首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aberrant signaling of the Ras-Raf-MEK-ERK (MAP kinase) pathway driven by the mutant kinase BRAFV600E, as a result of the BRAFT1799A mutation, plays a fundamental role in thyroid tumorigenesis. This study investigated the therapeutic potential of a BRAFV600E-selective inhibitor, PLX4032 (RG7204), for thyroid cancer by examining its effects on the MAP kinase signaling and proliferation of 10 thyroid cancer cell lines with wild-type BRAF or BRAFT1799A mutation. We found that PLX4032 could effectively inhibit the MAP kinase signaling, as reflected by the suppression of ERK phosphorylation, in cells harboring the BRAFT1799A mutation. PLX4032 also showed a potent and BRAF mutation-selective inhibition of cell proliferation in a concentration-dependent manner. PLX4032 displayed low IC50 values (0.115–1.156 μM) in BRAFV600E mutant cells, in contrast with wild-type BRAF cells that showed resistance to the inhibitor with high IC50 values (56.674–1349.788 μM). Interestingly, cells with Ras mutations were also sensitive to PLX4032, albeit moderately. Thus, this study has confirmed that the BRAFT1799A mutation confers cancer cells sensitivity to PLX4032 and demonstrated its specific potential as an effective and BRAFT1799A mutation-selective therapeutic agent for thyroid cancer.  相似文献   

2.
BRAF T1799A mutation is the most common genetic variation in thyroid cancer, resulting in the production of BRAF V600E mutant protein reported to make cells resistant to apoptosis. However, the mechanism by which BRAF V600E regulates cell death remains unknown. We constructed BRAF V600E overexpression and knockdown 8505C and BCPAP papillary and anaplastic thyroid cancer cell to investigate regulatory mechanism of BRAF V600E in cell death induced by staurosporine (STS). Induced BRAF V600E expression attenuated STS‐induced papillary and anaplastic thyroid cancer death, while BRAF V600E knockdown aggravated it. TMRM and calcein‐AM staining showed that opening of the mitochondrial permeability transition pore (mPTP) during STS‐induced cell death could be significantly inhibited by BRAF V600E. Moreover, our study demonstrated that BRAF V600E constitutively activates mitochondrial ERK (mERK) to inhibit GSK‐3‐dependent CypD phosphorylation, thereby making BRAF V600E mutant tumour cells more resistant to mPTP opening. In the mitochondria of BRAF V600E mutant cells, there was an interaction between ERK1/2 and GSKa/ß, while upon BRAF V600E knockdown, interaction of GSKa/ß to ERK was decreased significantly. These results show that in thyroid cancer, BRAF V600E regulates the mitochondrial permeability transition through the pERK‐pGSK‐CypD pathway to resist death, providing new intervention targets for BRAF V600E mutant tumours.  相似文献   

3.
An activating BRAF (V600E) kinase mutation occurs in approximately half of melanomas. Recent clinical studies have demonstrated that vemurafenib (PLX4032) and dabrafenib, potent and selective inhibitors of mutant v-raf murine sarcoma viral oncogene homolog B1 (BRAF), exhibit remarkable activities in patients with V600 BRAF mutant melanomas. However, acquired drug resistance invariably develops after the initial treatment. Identification of acquired resistance mechanisms may inform the development of new therapies that elicit long-term responses of melanomas to BRAF inhibitors. Here we report that increased expression of AEBP1 (adipocyte enhancer-binding protein 1) confers acquired resistance to BRAF inhibition in melanoma. AEBP1 is shown to be highly upregulated in PLX4032-resistant melanoma cells because of the hyperactivation of the PI3K/Akt-cAMP response element-binding protein (CREB) signaling pathway. This upregulates AEBP1 expression and thus leads to the activation of NF-κB via accelerating IκBa degradation. In addition, inhibition of the PI3K/Akt-CREB-AEBP1-NF-κB pathway greatly reverses the PLX4032-resistant phenotype of melanoma cells. Furthermore, increased expression of AEBP1 is validated in post-treatment tumors in patients with acquired resistance to BRAF inhibitor. Therefore, these results reveal a novel PI3K/Akt-CREB-AEBP1-NF-κB pathway whose activation contributes to acquired resistance to BRAF inhibition, and suggest that this pathway, particularly AEBP1, may represent a novel therapeutic target for treating BRAF inhibitor-resistant melanoma.  相似文献   

4.
Documented sensitivity of melanoma cells to PLX4720, a selective BRAFV600E inhibitor, is based on the presence of mutant BRAF(V600E) alone, while wt-BRAF or mutated KRAS result in cell proliferation. In colon cancer appearance of oncogenic alterations is complex , since BRAF, like KRAS mutations, tend to co-exist with those in PIK3CA and mutated PI3K has been shown to interfere with the successful application of MEK inhibitors. When PLX4720 was used to treat colon tumours, results were not encouraging and herein we attempt to understand the cause of this recorded resistance and discover rational therapeutic combinations to resensitize oncogene driven tumours to apoptosis. Treatment of two genetically different BRAF(V600E) mutant colon cancer cell lines with PLX4720 conferred complete resistance to cell death. Even though p-MAPK/ ERK kinase (MEK) suppression was achieved, TRAIL, an apoptosis inducing agent, was used synergistically in order to achieve cell death by apoptosis in RKO(BRAFV600E/PIK3CAH1047) cells. In contrast, for the same level of apoptosis in HT29(BRAFV600E/PIK3CAP449T) cells, TRAIL was combined with 17-AAG, an Hsp90 inhibitor. For cells where PLX4720 was completely ineffective, 17-AAG was alternatively used to target mutant BRAF(V600E). TRAIL dependence on the constitutive activation of BRAF(V600E) is emphasised through the overexpression of BRAF(V600E) in the permissive genetic background of colon adenocarcinoma Caco-2 cells. Pharmacological suppression of the PI3K pathway further enhances the synergistic effect between TRAIL and PLX4720 in RKO cells, indicating the presence of PIK3CA(MT) as the inhibitory factor. Another rational combination includes 17-AAG synergism with TRAIL in a BRAF(V600E) mutant dependent manner to commit cells to apoptosis, through DR5 and the amplification of the apoptotic pathway. We have successfully utilised combinations of two chemically unrelated BRAF(V600E) inhibitors in combination with TRAIL in a BRAF(V600E) mutated background and provided insight for new anti-cancer strategies where the activated PI3KCA mutation oncogene should be suppressed.  相似文献   

5.
Among genetic alterations most important for the initiation of papillary thyroid carcinoma (PTC) is mutation T1799A in the BRAF gene which is the most frequent event (54.5%) in this type of thyroid cancer. It is seen in all stages, from microcarcinoma through clinically overt disease to anaplastic cancer. It has been shown that BRAF mutation is correlated with PTC histotype. It is identified most frequently in classical PTC and in tall cell variant. Moreover, BRAF mutation is described more often in older patients, whereas in young patients RET/PTC rearrangements dominate. In PTC cases with BRAF mutation V600E the prognosis is poorer, with more cancer invasiveness, metastasis and recurrence. The presence of BRAF mutation is related to the specific gene expression signature, different than in cancer cases showing RET/PTC rearrangement or no known initiating mutation.  相似文献   

6.
Objective: To detect BRAF V600E mutation in thyroid fine-needle aspiration (FNA) slides and needle rinses (NR). Study Design: Tumor-enriched DNA was extracted from FNA smears, formalin-fixed paraffin-embedded (FFPE) sections, or NR specimens from 37 patients with confirmed papillary thyroid carcinoma or benign findings. An allele-specific primer selectively amplified the 1799 T>A BRAF mutation while simultaneously blocking amplification of wild-type (WT) BRAF with an unlabeled probe during PCR. Mutation detection was accomplished by melting analysis of the probe. Results: Allele-specific/blocking probe PCR confirmed the BRAF mutation status for 20 of 24 paired FNA/FFPE samples previously tested by fluorescent probe real-time PCR. For the other 4 cases, the sensitive PCR method detected the BRAF mutation in all paired FNA/FFPE samples. Previously, the mutation had been detected in only the FFPE samples. The BRAF mutation was also detected in some NR specimens. Conclusion: Treatment of patients with thyroid nodules is guided by FNA biopsy, which can be scantly cellular, necessitating a sensitive test that can detect low levels of BRAF V600E mutation in a WT background. We report increased detection of BRAF V600E in FNA specimens using allele-specific/blocking probe PCR, which has an analytical sensitivity of 0.01%.  相似文献   

7.
BRAF inhibitors improve melanoma patient survival, but resistance invariably develops. Here we report the discovery of a novel BRAF mutation that confers resistance to PLX4032 employing whole‐exome sequencing of drug‐resistant BRAFV600K melanoma cells. We further describe a new screening approach, a genome‐wide piggyBac mutagenesis screen that revealed clinically relevant aberrations (N‐terminal BRAF truncations and CRAF overexpression). The novel BRAF mutation, a Leu505 to His substitution (BRAFL505H), is the first resistance‐conferring second‐site mutation identified in BRAF mutant cells. The mutation replaces a small nonpolar amino acid at the BRAF‐PLX4032 interface with a larger polar residue. Moreover, we show that BRAFL505H, found in human prostate cancer, is itself a MAPK‐activating, PLX4032‐resistant oncogenic mutation. Lastly, we demonstrate that the PLX4032‐resistant melanoma cells are sensitive to novel, next‐generation BRAF inhibitors, especially the ‘paradox‐blocker’ PLX8394, supporting its use in clinical trials for treatment of melanoma patients with BRAF‐mutations.  相似文献   

8.
ERK1/2 signaling is frequently dysregulated in tumors through BRAF mutation. Targeting mutant BRAF with vemurafenib frequently elicits therapeutic responses; however, durable effects are often limited by ERK1/2 pathway reactivation via poorly defined mechanisms. We generated mutant BRAFV600E melanoma cells that exhibit resistance to PLX4720, the tool compound for vemurafenib, that co-expressed mutant (Q61K) NRAS. In these BRAFV600E/NRASQ61K co-expressing cells, re-activation of the ERK1/2 pathway during PLX4720 treatment was dependent on NRAS. Expression of mutant NRAS in parental BRAFV600 cells was sufficient to by-pass PLX4720 effects on ERK1/2 signaling, entry into S phase and susceptibility to apoptosis in a manner dependent on the RAF binding site in NRAS. ERK1/2 activation in BRAFV600E/NRASQ61K cells required CRAF only in the presence of PLX4720, indicating a switch in RAF isoform requirement. Both ERK1/2 activation and resistance to apoptosis of BRAFV600E/NRASQ61K cells in the presence of PLX4720 was modulated by SHOC-2/Sur-8 expression, a RAS-RAF scaffold protein. These data show that NRAS mutations confer resistance to RAF inhibitors in mutant BRAF cells and alter RAF isoform and scaffold molecule requirements to re-activate the ERK1/2 pathway.  相似文献   

9.
10.
BRAFV600E/K is a frequent mutationally active tumor-specific kinase in melanomas that is currently targeted for therapy by the specific inhibitor PLX4032. Our studies with melanoma tumor cells that are BRAFV600E/K and BRAFWT showed that, paradoxically, while PLX4032 inhibited ERK1/2 in the highly sensitive BRAFV600E/K, it activated the pathway in the resistant BRAFWT cells, via RAF1 activation, regardless of the status of mutations in NRAS or PTEN. The persistently active ERK1/2 triggered downstream effectors in BRAFWT melanoma cells and induced changes in the expression of a wide-spectrum of genes associated with cell cycle control. Furthermore, PLX4032 increased the rate of proliferation of growth factor-dependent NRAS Q61L mutant primary melanoma cells, reduced cell adherence and increased mobility of cells from advanced lesions. The results suggest that the drug can confer an advantage to BRAFWT primary and metastatic tumor cells in vivo and provide markers for monitoring clinical responses.  相似文献   

11.
Targeted intervention of the B-Raf V600E gene product that is prominent in melanoma has been met with modest success. Here, we characterize the pharmacological properties of PLX4032, a next-generation inhibitor with exquisite specificity against the V600E oncogene and striking anti-melanoma activity. PLX4032 induces potent cell cycle arrest, inhibits proliferation, and initiates apoptosis exclusively in V600E-positive cells in a variety of in vitro experimental systems; follow-up xenograft studies demonstrate extreme selectivity and efficacy against melanoma tumors bearing the V600E oncoproduct. The collective data support further exploration of PLX4032 as a candidate drug for patients with metastatic melanoma; accordingly, validation of PLX4032 as a therapeutic tool for patients with melanoma is now underway in advanced human (Phase III) clinical trials.  相似文献   

12.
BRAF-activating mutations have been reported in several types of cancer, including melanoma ( approximately 70% of cases), thyroid (30-70%), ovarian (15-30%), and colorectal cancer (5-20%). Mutant BRAF has constitutive kinase activity and causes hyperactivation of the mitogen-activated protein kinase pathway. BRAF silencing induces regression of melanoma xenografts, indicating the essential role of BRAF for cell survival. We set up an inducible short hairpin RNA system to compare the role of oncogenic BRAF in thyroid carcinoma versus melanoma cells. Although BRAF knockdown led to apoptosis in the melanoma cell line A375, the anaplastic thyroid carcinoma cell ARO underwent growth arrest upon silencing, with little or no cell death. Reexpression of the thyroid differentiation marker, sodium iodide symporter, was induced after long-term silencing. The different outcome of BRAF down-regulation in the two cell lines was associated with an opposite regulation of p21(CIP1/WAF1) expression levels in response to the block of the BRAF mitogenic signal. These results were confirmed using a specific BRAF small-molecule inhibitor, PLX4032. Restoration of p21(CIP1/WAF1) expression rescued melanoma cells from death. Altogether, our data indicate that oncogenic BRAF inhibition can have a different effect on cell fate depending on the cellular type. Furthermore, we suggest that a BRAF-independent mechanism of cell survival exists in anaplastic thyroid cancer cells.  相似文献   

13.
14.
Resistance to the BRAF inhibitor vemurafenib poses a significant problem for the treatment of BRAFV600E‐positive melanomas. It is therefore critical to prospectively identify all vemurafenib resistance mechanisms prior to their emergence in the clinic. The vemurafenib resistance mechanisms described to date do not result from secondary mutations within BRAFV600E. To search for possible mutations within BRAFV600E that can confer drug resistance, we developed a systematic experimental approach involving targeted saturation mutagenesis, selection of drug‐resistant variants, and deep sequencing. We identified a single nucleotide substitution (T1514A, encoding L505H) that greatly increased drug resistance in cultured cells and mouse xenografts. The kinase activity of BRAFV600E/L505H was higher than that of BRAFV600E, resulting in cross‐resistance to a MEK inhibitor. However, BRAFV600E/L505H was less resistant to several other BRAF inhibitors whose binding sites were further from L505 than that of PLX4720. Our results identify a novel vemurafenib‐resistant mutant and provide insights into the treatment for melanomas bearing this mutation.  相似文献   

15.
16.
B-RAF is mutated to a constitutively active form in 8% of human cancers including 50% of melanomas. In clinical trials, the RAF inhibitor, PLX4032 (vemurafenib), caused partial or complete responses in 48–81% of mutant B-RAF harboring melanoma patients. However, the average duration of response was 6–7 months before tumor regrowth, indicating the acquisition of resistance to PLX4032. To understand the mechanisms of resistance, we developed mutant B-RAF melanoma cells that displayed resistance to RAF inhibition through continuous culture with PLX4720 (the tool compound for PLX4032). Resistance was associated with a partial reactivation of extracellular signal-regulated kinase 1/2 (ERK1/2) signaling, recovery of G1/S cell-cycle events, and suppression of the pro-apoptotic B-cell leukemia/lymphoma 2 (Bcl-2) homology domain 3 (BH3)-only proteins, Bcl-2-interacting mediator of cell death-extra large (Bim-EL) and Bcl-2 modifying factor (Bmf). Preventing ERK1/2 reactivation with MEK (mitogen-activated protein/extracellular signal-regulated kinase kinase) inhibitors blocked G1-S cell-cycle progression but failed to induce apoptosis or upregulate Bim-EL and Bmf. Treatment with the histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid, led to de-repression of Bim-EL and enhanced cell death in the presence of PLX4720 or AZD6244 in resistant cells. These data indicate that acquired resistance to PLX4032/4720 likely involves ERK1/2 pathway reactivation as well as ERK1/2-independent silencing of BH3-only proteins. Furthermore, combined treatment of HDAC inhibitors and MEK inhibitors may contribute to overcoming PLX4032 resistance.  相似文献   

17.
Vertical growth phase (VGP) melanoma is frequently metastatic, a process mediated by changes in gene expression, which are directed by signal transduction pathways in the tumor cells. A prominent signaling pathway is the Ras-Raf-Mek-Erk MAPK pathway, which increases expression of genes that promote melanoma progression. Many melanomas harbor a mutation in this pathway, BRAFV600E, which constitutively activates MAPK signaling and expression of downstream target genes that facilitate tumor progression. In BRAFV600E melanoma, the small molecule inhibitor, vemurafenib (PLX4032), has revolutionized therapy for melanoma by inducing rapid tumor regression. This compound down-regulates the expression of many genes. However, in this study, we document that blocking the Ras-Raf-Mek-Erk MAPK pathway, either with an ERK (PLX4032) or a MEK (U1026) signaling inhibitor, in BRAFV600E human and murine melanoma cell lines increases collagen synthesis in vitro and collagen deposition in vivo. Since TGFß signaling is a major mediator of collagen synthesis, we examined whether blocking TGFß signaling with a small molecule inhibitor would block this increase in collagen. However, there was minimal reduction in collagen synthesis in response to blocking TGFß signaling, suggesting additional mechanism(s), which may include activation of the p38 MAPK pathway. Presently, it is unclear whether this increased collagen synthesis and deposition in melanomas represent a therapeutic benefit or an unwanted “off target” effect of inhibiting the Ras-Raf-Erk-Mek pathway.  相似文献   

18.
Oncogenic B-RAF V600E mutation is found in 50% of melanomas and drives MEK/ERK pathway and cancer progression. Recently, a selective B-RAF inhibitor, vemurafenib (PLX4032), received clinical approval for treatment of melanoma with B-RAF V600E mutation. However, patients on vemurafenib eventually develop resistance to the drug and demonstrate tumor progression within an average of 7 months. Recent reports indicated that multiple complex and context-dependent mechanisms may confer resistance to B-RAF inhibition. In the study described herein, we generated B-RAF V600E melanoma cell lines of acquired-resistance to vemurafenib, and investigated the underlying mechanism(s) of resistance. Biochemical analysis revealed that MEK/ERK reactivation through Ras is the key resistance mechanism in these cells. Further analysis of total gene expression by microarray confirmed a significant increase of Ras and RTK gene signatures in the vemurafenib-resistant cells. Mechanistically, we found that the enhanced activation of fibroblast growth factor receptor 3 (FGFR3) is linked to Ras and MAPK activation, therefore conferring vemurafenib resistance. Pharmacological or genetic inhibition of the FGFR3/Ras axis restored the sensitivity of vemurafenib-resistant cells to vemurafenib. Additionally, activation of FGFR3 sufficiently reactivated Ras/MAPK signaling and conferred resistance to vemurafenib in the parental B-RAF V600E melanoma cells. Finally, we demonstrated that vemurafenib-resistant cells maintain their addiction to the MAPK pathway, and inhibition of MEK or pan-RAF activities is an effective therapeutic strategy to overcome acquired-resistance to vemurafenib. Together, we describe a novel FGFR3/Ras mediated mechanism for acquired-resistance to B-RAF inhibition. Our results have implications for the development of new therapeutic strategies to improve the outcome of patients with B-RAF V600E melanoma.  相似文献   

19.
Somatic activating mutations of BRAF are the earliest and most common genetic abnormality detected in the genesis of human melanoma. However, the mechanism(s) by which activated BRAF promotes melanoma cell cycle progression and/or survival remain unclear. Here we demonstrate that expression of BIM, a pro-apoptotic member of the BCL-2 family, is inhibited by BRAF-->MEK-->ERK signaling in mouse and human melanocytes and in human melanoma cells. Trophic factor deprivation of melanocytes leads to elevated BIM expression. However, re-addition of trophic factors or activation of a conditional form of BRAF(V600E) leads to rapid inhibition of BIM expression. In both cases, inhibition of BIM expression was dependent on the activity of MEK1/2 and the proteasome. Consistent with these observations, pharmacological inhibition of BRAF(V600E) or MEK1/2 in human melanoma cells (using PLX4720 and CI-1040 respectively) led to a striking elevation of BIM expression. Re-activation of BRAF-->MEK-->ERK signaling led to phosphorylation of BIM-EL on serine 69 and its subsequent degradation. Interestingly, endogenous expression of BIM in melanoma cells was insufficient to induce apoptosis unless combined with serum deprivation. Under these circumstances, inhibition of BIM expression by RNA interference provided partial protection from apoptosis. These data suggest that regulation of BIM expression by BRAF-->MEK-->ERK signaling is one mechanism by which oncogenic BRAF(V600E) can influence the aberrant physiology of melanoma cells.  相似文献   

20.
A series of novel 4,5-dihydropyrazole derivatives containing niacinamide moiety as potential V600E mutant BRAF kinase (BRAF(V600E)) inhibitors were designed and synthesized. Results of the bioassays against BRAF(V600E) and WM266.4 human melanoma cell line showed several compounds to be endowed potent activities with IC(50) and GI(50) value in low micromolar range, among which compound 27e, (5-(4-Chlorophenyl)-3-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)6-methylpyridin-3-yl methanone (IC(50)=0.20 μM, GI(50)=0.89 μM) was bearing the best bioactivity comparable with the positive control Sorafenib. Docking simulation was performed to determine the probable binding model and 3D-QSAR model was built to provide more pharmacophore understanding that could use to design new agents with more potent BRAF(V600E) inhibitory activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号