首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Csicsvari J  Hirase H  Mamiya A  Buzsáki G 《Neuron》2000,28(2):585-594
Transfer of neuronal patterns from the CA3 to CA1 region was studied by simultaneous recording of neuronal ensembles in the behaving rat. A nonlinear interaction among pyramidal neurons was observed during sharp wave (SPW)-related population bursts, with stronger synchrony associated with more widespread spatial coherence. SPW bursts emerged in the CA3a-b subregions and spread to CA3c before invading the CA1 area. Synchronous discharge of >10% of the CA3 within a 100 ms window was required to exert a detectable influence on CA1 pyramidal cells. Activity of some CA3 pyramidal neurons differentially predicted the ripple-related discharge of circumscribed groups of CA1 pyramidal cells. We suggest that, in SPW behavioral state, the coherent discharge of a small group of CA3 cells is the primary cause of spiking activity in CA1 pyramidal neurons.  相似文献   

2.
It is suggested that the information about a new stimulus from the neocortex is transferred to the hippocampus and forms there a transient trace in the form of a distributed pattern of modified synapses. During sleep, the neuronal populations which store this trace are reactivated and return to the neocortex the information necessary for consolidation of the permanent memory trace. A possible mechanism of the reactivation of the "learned" hippocampal neurons during memory consolidation is the reverberation of excitation in the neuronal circuits connecting the hippocampus and the entorhinal cortex. In rats, we recorded responses in hippocampal field CA1 to stimulation of the Schaffer collaterals with potentiated synapses during wakefulness and sleep. We showed that in the periods of deep sleep, after the discharge of CA1 neurons, the wave of excitation passes through the entorhinal cortex and via the perforant path fibers enters the hippocampus and the dentate gyrus, causing in the latter the discharge of neurons. The repeated discharge of the CA1 neurons develops as the result of interaction of the early wave which is returned directly via the perforant path fibers and the late wave which is returned via the Schaffer collaterals, but not through the dentate gyrus and hippocampal field CA3 (trisynaptic pathway), but, probably, through the field CA2.  相似文献   

3.
The comprehension of activities and functions of complex brain structures requires, among other things, information on simultaneous activities in several regions. Results reported in the literature using multi(micro/macro)electrode recordings or imaging techniques provide incomplete information due either to the small size and/or small number of investigated regions or to the poor spatiotemporal resolution, respectively. This is particularly true for the hippocampus and its subfields, and mathematical modeling and computer simulation have been used with the aim of obtaining information when this is lacking. Global activities in the CA3 field of the hippocampus, and in particular the genesis of theta rhythm and sharp waves, have been investigated here by a mathematical model formulated within the frame of a kinetic theory of neural systems. The model has taken into account data of experimental results both on different PSPs recorded in hippocampal neurons and on recurrent pyramidal collateral geometries. The computational ‘experiments’ to which the model was subjected suggest that the sharp waves arise through a selective and short block of the fast inhibitory neurons of CA3, produced by a medial septum inhibitory input, whereas the theta activity is produced by a durable, continuous inhibition of the slow inhibitory neurons. Information obtained also suggests that the recurrent pyramidal collaterals subserve a competitive, rather than a cooperative, organization. Based on these results a hypothesis on the possible functional organization of the CA3 field and of the entire hippocampus has been formulated. According to this hypothesis, the CA3 imposes a serial order on the flow of activity arriving at the hippocampus from the entorhinal cortex and from its connected polymodal cortical regions. This ordering permits cortical activities, arriving at CA3 on appropriate time intervals, to produce effects in regions of brain to which the CA3 projects. The competing cortical activities are lost.  相似文献   

4.
The hippocampus is a brain structure critical for memory functioning. Its network dynamics include several patterns such as sharp waves that are generated in the CA3 region. To understand how population outputs are generated, models need to consider aspects of network size, cellular and synaptic characteristics and context, which are necessarily 'balanced' in appropriate ways to produce particular outputs. Thick slice hippocampal preparations spontaneously produce sharp waves that are initiated in CA3 regions and depend on the right balance of glutamatergic activities. As a step toward developing network models that can explain important balances in the generation of hippocampal output, we develop models of CA3 pyramidal cells. Our models are single compartment in nature, use an Izhikevich-type structure and involve parameter values that are specifically designed to encompass CA3 intrinsic properties. Importantly, they incorporate spike frequency adaptation characteristics that are directly comparable to those measured experimentally. Excitatory networks using these model cells are able to produce bursting suggesting that the amount of spike frequency adaptation expressed in the biological cells is an essential contributor to network bursting, and as such, may be important for sharp wave generation. The network bursting mechanism is numerically dissected showing the critical balance between adaptation and excitatory drive. The compact nature of our models allows large network simulations to be efficiently computed. This, together with the linkage of our models to cellular characteristics, will allow us to develop an understanding of population output of CA3 hippocampus with direct biological comparisons.  相似文献   

5.
Ventriglia F 《Bio Systems》2006,86(1-3):38-45
Global oscillations of the neural field represent some of the most interesting expressions of the hippocampal activity, being related also to learning and memory. To study oscillatory activities of the CA3 field in theta range, a model of this sub-field of Hippocampus has been formulated. The model describes the firing activity of CA3 neuronal populations within the frame of a kinetic theory of neural systems and it has been used for computer simulations. The results show that the propagation of activities induced in the neural field by hippocampal afferents occurs only in narrow time windows confined by inhibitory barrages, whose time-course follows the theta rhythm. Moreover, during each period of a theta wave, the entire CA3 field bears a firing activity with peculiar space-time patterns, a sort of specific imprint, which can induce effects with similar patterns on brain regions driven by the hippocampal formation. The simulation has also demonstrated the ability of medial septum to influence the global activity of the CA3 pyramidal population through the control of the population of inhibitory interneurons. At last, the possible involvement of global population oscillations in neural coding has been discussed.  相似文献   

6.
Memory of sequential experience in the hippocampus during slow wave sleep   总被引:19,自引:0,他引:19  
Lee AK  Wilson MA 《Neuron》2002,36(6):1183-1194
Rats repeatedly ran through a sequence of spatial receptive fields of hippocampal CA1 place cells in a fixed temporal order. A novel combinatorial decoding method reveals that these neurons repeatedly fired in precisely this order in long sequences involving four or more cells during slow wave sleep (SWS) immediately following, but not preceding, the experience. The SWS sequences occurred intermittently in brief ( approximately 100 ms) bursts, each compressing the behavioral sequence in time by approximately 20-fold. This rapid encoding of sequential experience is consistent with evidence that the hippocampus is crucial for spatial learning in rodents and the formation of long-term memories of events in time in humans.  相似文献   

7.
Signals related to fear memory and extinction are processed within brain pathways involving the lateral amygdala (LA) for formation of aversive stimulus associations, the CA1 area of the hippocampus for context-dependent modulation of these associations, and the infralimbic region of the medial prefrontal cortex (mPFC) for extinction processes. While many studies have addressed the contribution of each of these modules individually, little is known about their interactions and how they function as an integrated system. Here we show, by combining multiple site local field potential (LFP) and unit recordings in freely behaving mice in a fear conditioning paradigm, that theta oscillations may provide a means for temporally and functionally connecting these modules. Theta oscillations occurred with high specificity in the CA1-LA-mPFC network. Theta coupling increased between all areas during retrieval of conditioned fear, and declined during extinction learning. During extinction recall, theta coupling partly rebounded in LA-mPFC and CA1-mPFC, and remained at a low level in CA1-LA. Interfering with theta coupling through local electrical microstimulation in CA1-LA affected conditioned fear and extinction recall depending on theta phase. These results support the hypothesis that theta coupling provides a means for inter-areal coordination in conditioned behavioral responsiveness. More specifically, theta oscillations seem to contribute to a population code indicating conditioned stimuli during recall of fear memory before and after extinction.  相似文献   

8.
The activity of the neurones of the medial septal region (MS) and the hippocampal EEG in control and during the appearance of seizure discharges provoked by electrical stimulation of the perforant path were investigated in the awake rabbit. During afterdischarge generation in the hippocampus the dense neuronal bursts separated by periods of inhibition were recorded in the MS. In one group of neurons the bursts of spikes coincided with the discharges in the hippocampus, in other group-occured during inhibitory periods. When the afterdischarge stopped, in the septal neurons with theta activity the disruption of theta pattern was recorded, which have been correlated with the occurrence of low amplitude high frequency (20-25 Hz) waves in the hippocampal EEG. As a rule, the neuronal activivity of the MS recovered much quickly than EEG of the hippocampus; in some cases the increasing of the theta regularity was observed. The definite accordance of the electrical activity of the hippocampus and MS during seizure discharges suggests that the septohippocampal system operate as integral nervous circuit in these conditions. Diverse in the temporal interrelations between the discharges of MS neurones and ictal discharges in the hippocampus in the different cells possible indicate that various groups of the septal nervous elements have different participation in the seizure development. Appearance of the high frequency bursts in the MS is a possible "precursor" of the seizure onsets.  相似文献   

9.
Moita MA  Rosis S  Zhou Y  LeDoux JE  Blair HT 《Neuron》2003,37(3):485-497
We recorded neurons from the hippocampus of freely behaving rats during an auditory fear conditioning task. Rats received either paired or unpaired presentations of an auditory conditioned stimulus (CS) and an electric shock unconditioned stimulus (US). Hippocampal neurons (place and theta cells) acquired responses to the auditory CS in the paired but not in the unpaired group. After CS-US pairing, rhythmic firing of theta cells became synchronized to the onset of the CS. Conditioned responses of place cells were gated by their location-specific firing, so that after CS-US pairing, place cells responded to the CS only when the rat was within the cell's place field. These findings may help to elucidate how the hippocampus contributes to context-specific memory formation during associative learning.  相似文献   

10.
Mizuseki K  Royer S  Diba K  Buzsáki G 《Hippocampus》2012,22(8):1659-1680
The CA3 and CA1 pyramidal neurons are the major principal cell types of the hippocampus proper. The strongly recurrent collateral system of CA3 cells and the largely parallel-organized CA1 neurons suggest that these regions perform distinct computations. However, a comprehensive comparison between CA1 and CA3 pyramidal cells in terms of firing properties, network dynamics, and behavioral correlations is sparse in the intact animal. We performed large-scale recordings in the dorsal hippocampus of rats to quantify the similarities and differences between CA1 (n > 3,600) and CA3 (n > 2,200) pyramidal cells during sleep and exploration in multiple environments. CA1 and CA3 neurons differed significantly in firing rates, spike burst propensity, spike entrainment by the theta rhythm, and other aspects of spiking dynamics in a brain state-dependent manner. A smaller proportion of CA3 than CA1 cells displayed prominent place fields, but place fields of CA3 neurons were more compact, more stable, and carried more spatial information per spike than those of CA1 pyramidal cells. Several other features of the two cell types were specific to the testing environment. CA3 neurons showed less pronounced phase precession and a weaker position versus spike-phase relationship than CA1 cells. Our findings suggest that these distinct activity dynamics of CA1 and CA3 pyramidal cells support their distinct computational roles.  相似文献   

11.
Huerta PT  Sun LD  Wilson MA  Tonegawa S 《Neuron》2000,25(2):473-480
In humans the hippocampus is required for episodic memory, which extends into the spatial and temporal domains. Work on the rodent hippocampus has shown that NMDA receptor (NMDAR) -mediated plasticity is essential for spatial memory. Here, we have examined whether hippocampal NMDARs are also needed for temporal memory. We applied trace fear conditioning to knockout mice lacking NMDARs only in hippocampal CA1 pyramidal cells. This paradigm requires temporal processing because the conditional and unconditional stimuli are separated by 30 s (trace). We found that knockout mice failed to memorize this association but were indistinguishable from normal animals when the trace was removed. Thus, NMDARs in CA1 are crucial for the formation of memories that associate events across time.  相似文献   

12.
Activities of individual hippocampal (CA1 area) and neocortical parietal-temporal neurons were compared in active and passive rabbits in negative emotional situations during emotionally significant stimuli by plotting histograms of autocorrelations. As compared to passive animals, in active rabbits, the mean firing rate of hippocampal neurons was higher, bursting and periodic oscillations of discharges occurred more frequently. Oscillation periods in the theta 1 band (6.0-9.0 Hz) appeared more frequently (in the baseline state and active exploratory or defensive reactions), whereas those in the theta 2 band (4.0-5.9 Nz), on the contrary, were infrequently observed (during freezing). The greatest changes in activity ofhippocampal neurons were observed during active locomotor responses of active rabbits. Intergroup differences in neocortical neuronal activities were less pronounced than in hippocampus. The results indicate that individual typological features in behaviour of animals appear in negative emotional situations and are reflected in activity of activity ofhippocampal (area CA1) and to lesser extent parietal-temporal neocortical neurons. The results suggest different activation levels of the septohippocampal system of active and passive rabbits and possible differences in the afferent input to the CA1 field.  相似文献   

13.
MF Carr  MP Karlsson  LM Frank 《Neuron》2012,75(4):700-713
The replay of previously stored memories during hippocampal sharp wave ripples (SWRs) is thought to support both memory retrieval and consolidation?in distributed hippocampal-neocortical circuits. Replay events consist of precisely timed sequences of spikes from CA3 and CA1 neurons that are coordinated both within and across hemispheres. The mechanism of this coordination is not understood. Here, we show that during SWRs in both awake and quiescent states there are transient increases in slow gamma (20-50?Hz) power and synchrony across dorsal CA3 and CA1 networks of both hemispheres. These gamma oscillations entrain CA3 and CA1 spiking. Moreover, during awake SWRs, higher levels of slow gamma synchrony are predictive of higher quality replay of past experiences. Our results indicate that CA3-CA1 gamma synchronization is a central component of awake memory replay and suggest that transient gamma synchronization serves as a clocking mechanism to enable coordinated memory reactivation across the hippocampal network.  相似文献   

14.
Hippocampal sharp wave/ripple oscillations are a prominent pattern of collective activity, which consists of a strong overall increase of activity with superimposed (140 − 200 Hz) ripple oscillations. Despite its prominence and its experimentally demonstrated importance for memory consolidation, the mechanisms underlying its generation are to date not understood. Several models assume that recurrent networks of inhibitory cells alone can explain the generation and main characteristics of the ripple oscillations. Recent experiments, however, indicate that in addition to inhibitory basket cells, the pattern requires in vivo the activity of the local population of excitatory pyramidal cells. Here, we study a model for networks in the hippocampal region CA1 incorporating such a local excitatory population of pyramidal neurons. We start by investigating its ability to generate ripple oscillations using extensive simulations. Using biologically plausible parameters, we find that short pulses of external excitation triggering excitatory cell spiking are required for sharp/wave ripple generation with oscillation patterns similar to in vivo observations. Our model has plausible values for single neuron, synapse and connectivity parameters, random connectivity and no strong feedforward drive to the inhibitory population. Specifically, whereas temporally broad excitation can lead to high-frequency oscillations in the ripple range, sparse pyramidal cell activity is only obtained with pulse-like external CA3 excitation. Further simulations indicate that such short pulses could originate from dendritic spikes in the apical or basal dendrites of CA1 pyramidal cells, which are triggered by coincident spike arrivals from hippocampal region CA3. Finally we show that replay of sequences by pyramidal neurons and ripple oscillations can arise intrinsically in CA1 due to structured connectivity that gives rise to alternating excitatory pulse and inhibitory gap coding; the latter denotes phases of silence in specific basket cell groups, which induce selective disinhibition of groups of pyramidal neurons. This general mechanism for sequence generation leads to sparse pyramidal cell and dense basket cell spiking, does not rely on synfire chain-like feedforward excitation and may be relevant for other brain regions as well.  相似文献   

15.
The supramammillary area (SUM) of the hypothalamus has wide spread connection with numerous brain structures. It is known that the SUM can control the frequency of the hippocampal theta rhythm, which plays a role in the cognitive functions of the hippocampal formation. In order to examine the role of the specific cells of the SUM in learning and memory, selective cholinergic neurotoxic or excitotoxic lesioned rats of the SUM were tested for spatial memory on the Morris water maze (MWM) test. After the behavior tests, the expression of acetylcholinesterase (AChE) in the hippocampus was studied using the immunohistochemistry. In the MWM test, both lesion of the SUM with 192 IgG-saporin or ibotenic acid produced the impairment of spatial learning and memory. The expression of AChE immunreactive neurons in the hippocampal CA3 region was decreased after injections of 192 IgG-saporin into the SUM. These findings suggest that cholinoceptive cells of the SUM area may play a critical role in the process of learning and memory.  相似文献   

16.
Ontogenetic mechanisms of memory formation were studied using an experimental model of conditioned reflex to time, i.e., trace acquisition of a stimulation rhythm by hippocampal CA1 neurons of young (1-4 weeks old) and adult rabbits (5-6 months old). It was found that age-related development of learning ability includes several stages: complete absence of memory traces (6-7 days old), rapid acquisition without consolidation (8-14 days old), and formation of perfect memory (25-30 days old). Both specific and nonspecific changes in spontaneous activity of neurons were observed. Changes in the rate of discharges related to rhythmic stimulation were accompanied by changes in spontaneous activity. With the development of an animal, spike activity increased in parallel with improving of the functional properties of neurons, their structural organization, formation of the afferent contacts in the hippocampus completed after a period of three weeks from birth, and formation of metabolic processes, modulatory systems, and traffic function of hippocampal neurons. A capability for plastic reorganization is of great importance for adaptation mechanisms and conditioned behavior of a developing animal in accordance with structural maturation and development of the functional regulation of neuronal reactivity in the hippocampus.  相似文献   

17.
The hippocampus is crucial for episodic or declarative memory and the theta rhythm has been implicated in mnemonic processing, but the functional contribution of theta to memory remains the subject of intense speculation. Recent evidence suggests that the hippocampus might function as a network hub for volitional learning. In contrast to human experiments, electrophysiological recordings in the hippocampus of behaving rodents are dominated by theta oscillations reflecting volitional movement, which has been linked to spatial exploration and encoding. This literature makes the surprising cross-species prediction that the human hippocampal theta rhythm supports memory by coordinating exploratory movements in the service of self-directed learning. We examined the links between theta, spatial exploration, and memory encoding by designing an interactive human spatial navigation paradigm combined with multimodal neuroimaging. We used both non-invasive whole-head Magnetoencephalography (MEG) to look at theta oscillations and Functional Magnetic Resonance Imaging (fMRI) to look at brain regions associated with volitional movement and learning. We found that theta power increases during the self-initiation of virtual movement, additionally correlating with subsequent memory performance and environmental familiarity. Performance-related hippocampal theta increases were observed during a static pre-navigation retrieval phase, where planning for subsequent navigation occurred. Furthermore, periods of the task showing movement-related theta increases showed decreased fMRI activity in the parahippocampus and increased activity in the hippocampus and other brain regions that strikingly overlap with the previously observed volitional learning network (the reverse pattern was seen for stationary periods). These fMRI changes also correlated with participant's performance. Our findings suggest that the human hippocampal theta rhythm supports memory by coordinating exploratory movements in the service of self-directed learning. These findings directly extend the role of the hippocampus in spatial exploration in rodents to human memory and self-directed learning.  相似文献   

18.
 During different behavioral states different population activities are present in the hippocampal formation. These activities are not independent: sharp waves often occur together with high-frequency ripples, and gamma-frequency activity is usually superimposed on theta oscillations. There is both experimental and theoretical evidence supporting the notion that gamma oscillation is generated intrahippocampally, but there is no generally accepted view about the origin of theta waves. Precise timing of population bursts of pyramidal cells may be due to a synchronized external drive. Membrane potential oscillations recorded in the septum are unlikely to fulfill this purpose because they are not coherent enough. We investigated the prospects of an intrahippocampal mechanism supplying pyramidal cells with theta frequency periodic inhibition, by studying a model of a network of hippocampal inhibitory interneurons. As shown previously, interneurons are capable of generating synchronized gamma-frequency action potential oscillations. Exciting the neurons by periodic current injection, the system could either be entrained in an oscillation with the frequency of the inducing current or exhibit in-phase periodic changes at the frequency of single cell (and network) activity. Simulations that used spatially inhomogeneous stimulus currents showed anti-phase frequency changes across cells, which resulted in a periodic decrease in the synchrony of the network. As this periodic change in synchrony occurred in the theta frequency range, our network should be able to exhibit the theta-frequency weakening of inhibition of pyramidal cells, thus offering a possible mechanism for intrahippocampal theta generation. Received: 23 February 2000 / Accepted in revised form: 30 June 2000  相似文献   

19.
The subiculum is positioned at a critical juncture at the interface of the hippocampus with the rest of the brain. However, the exact roles of the subiculum in most hippocampal-dependent memory tasks remain largely unknown. One obstacle to make comparisons of neural firing patterns between the subiculum and hippocampus is the broad firing fields of the subicular cells. Here, we used spiking phases in relation to theta rhythm to parse the broad firing field of a subicular neuron into multiple subfields to find the unique functional contribution of the subiculum while male rats performed a hippocampal-dependent visual scene memory task. Some of the broad firing fields of the subicular neurons were successfully divided into multiple subfields similar to those in the CA1 by using the theta phase precession cycle. The new paradigm significantly improved the detection of task-relevant information in subicular cells without affecting the information content represented by CA1 cells. Notably, we found that multiple fields of a single subicular neuron, unlike those in the CA1, carried heterogeneous task-related information such as visual context and choice response. Our findings suggest that the subicular cells integrate multiple task-related factors by using theta rhythm to associate environmental context with action.

The subiculum is positioned at the interface between the hippocampus and the rest of the brain, but what is its role in hippocampal-dependent memory tasks? This neurophysiological study provides novel insights into how the subiculum represents multiple cognitive variables by using both rate and temporal codes.  相似文献   

20.
A current status of knowledge about high-frequency (140-200 Hz) ripple oscillations in the CA1 hippocampal subfield is summarized and considered in the context of two-stage model of the hippocampal memory processing. A large body of evidence suggests highly-selective recruitment of pyramidal cells and interneurons in the generation of the oscillatory pattern after co-operative sharp-wave-related discharge of CA3 pyramidal neurons. We also discuss a role of transmission via gap junctions in the mechanisms of ripple oscillations as well as their adaptive aminergic (histaminergic) modulation. Patterns of neuronal firing in the hippocampus observed during ripple oscillations reproduce space-dependant neuronal activity from the previous waking period. Together with a data about efficacy of high-frequency stimulation for induction of synaptic modification it points out a role for ripples in the formation of long-term memory. Focal ultra fast ripples (up to 500 Hz) have been shown to participate in the development of temporal lobe epilepsy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号