首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The neuronal cytoskeleton not only provides the structural backbone of neurons, but also plays a fundamental role in maintaining neuronal functions. Dysregulation of neuronal architecture is evident in both injury and diseases of the central nervous system. These changes often result in the disruption of protein trafficking, loss of synapses and the death of neurons, ultimately impacting on signal transmission and manifesting in the disease phenotype. Furthermore, mutations in cytoskeletal proteins have been implicated in numerous diseases and, in some cases, identified as the cause of the disease, highlighting the critical role of the cytoskeleton in disease pathology. This review focuses on the role of cytoskeletal proteins in the pathology of mental disorders, neurodegenerative diseases and motor function deficits. In particular, we illustrate how cytoskeletal proteins can be directly linked to disease pathology and progression.  相似文献   

2.
《朊病毒》2013,7(4):195-201
Synaptic dysfunction is a key process in the evolution of many neurodegenerative diseases, with synaptic loss preceding the loss of neuronal cell bodies. In Alzheimer's, Huntington's, and prion diseases early synaptic changes correlate with cognitive and motor decline, and altered synaptic function may also underlie deficits in a number of psychiatric and neurodevelopmental conditions. The formation, remodelling and elimination of spines and synapses are continual physiological processes, moulding cortical architecture, underpinning the abilities to learn and remember. In disease, however, particularly in protein misfolding neurodegenerative disorders, lost synapses are not replaced and this loss is followed by neuronal death. These two processes are separately regulated, with mechanistic, spatial and temporal segregation of the death 'routines' of synapses and cell bodies. Recent insights into the reversibility of synaptic dysfunction in a mouse model of prion disease at neurophysiological, behavioral and morphological levels call for a deeper analysis of the mechanisms underlying neurotoxicity at the synapse, and have important implications for therapy of prion and other neurodegenerative disorders.  相似文献   

3.
Synaptic connections are stabilized through transsynaptic adhesion complexes that are anchored in the underlying cytoskeleton. The Drosophila neuromuscular junction (NMJs) serves as a model system to unravel genes required for the structural remodeling of synapses. In a mutagenesis screen for regulators of synaptic stability, we recovered mutations in Drosophila ankyrin 2 (ank2) affecting two giant Ank2 isoforms that are specifically expressed in the nervous system and associate with the presynaptic membrane cytoskeleton. ank2 mutant larvae show severe deficits in the stability of NMJs, resulting in a reduction in overall terminal size, withdrawal of synaptic boutons, and disassembly of presynaptic active zones. In addition, lack of Ank2 leads to disintegration of the synaptic microtubule cytoskeleton. Microtubules and microtubule-associated proteins fail to extend into distant boutons. Interestingly, Ank2 functions downstream of spectrin in the anchorage of synaptic microtubules, providing the cytoskeletal scaffold that is essential for synaptic stability.  相似文献   

4.
The cytoskeleton is the major intracellular determinant of neuronal morphology and is required for fundamental processes during the development and maintenance of a neuron. Thus, it is not surprising that many neurodegenerative diseases including Alzheimer's disease and amyotrophic lateral sclerosis (motor neuron disease) are characterized by typical abnormalities in the organization of the cytoskeleton. However, the role of the cytoskeletal changes during the development of the disease, e.g., whether they have a causative role during neuronal degeneration or represent an epiphenomenon of neurons that degenerate by other means, is still disputed. In this review, recent results on the development and the role of cytoskeletal abnormalities during neurodegenerative diseases are discussed and a mechanistic framework for the involvement of cytoskeletal changes during neurodegenerative processes is presented.  相似文献   

5.
Dendritic spines are small actin-rich protrusions from neuronal dendrites that form the postsynaptic part of most excitatory synapses and are major sites of information processing and storage in the brain. Changes in the shape and size of dendritic spines are correlated with the strength of excitatory synaptic connections and heavily depend on remodeling of its underlying actin cytoskeleton. Emerging evidence suggests that most signaling pathways linking synaptic activity to spine morphology influence local actin dynamics. Therefore, specific mechanisms of actin regulation are integral to the formation, maturation, and plasticity of dendritic spines and to learning and memory.  相似文献   

6.
The control of new protein synthesis provides a means to locally regulate the availability of synaptic components necessary for dynamic neuronal processes. The fragile X mental retardation protein (FMRP), an RNA-binding translational regulator, is a key player mediating appropriate synaptic protein synthesis in response to neuronal activity levels. Loss of FMRP causes fragile X syndrome (FraX), the most commonly inherited form of mental retardation and autism spectrum disorders. FraX-associated translational dysregulation causes wide-ranging neurological deficits including severe impairments of biological rhythms, learning processes, and memory consolidation. Dysfunction in cytoskeletal regulation and synaptic scaffolding disrupts neuronal architecture and functional synaptic connectivity. The understanding of this devastating disease and the implementation of meaningful treatment strategies require a thorough exploration of the temporal and spatial requirements for FMRP in establishing and maintaining neural circuit function.  相似文献   

7.
Synaptic dysfunction is a key process in the evolution of many neurodegenerative diseases, with synaptic loss preceding that of neuronal cell bodies. In Alzheimer, Huntington, and prion diseases early synaptic changes correlate with cognitive and motor decline, and altered synaptic function may also underlie deficits in a number of psychiatric and neurodevelopmental conditions. The formation, remodelling and elimination of spines and synapses are continual physiological processes, moulding cortical architecture, underpinning the abilities to learn and remember. In disease, however, particularly in protein misfolding neurodegenerative disorders, lost synapses are not replaced and this loss is followed by neuronal death. These two processes are separately regulated, with mechanistic, spatial and temporal segregation of the death ‘routines’ of synapses and cell bodies. Recent insights into the reversibility of synaptic dysfunction in a mouse model of prion disease at neurophysiological, behavioral and morphological levels call for a deeper analysis of the mechanisms underlying neurotoxicity at the synapse, and have important implications for therapy of prion and other neurodegenerative disorders.Key words: neurodegeneration, prion, synaptic dysfunction, behavior, neurophysiology  相似文献   

8.
Synapses of the central nervous system (CNS) are specialized cell-cell junctions that mediate intercellular signal transmission from one neuron to another. The directional nature of signal relay requires synaptic contacts to be morphologically asymmetric with distinct protein components, while changes in synaptic communication during neural network formation require synapses to be plastic. Synapse morphology and plasticity require a dynamic actin cytoskeleton. Classical cadherins, which are junctional proteins associated with the actin cytoskeleton, localize to synapses and regulate synaptic adhesion, stability and remodeling. The major intracellular components of cadherin junctions are the catenin proteins, and increasing evidence suggests that cadherin-catenin complexes modulate an array of synaptic processes. Here we review the role of catenins in regulating the development of pre- and postsynaptic compartments and function in synaptic plasticity, with particular focus on their role in regulating the actin cytoskeleton.  相似文献   

9.
10.
11.
Synchronisation has become one of the major scientific tools to explain biological order at many levels of organisation. In systems neuroscience, synchronised subthreshold and suprathreshold oscillatory neuronal activity within and between distributed neuronal assemblies is acknowledged as a fundamental mode of neuronal information processing. Coherent neuronal oscillations correlate with all basic cognitive functions, mediate local and long-range neuronal communication and affect synaptic plasticity. However, it remains unclear how the very fast and complex changes of functional neuronal connectivity necessary for cognition, as mediated by dynamic patterns of neuronal synchrony, could be explained exclusively based on the well-established synaptic mechanisms. A growing body of research indicates that the intraneuronal matrix, composed of cytoskeletal elements and their binding proteins, structurally and functionally connects the synapses within a neuron, modulates neurotransmission and memory consolidation, and is hypothesised to be involved in signal integration via electric signalling due to its charged surface. Theoretical modelling, as well as emerging experimental evidence indicate that neuronal cytoskeleton supports highly cooperative energy transport and information processing based on molecular coherence. We suggest that long-range coherent dynamics within the intra- and extracellular filamentous matrices could establish dynamic ordered states, capable of rapid modulations of functional neuronal connectivity via their interactions with neuronal membranes and synapses. Coherence may thus represent a common denominator of neurophysiological and biophysical approaches to brain information processing, operating at multiple levels of neuronal organisation, from which cognition may emerge as its cardinal manifestation.  相似文献   

12.
Neurexins and neuroligins are synaptic cell adhesion molecules. Neurexins are primary located on the presynaptic membrane, whereas neuroligins are strictly postsynaptic proteins. Since their discovery, the knowledge of neurexins and neuroligins has expanded, implicating them in various neuronal processes, including the differentiation, maturation, stabilization, and plasticity of both inhibitory and excitatory synapses. Here, we review the most recent results regarding the structure and function of these cell adhesion molecules.  相似文献   

13.
Long-term, activity-driven synaptic plasticity allows neuronal networks to constantly and durably adjust synaptic gains between synaptic partners. These processes have been proposed to serve as a substrate for learning and memory. Long-term synaptic potentiation (LTP) has been observed at many central excitatory synapses and perhaps most extensively studied at Schaffer collaterals synapses onto hippocampal CA1 neurons. Multiple contradictory models were proposed to account for this form of LTP. However, recent evidence suggests that some synapses are initially devoid of functional AMPA receptors which can be incorporated during LTP. This new model appears to account for most, but not all, properties of this form of plasticity. Indeed, several mechanisms seem to act in parallel to specifically enhance AMPA-receptor mediated synaptic transmission.  相似文献   

14.
Roos J  Hummel T  Ng N  Klämbt C  Davis GW 《Neuron》2000,26(2):371-382
We present evidence that Futsch, a novel protein with MAP1B homology, controls synaptic growth at the Drosophila neuromuscularjunction through the regulation of the synaptic microtubule cytoskeleton. Futsch colocalizes with microtubules and identifies cytoskeletal loops that traverse the lateral margin of select synaptic boutons. An apparent rearrangement of microtubule loop architecture occurs during bouton division, and a genetic analysis indicates that Futsch is necessary for this process. futsch mutations disrupt synaptic microtubule organization, reduce bouton number, and increase bouton size. These deficits can be partially rescued by neuronal overexpression of a futsch MAP1B homology domain. Finally, genetic manipulations that increase nerve-terminal branching correlate with increased synaptic microtubule loop formation, and both processes require normal Futsch function. These data suggest a common microtubule-based growth mechanism at the synapse and growth cone.  相似文献   

15.
Neurotransmitter receptors are concentrated at synaptic sites through interactions with specific scaffolding proteins and cytoskeletal elements, but can also be found in intracellular compartments or dispersed in the membrane. The notion has emerged in recent years that this distribution results from a dynamic equilibrium between the different pools of receptors. This equilibrium is regulated by neuronal activity and interactions with scaffolding proteins. A change in its set point can result in rapid variations in the number of functional receptors at synapses such as seen during plasticity. Trafficking of receptors in and out of synapses has up to now mainly been viewed within the framework of endo/exocytotic processes. After a brief presentation of the structure of excitatory and inhibitory synapses, we review data indicating that the lateral diffusion of receptors in the plane of the membrane is also a key step to regulate receptor stabilization and accumulation at synapses.  相似文献   

16.
Cytoskeletal cross-talk in the control of T cell antigen receptor signaling   总被引:1,自引:0,他引:1  
T cell antigen receptor signaling is triggered and controlled in specialized cellular interfaces formed between T cells and antigen-presenting cells named immunological synapses. Both microtubules and actin cytoskeleton rearrange at the immunological synapse in response to T cell receptor triggering, ensuring in turn the accuracy of intracellular signaling. Recent reports show that the cross-talk between the cortical actin cytoskeleton and microtubule networks is key for structuring the immunological synapse and for controlling T cell receptor signaling. Immunological synapse architecture and the interaction between the signaling machinery and various cytoskeletal elements are therefore crucial for the fine-tuning of T cell signaling.  相似文献   

17.
Synapses can undergo rapid changes in size as well as in their vesicle release function during both plasticity processes and development. This fundamental property of neuronal cells requires the coordinated rearrangement of synaptic membranes and their associated cytoskeleton, yet remarkably little is known of how this coupling is achieved. In a GFP exon-trap screen, we identified Drosophila melanogaster Basigin (Bsg) as an immunoglobulin domain-containing transmembrane protein accumulating at periactive zones of neuromuscular junctions. Bsg is required pre- and postsynaptically to restrict synaptic bouton size, its juxtamembrane cytoplasmic residues being important for that function. Bsg controls different aspects of synaptic structure, including distribution of synaptic vesicles and organization of the presynaptic cortical actin cytoskeleton. Strikingly, bsg function is also required specifically within the presynaptic terminal to inhibit nonsynchronized evoked vesicle release. We thus propose that Bsg is part of a transsynaptic complex regulating synaptic compartmentalization and strength, and coordinating plasma membrane and cortical organization.  相似文献   

18.
The manner in which different distributions of synaptic weights onto cortical neurons shape their spiking activity remains open. To characterize a homogeneous neuronal population, we use the master equation for generalized leaky integrate-and-fire neurons with shot-noise synapses. We develop fast semi-analytic numerical methods to solve this equation for either current or conductance synapses, with and without synaptic depression. We show that its solutions match simulations of equivalent neuronal networks better than those of the Fokker-Planck equation and we compute bounds on the network response to non-instantaneous synapses. We apply these methods to study different synaptic weight distributions in feed-forward networks. We characterize the synaptic amplitude distributions using a set of measures, called tail weight numbers, designed to quantify the preponderance of very strong synapses. Even if synaptic amplitude distributions are equated for both the total current and average synaptic weight, distributions with sparse but strong synapses produce higher responses for small inputs, leading to a larger operating range. Furthermore, despite their small number, such synapses enable the network to respond faster and with more stability in the face of external fluctuations.  相似文献   

19.
Overproduction and pruning during development is a phenomenon that can be observed in the number of organisms in a population, the number of cells in many tissue types, and even the number of synapses on individual neurons. The sculpting of synaptic connections in the brain of a developing organism is guided by its personal experience, which on a neural level translates to specific patterns of activity. Activity-dependent plasticity at glutamatergic synapses is an integral part of neuronal network formation and maturation in developing vertebrate and invertebrate brains. As development of the rodent forebrain transitions away from an over-proliferative state, synaptic plasticity undergoes modification. Late developmental changes in synaptic plasticity signal the establishment of a more stable network and relate to pronounced perceptual and cognitive abilities. In large part, activation of glutamate-sensitive N-methyl-d-aspartate (NMDA) receptors regulates synaptic stabilization during development and is a necessary step in memory formation processes that occur in the forebrain. A developmental change in the subunits that compose NMDA receptors coincides with developmental modifications in synaptic plasticity and cognition, and thus much research in this area focuses on NMDA receptor composition. We propose that there are additional, equally important developmental processes that influence synaptic plasticity, including mechanisms that are upstream (factors that influence NMDA receptors) and downstream (intracellular processes regulated by NMDA receptors) from NMDA receptor activation. The goal of this review is to summarize what is known and what is not well understood about developmental changes in functional plasticity at glutamatergic synapses, and in the end, attempt to relate these changes to maturation of neural networks.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号