相似文献   

13.
1. Lipid composition of Trypanosoma cruzi epimastigote form in culture consist of 35% of phospholipids and 65% of neutral lipids. 2. Among the phospholipids, phosphatidylcholine is the more abundant (44%), followed by phosphatidylethanolamine (28%), phosphatidylinositol (12%), sphingomyelin (4%), and smaller amounts of cardiolipin, phosphatidic acid, lysolecithin, phosphatidylserine (traces), and an unidentified phospholipid (3%). 3. Pulse labeling with 32P showed highest specific incorporation in phosphatidylethanolamine, followed by phosphatidylinositol and phosphatidylcholine, suggesting a more active role for phosphatidylethanolamine in these organisms.  相似文献   

14.
Treatment of rat liver cells (the C-9 cell line), porcine aorta endothelial cells, bovine aorta smooth muscle cells, bovine aorta endothelial cells, mouse fibroblasts and rat keratinocytes with highly purified, crystallized Bacillus cereus phospholipase C, which hydrolyzes phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine but has little or no effect on phosphatidylinositol, phosphatidylglycerol, cardiolipin, sphingomyelin, lysophosphatidylcholine or lysophosphatidylethanolamine, increased metabolism of arachidonic acid. Hydrolysis of phosphatidylcholine (and/or phosphatidylethanolamine) by a phosphatidylcholine (or phosphatidylethanolamine)-hydrolyzing phospholipase C appears to contribute to liberation of substrate for arachidonic acid metabolism.  相似文献   

15.
Winter sleep of the ground squirrel Spermophilus undulatus was accompanied by a 20% decrease in phospholipid content (µg phospholipid per 1 mg protein) in microsomal fractions of the liver as compared with summer-active squirrels. The phosphatidylcholine level (mol %) in hibernating squirrels was lower than in summer-active squirrels, and the content of sphingomyelin (mol %) during the torpor bout was higher than in winter- and summer-active squirrels. The cholesterol, fatty acid, monoglyceride, and diglyceride levels in the microsomal fraction of the liver were elevated during hibernation. Pronounced seasonal changes in the lipid/protein ratio implicate the lipids of the liver microsomal fraction in adaptation of the ground squirrel to hibernation.  相似文献   

16.
A rapid, isocratic method for separating the most prevalent phospholipids by high-performance liquid chromatography is described. Baseline resolution of phosphatidylinositol, phosphatidylserine, phosphatidylethanolamine, phosphatidylcholine, lysophosphatidylcholine, and sphingomyelin is achieved in less than 40 min on a silica column. Lipids are injected in 10 microliter of chloroform-diethyl ether 1:2 (v/v) and eluted with a solvent mixture of acetonitrile-methanol-sulfuric acid 100:3:0.05 (v/v/v) at a flow rate of 1 ml/min. Neutral lipids and cardiolipin elute with the solvent front. Chromatography of a radioactive cell lipid extract indicates a recovery of better than 97%. The procedure is sensitive enough to permit the analysis of the main phospholipids present in a monolayer culture containing about 100 micrograms of cell protein.  相似文献   

17.
The distribution of phospholipids over the outer and inner layers of the plasma membranes of differentiated Friend erythroleukemic cells (Friend cells) and mouse reticulocytes has been determined. Phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol were found to be distributed symmetrically over both layers, sphingomyelin was found to be enriched in the outer layer (80-85%) and phosphatidylserine appeared to be present mainly in the inner layer (80-90%) of the plasma membranes of differentiated Friend cells. The outer layer of reticulocyte membranes contains 50-60% of the phosphatidylcholine, 20% of the phosphatidylethanolamine, 82-85% of the sphingomyelin and 40-42% of the phosphatidylinositol. All of the phosphatidylserine is present in the inner layer. The results show, that the asymmetric distribution of phospholipids, typical for erythrocyte membranes, is partially apparent already at an early stage of erythropoiesis, the proerythroblast, while the final organization of phospholipid distribution takes place at some stage during enucleation of the enormoblast and release of the reticulocyte into the blood stream.  相似文献   

18.
The effects of low concentrations of cholesterol in mixtures of a negatively charged phospholipid (phosphatidylserine or phosphatidylglycerol) and another phospholipid (phosphatidylcholine, sphingomyelin or phosphatidylethanolamine) have been studied by differential scanning calorimetry. Only mixtures which showed a gel phase miscibility gap have been employed. It was demonstrated that in mixtures with phosphatidylethanolamine, cholesterol was preferentially associated with the negatively charged phospholipid, regardless whether this species represented the component with the high or with the low transition temperature in the mixture. In mixtures of a negatively charged phospholipid and phosphatidylcholine, cholesterol associated with the negatively charged phospholipid; when the phosphatidylcholine was the species with the low transition temperature, cholesterol had an affinity for the phosphatidylcholine and for the negatively charged phospholipid as well. Cholesterol, in a mixture of sphingomyelin with a high and phosphatidylserine with a low transition temperature, was preferentially associated with sphingomyelin.From these experiments it is concluded that phospholipids show a decrease in affinity for cholesterol in the following order: sphingomyelin ? phosphatidylserine, phosphatidylglycerol > phosphatidylcholine ? phosphatidylethanolamine.  相似文献   

19.
Critical developmental periods, such as fertilization, involve metabolic activation, membrane fusion events such as sperm-egg or plasma membrane-cortical granule merger, and production and hydrolysis of phospholipids. However, there has been no large-scale quantification of phospholipid changes during fertilization. Using an enzymatic assay, traditional FA analysis by TLC and gas chromatography, along with a new method of phospholipid measurement involving HPLC separation and evaporative light-scattering detection, we report lipid levels in eggs, sperm, and during fertilization in Xenopus laevis. Sperm were found to contain different amounts of phospholipids as compared with eggs. During fertilization, total phosphatidylinositol, lysophosphatidylcholine, sphingomyelin, and phosphatidylserine decreased, and ceramide increased, whereas there was no change in phosphatidylcholine, cardiolipin, or phosphatidylethanolamine. FA analysis of phospholipids found numerous changes during fertilization. Because there is an increase in sn-1,2-diacylglycerol at fertilization, the FAs associated with this increase and the source of the increase in this neutral lipid were examined. Finally, activation of phospholipase C, phospholipase D, phospholipase A2, autotoxin, and sphingomyelinase at fertilization is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号