首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitric oxide (NO) plays an important role in acute ischemic preconditioning (IPC). In addition to activating soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG) signaling pathways, NO-mediated protein S-nitros(yl)ation (SNO) has been recently shown to play an essential role in cardioprotection against ischemia–reperfusion (I/R) injury. In our previous studies, we have shown that IPC-induced cardioprotection could be blocked by treatment with either N-nitro-L-arginine methyl ester (L-NAME, a constitutive NO synthase inhibitor) or ascorbate (a reducing agent to decompose SNO). To clarify NO-mediated sGC/cGMP/PKG-dependent or -independent (i.e., SNO) signaling involved in IPC-induced cardioprotection, mouse hearts were Langendorff-perfused in the dark to prevent SNO decomposition by light exposure. Treatment with 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, a highly selective inhibitor of sGC) or KT5823 (a potent and selective inhibitor of PKG) did not abolish IPC-induced acute protection, suggesting that the sGC/cGMP/PKG signaling pathway does not play an important role in NO-mediated cardioprotective signaling during acute IPC. In addition, treatment with ODQ in IPC hearts provided an additional protective effect on functional recovery, in parallel with a higher SNO level in these ODQ+IPC hearts. In conclusion, these results suggest that the protective effect of NO is not related primarily to activation of the sGC/cGMP/PKG signaling pathway, but rather through SNO signaling in IPC-induced acute cardioprotection.  相似文献   

2.
Exposure of RINm5F cells to interleukin-1beta and to several chemical NO donors such as sodium nitroprusside (SNP), SIN-1 and SNAP induce apoptotic events such as the release of cytochrome c from mitochondria, caspase 3 activation, Bcl-2 downregulation and DNA fragmentation. SNP exposure led to transient activation of soluble guanylate cyclase (sGC) and prolonged protein kinase G (PKG) activation but apoptotic events were not attenuated by inhibition of the sGC/PKG pathway. Prolonged activation of the cGMP pathway by exposing cells to the dibutyryl analogue of cGMP for 12 h induced both apoptosis and necrosis, a response that was abolished by the PKG inhibitor KT5823. These results suggest that NO-induced apoptosis in the pancreatic beta-cell line is independent of acute activation of the cGMP pathway.  相似文献   

3.
Pigment organelles in Xenopus laevis melanophores are used by the animal to change skin color, and they provide a good model for studying intracellular organelle transport. Movement of organelles and vesicles along the cytoskeleton is essential for many processes, such as axonal transport, endocytosis, and intercompartmental trafficking. Nitric oxide (NO) is a signaling molecule that plays a role in, among other things, relaxation of blood vessels, sperm motility, and polymerization of actin. Our study focused on the effect NO exerts on cytoskeleton-mediated transport, which has previously received little attention. We found that an inhibitor of NO synthesis, N-nitro-L-arginine methyl ester (L-NAME), reduced the melatonin-induced aggregation of the pigment organelles, melanosomes. Preaggregated melanosomes dispersed after treatment with L-NAME but not after exposure to the inactive stereoisomer (D-NAME) or the substrate for NO synthesis (L-arginine). Signal transduction by NO can be mediated through the activation of soluble guanylate cyclase (sGC), which leads to increased production of cGMP and activation of cGMP-dependent kinases (PKG). We found that both the sGC inhibitor 1H-(1,2,4) oxadiazolo(4,3-a)quinoxalin-1-one (ODQ) and the cGMP analogue 8-bromoguanosine 3':5'-cyclic monophosphate (8-Br-cGMP) reduced melanosome aggregation, whereas the PKG inhibitor KT582 did not. Our results demonstrate that melanosome aggregation depends on synthesis of NO, and NO deprivation causes dispersion. It seems, thus, as if NO and cGMP are essential and can regulate melanosome translocation.  相似文献   

4.
Interleukin 6 (IL-6) and nitric oxide (NO) are important mediators of the inflammatory response. We report that in human peripheral blood mononuclear cells (PBMCs), NO exerts a biphasic effect on the expression of IL-6. Using sodium nitroprusside (SNP) and S-nitrosoglutathione (GSNO) as NO-donating compounds, we observed that both mRNA and protein levels of IL-6 increased at lower (≤10μM) and decreased at higher (>100μM) concentrations of NO donors. Changes in the expression of IL-6 correlated with changes in the activity of NF-κB, which increased at lower and decreased at higher concentrations of both NO donors as shown by the electrophoretic mobility shift assay (EMSA). The effects of NO on NF-κB activity were cGMP-dependent because they were reversed in the presence of ODQ, the inhibitor of soluble guanylyl cyclase (sGC), and KT5823, the inhibitor of cGMP-dependent protein kinase (PKG). Moreover, the membrane permeable analog of cGMP (8-Br-cGMP) mimicked the effect of the NO donors. These observations show that NO, depending on its concentration, may act in human PBMCs as a stimulator of IL-6 expression involving the sGC/cGMP/PKG pathway.  相似文献   

5.
Locusts lay their eggs by digging into a substrate using rhythmic opening and closing movements of ovipositor valves at the end of the abdomen. The digging rhythm is inhibited by chemosensory stimulation of chemoreceptors on the valves. Nitric oxide (NO) modulated the effects of chemosensory stimulation on the rhythm. Stimulation with either sucrose or sodium chloride (NaCl) stopped the digging rhythm, whereas simultaneous bath application of the NO inhibitor, N-nitro-L-arginine methyl ester (L-NAME), increased the duration for which the digging rhythm stopped. Increasing NO levels caused a significant reduction in the cessation of the rhythm in response to the same 2 chemicals. Bath applying cyclic guanosine monophosphate (cGMP), the soluble guanylate inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), and the generic protein kinase inhibitor H-7 had no effect on the duration for which the rhythm stopped in response to NaCl stimulation. Conversely, bath application of cGMP and ODQ resulted in a significant decrease and increase, respectively, in the duration for which the digging rhythm stopped when stimulated with sucrose. Moreover, bath application of the selective protein kinase G (PKG) inhibitor KT-5823 also resulted in a significant increase in the duration of cessation of the rhythm when stimulated with sucrose. Results suggest that NO modulates the behavioral responses to NaCl via a cGMP/PKG-independent pathway while modulating the responses to sucrose via a NO-cGMP/PKG-dependent pathway.  相似文献   

6.
Calcium/calmodulin protein kinase (CaMK)-dependent nitric oxide (NO) and the downstream intracellular messenger cGMP, which is activated by soluble guanylate cyclase (sGC), are believed to induce long-term changes in efficacy of synapses through the activation of protein kinase G (PKG). The aim of this study was to examine the involvement of the CaMKII-dependent NO/sGC/PKG pathway in a novel form of repetitive stimulation-induced spinal reflex potentiation (SRP). A single-pulse test stimulation (TS; 1/30 Hz) on the afferent nerve evoked a single action potential, while repetitive stimulation (RS; 1 Hz) induced a long-lasting SRP that was abolished by a selective Ca(2+)/CaMKII inhibitor, autocamtide 2-related inhibitory peptide (AIP). Such an inhibitory effect was reversed by a relative excess of nitric oxide synthase (NOS) substrate, L-arginine. In addition, the RS-induced SRP was abolished by pretreatment with the NOS inhibitor, N(G)-nitro-L-arginine-methyl ester (L-NAME). The sGC activator, protoporphyrin IX (PPIX), reversed the blocking effect caused by L-NAME. On the other hand, a sGC blocker, 1H-[1, 2, 4]oxadiazolo[4, 3-alpha]quinoxalin-1-one (ODQ), abolished the RS-induced SRP. Intrathecal applications of the membrane-permeable cGMP analog, 8-bromoguanosine 3',5'-cyclic monophosphate sodium salt monohydrate (8-Br-cGMP), reversed the blocking effect on the RS-induced SRP elicited by the ODQ. Our findings suggest that a CaMKII-dependent NO/sGC/PKG pathway is involved in the RS-induced SRP, which has pathological relevance to hyperalgesia and allodynia.  相似文献   

7.
Amyloid beta-peptide (Abeta) is a major constituent of senile plaques in the brains of Alzheimer's disease (AD) patients. We have previously demonstrated ceramide production secondary to Abeta-induced activation of neutral sphingomyelinase (nSMase) in cerebral endothelial cells and oligodendrocytes, which may contribute to cellular injury during progression of AD. In this study, we first established the "Abeta --> nSMase --> ceramide --> free radical --> cell death" pathway in primary cultures of fetal rat cortical neurons. We also provided experimental evidence showing that S-nitrosoglutathione (GSNO), a potent endogenous antioxidant derived from the interaction between nitric oxide (NO) and glutathione, caused dose-dependent protective effects against Abeta/ceramide neurotoxicity via inhibition of caspase activation and production of reactive oxygen species (ROS). This GSNO-mediated neuroprotection appeared to involve activation of cGMP-dependent protein kinase (PKG), phosphatidylinositol 3-kinase (PI3K), and extracellular signal-regulated kinase (ERK). Activation of the cGMP/PKG pathway induced expression of thioredoxin and Bcl-2 that were beneficial to cortical neurons in antagonizing Abeta/ceramide toxicity. Consistently, exogenous application of thioredoxin exerted remarkable neuroprotective efficacy in our experimental paradigm. Results derived from the present study establish a neuroprotective role of GSNO, an endogenous NO carrier, against Abeta toxicity via multiple signaling pathways.  相似文献   

8.
Intracellular production of nitric oxide (NO) is thought to mediate the pancreatic B-cell-directed cytotoxicity of cytokines in insulin-dependent diabetes mellitus, and recent evidence has indicated that this may involve induction of apoptosis. A primary effect of NO is to activate soluble guanylyl cyclase leading to increased cGMP levels and this effect has been demonstrated in pancreatic B-cells, although no intracellular function has been defined for islet cGMP. Here we demonstrate that the NO donor, GSNO, induces apoptosis in the pancreatic B-cell line HIT-T15 in a dose- and time-dependent manner. This response was significantly attenuated by micromolar concentrations of a specific inhibitor of soluble guanylyl cyclase, ODQ, and both 8-bromo cGMP (100 μM) and dibutyryl cGMP (300 μM) were able to fully relieve this inhibition. In addition, incubation of HIT-T15 cells with each cGMP analogue directly promoted cell death in the absence of ODQ. KT5823, a potent and highly selective inhibitor of cGMP-dependent protein kinase (PKG), abolished the induction of cell death in HIT cells in response to either GSNO or cGMP analogues. This effect was dose-dependent over the concentration range of 10–250 nM. Overall, these data provide evidence that the activation of apoptosis in HIT-T15 cells by NO donors is secondary to a rise in cGMP and suggest that the pathway controlling cell death involves activation of PKG.  相似文献   

9.
We previously showed that an overproduction of nitric oxide (NO) by macrophages was responsible for the collapse of lymphoproliferative responses after burn injury in rats. First, we demonstrate here that 10 days post-burn, the inhibition of splenocyte response to concanavalin-A results from cytostatic, apoptotic, and necrotic effects of NO on activated T cells. This was evidenced by various criteria at the levels of DNA, mitochondria, and plasma membrane. Inhibition of NO synthase by S-methylisothiourea (10 microM) normalized all the parameters. Second, we show that two soluble guanylate cyclase (sGC) inhibitors, LY83583 and ODQ, restored the proliferative response in a concentration-dependent manner. LY83583 (0.5 microM) rescued T cells from apoptosis. Similar results were obtained with KT5823 (5 microM) a specific inhibitor of protein kinase G (PKG). In contrast, neither LY83583 nor KT5823 inhibited NO-induced necrosis. These results suggest that NO blocked T cells in the G1 phase and induced apoptosis through a sGC-PKG-dependent pathway and necrosis through an independent one.  相似文献   

10.
11.
Behavioral and pharmacological studies in insects have suggested that the nitric oxide (NO)/cyclic GMP (cGMP) signaling pathway is involved in the formation of long-term memory (LTM) associated with olfactory learning. However, the target molecules of NO and the downstream signaling pathway are still not known. In this study, we investigated the action of NO on single voltage-dependent Ca2+ channels in the intrinsic neurons known as Kenyon cells within the mushroom body of the cricket brain, using the cell-attached configuration of the patch-clamp technique. Application of the NO donor S-nitrosoglutathione (GSNO) increased the open probability (NPO) of single Ca2+ channel currents. This GSNO-induced increase was blocked by ODQ, a soluble guanylate cyclase (sGC) inhibitor, suggesting that the NO generated by GSNO acts via sGC to raise cGMP levels. The membrane-permeable cGMP analog 8-Bro-cGMP also increased the NPO of single Ca2+ channel currents. Pretreatment of cells with KT5823, a protein kinase G blocker, abolished the excitatory effect of GSNO. These results suggest that NO augments the activity of single Ca2+ channels via the cGMP/PKG signaling pathway. To gain insight into the physiological role of NO, we examined the effect of GSNO on action potentials of Kenyon cells under current-clamp conditions. Application of GSNO increased the frequency of action potentials elicited by depolarizing current injections, indicating that NO acts as a modulator resulting in a stimulatory signal in Kenyon cells. We discuss the increased Ca2+ influx through these Ca2+ channels via the NO/cGMP signaling cascade in relation to the formation of olfactory LTM.  相似文献   

12.
The aim of this study was to investigate whether endogenous superoxide anion is involved in the regulation of renal Na(+),K(+)-ATPase and ouabain-sensitive H(+),K(+)-ATPase activities. The study was performed in male Wistar rats. Compounds modulating superoxide anion concentration were infused under general anaesthesia into the abdominal aorta proximally to the renal arteries. The activity of ATPases was assayed in isolated microsomal fraction. We found that infusion of a superoxide anion-generating mixture, xanthine oxidase (1 mU/min per kg) + hypoxanthine (0.2 mumol/min per kg), increased the medullary Na(+),K(+)-ATPase activity by 49.5% but had no effect on cortical Na(+),K(+)-ATPase and either cortical or medullary ouabain-sensitive H(+),K(+)-ATPase. This effect was reproduced by elevating endogenous superoxide anion with a superoxide dismutase inhibitor, diethylthiocarbamate. In contrast, a superoxide dismutase mimetic, TEMPOL, decreased the medullary Na(+),K(+)-ATPase activity. The inhibitory effect of TEMPOL was abolished by inhibitors of nitric oxide synthase (L-NAME), soluble guanylate cyclase (ODQ) and protein kinase G (KT5823). The stimulatory effect of diethylthiocarbamate was not observed in animals pretreated with a synthetic cGMP analogue, 8-bromo-cGMP. An inhibitor of NAD(P)H oxidase, apocynin (1 mumol/min per kg), decreased the Na(+),K(+)-ATPase activity in the renal medulla and its effect was prevented by L-NAME, ODQ or KT5823. In contrast, a xanthine oxidase inhibitor, oxypurinol, administered at the same dose was without effect. These data suggest that NAD(P)H oxidase-derived superoxide anion increases Na(+),K(+)-ATPase activity in the renal medulla by reducing the availability of NO. Excessive intrarenal generation of superoxide anion may upregulate medullary Na(+),K(+)-ATPase leading to sodium retention and blood pressure elevation.  相似文献   

13.
The objective of this study was to examine the effects of manipulating the nitric oxide/cyclic guanosine monophosphate (NO/cGMP) pathway on bovine oocyte nuclear maturation in vitro. Cumulus-enclosed oocytes (CEO) were recovered from abattoir-derived ovaries and cultured in M199+FCS for 7 or 21h in the presence of various molecules affecting the NO/cGMP pathway, and then fixed and stained for evaluation of the stage of nuclear maturation. Cyclic GMP levels were also measured in cumulus-oocyte complexes after 3 and 6 h of culture. The iNOS inhibitor, aminoguanidine (AG, 10 and 50 mM) and the NO donor sodium nitroprusside (SNP, 100 and 500 microM) significantly inhibited GVBD after 7h of culture. However, a lower concentration of SNP (0.01 microM) stimulated GVBD. The inhibitory effects of AG and SNP were reversible, indicating that they were not toxic effects. Although SNP (500 microM) increased cGMP levels in cumulus-oocyte complexes after 3 h of culture, the inhibitor of soluble guanylate cyclase ODQ and the protein kinase G (PKG) inhibitor KT5823 did not reverse the inhibitory effect of SNP on meiosis, suggesting that SNP does not inhibit meiosis through the cGMP/PKG pathway. Similarly, an analogue of cGMP (8-Bromo-cGMP 0.5, 1, 3, and 6 mM), as well as activation of guanylate cyclase with Protoporphyrin IX or atrial natriuretic peptide, or inhibition of the enzyme with ODQ, did not have any significant effect on GVBD after 7 h of culture, supporting the idea that the effects of AG and SNP were not due to altered cGMP levels. Atrial natriuretic peptide, Protoporphyrin IX and SNP 500 microM increased cGMP levels after 3 h but not 6 h of culture. In conclusion, soluble and particulate guanylate cyclases could be activated in bovine cumulus-oocyte complexes, but accumulation of cGMP was probably not responsible for the effects of NO on meiosis.  相似文献   

14.
NG-nitro-L-arginine methyl ester (L-NAME) has been used extensively as a paradigmatic inhibitor of NO synthase and has been shown to cause antinociception in several experimental models. We describe here how L-NAME produced a dose-dependent antinociceptive effect when injected intraperitoneally in the mouse after acetic acid induced writhings, or intraplantarly in the rat paw pressure hyperalgesia induced by carrageenin or prostaglandin E2. In contrast another NO synthase inhibitor, NG-monomethyl-L-arginine (L-NMMA), had no significant effect per se but inhibited L-NAME systemic induced antinociception in mice and local induced antinociception in the rat paw hyperalgesia test. D-NAME had no antinociceptive effect upon carrageenin-induced hyperalgesia. Pretreatment of the paws with two inhibitors of guanylate cyclase, methylene blue (MB) and 1H-:[1,2,4]-oxadiazolo-:[4,3-a] quinoxalin-1-one (ODQ) abolished the antinociceptive effect of L-NAME. L-Arginine and the cGMP phosphodiesterase inhibitor, MY 5445 significantly enhanced the L-NAME antinociceptive effect. The central antinociceptive effect of L-NAME was blocked by co-administration of L-NMMA, ODQ and MB. The present series of experiments shows that L-NAME, but not L-NMMA, has an antinociceptive effect. It can be suggested that L-NAME causes the antinociceptive effect by stimulation of the arginine/ NO/ cGMP pathway, since the antinociceptive effect of L-NAME can be antagonized by L-NMMA and abolished by the guanylate cyclase inhibitors (MB and ODQ). In addition, the NO synthase substrate, L-arginine and the cGMP phosphodiesterase inhibitor, MY5445 were seen to potentiate the effects of L-NAME. Thus, L-NAME used alone, has limitations as a specific inhibitor of the arginine-NO-cGMP pathway and may therefore be a poor pharmacological tool for use in characterising participation in pathophysiological processes.  相似文献   

15.
The mechanism by which nitric oxide (NO) protects from apoptosis is a matter of debate. We have shown previously that phosphorylation of tyrosine residues participates in the protection from apoptosis in insulin-producing RINm5F cells (Inorg. Chem. Commun. 3 (2000) 32). Since NO has been reported to activate the tyrosine kinase c-Src and this kinase is involved in the activation of protein kinase G (PKG) in some cell systems, we aimed at studying the contribution of c-Src and PKG systems in anti-apoptotic actions of NO in serum-deprived RINm5F cells. Here we report that exposure of serum-deprived cells to 10 microM DETA/NO results in protection from degradation of the anti-apoptotic protein Bcl-2, together with a reduction of cytochrome c release from mitochondria and caspase-3 inhibition. Studies with the inhibitors ODQ and KT-5823 revealed that these actions are dependent on both activation of guanylate cyclase and PKG. DETA/NO was also able to induce autophosphorylation and activation c-Src protein both in vivo and in vitro and active c-Src was able to induce tyrosine phosphorylation of Bcl-2 in vitro. The c-Src kinase inhibitor PP1 abrogated the actions of DETA/NO on cGMP formation, PKG activation, caspase activation, cytochrome c release from mitochondria, and Bcl-2 phosphorylation and degradation in serum-deprived cells. We thus propose that activation of c-Src is an early step in the chain of events that signal cGMP-dependent anti-apoptotic actions of NO in mitocohondria.  相似文献   

16.
Inappropriate signaling conditions within bone marrow stromal cells (BMSCs) can lead to loss of BMSC survival, contributing to the loss of a proper micro-environmental niche for hematopoietic stem cells (HSCs), ultimately causing bone marrow failure. In the present study, we investigated the novel role of endogenous atrial natriuretic peptide (ANP) and the nitric oxide (NO)/cGMP/protein kinase G type-Iα (PKG-Iα) signaling pathway in regulating BMSC survival and proliferation, using the OP9 BMSC cell line commonly used for facilitating the differentiation of HSCs. Using an ANP-receptor blocker, endogenously produced ANP was found to promote cell proliferation and prevent apoptosis. NO donor SNAP (S-nitroso-N-acetylpenicillamine) at low concentrations (10 and 50 μM), which would moderately stimulate PKG activity, protected these BMSCs against spontaneous apoptosis. YC-1, a soluble guanylyl cyclase (sGC) activator, decreased the levels of apoptosis, similar to the cytoprotective effects of low-level NO. ODQ (1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one), which blocks endogenous NO-induced activation of sGC and thus lowers endogenous cGMP/PKG activity, significantly elevated apoptotic levels by 2.5- and three-fold. Pre-incubation with 8-Bromo-cGMP or ANP, which bypass the ODQ block, almost completely prevented the ODQ-induced apoptosis. A highly-specific PKG inhibitor, DT-3, at 20, and 30 μM, caused 1.5- and two-fold increases in apoptosis, respectively. ODQ and DT-3 also decreased BMSCs proliferation and colony formation. Small Interfering RNA gene knockdown of PKG-Iα increased apoptosis and decreased proliferation in BMSCs. The data suggest that basal NO/cGMP/PKG-Iα activity and autocrine ANP/cGMP/PKG-Iα are necessary for preserving OP9 cell survival and promoting cell proliferation and migration.  相似文献   

17.
Central sensitization is the hyperexcitability of spinal processing after peripheral nerve injury or inflammation. This phenomenon may be associated with nitric oxide (NO) signal pathway in synapse. Here, we have investigated the effect of NO on hyperpolarization-activated inward current (I(h)) in substantia gelatinosa (SG) neurons, using the whole-cell patch clamp technique. I(h) was increased by the application of sodium nitro prusside (SNP, a NO donor) or 8Br-cGMP. The stimulatory effects of NO were abolished by guanylyl cyclase inhibitor, ODQ, suggesting that the effect of NO was mediated by cGMP. However, this effect of NO was not prevented by the pretreatment with KT5823, PKG inhibitor. Taken together, the activation of I(h) in SG neurons could be mediated by NO-cGMP dependent pathway. These results reveal an involvement of NO in excitability of SG neuron via the activation of I(h) may be associated with central sensitization.  相似文献   

18.
NO antagonizes hepatic stellate cell (HSC) contraction, although activated HSC in cirrhosis demonstrate impaired responses to NO. Decreased NO responses in activated HSC and mechanisms by which NO affects activated HSC remain incompletely understood. In normal rat HSC, the NO donor diethylamine NONOate (DEAN) significantly increased cGMP production and reduced serum-induced contraction by 25%. The guanylate cyclase (sGC) inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) abolished 50% of DEAN effects, whereas the cGMP analog 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP) reiterated half the observed DEAN response, suggesting both cGMP-dependent protein kinase G (PKG)-dependent and -independent mechanisms of NO-mediated antagonism of normal HSC contraction. However, NO donors did not increase cGMP production from in vivo activated HSC from bile duct-ligated rats and showed alterations in intracellular Ca(2+) accumulation suggesting defective cGMP-dependent effector pathways. The LX-2 cell line also demonstrated lack of cGMP generation in response to NO and a lack of effect of ODQ and 8-BrcGMP in modulating the NO response. However, cGMP-independent effects in response to NO were maintained in LX-2 and were associated with S-nitrosylation of proteins, an effect reiterated in primary HSC. Adenovirus-based overexpression of PKG significantly attenuated contraction of LX-2 by 25% in response to 8-BrcGMP. In summary, these studies demonstrate that NO affects HSC through cGMP-dependent and -independent pathways. The HSC activation process is associated with maintenance of cGMP-independent actions of NO but defects in cGMP-PKG-dependent NO signaling that are improved by PKG gene delivery in LX-2 cells. Activating targets downstream from NO-cGMP in activated HSC may represent a novel therapeutic target for portal hypertension.  相似文献   

19.
The role of 3',5'-cyclic guanosine monophosphate (cGMP) in the activation of mitogen-activated protein kinases (MAPKs) was investigated in rat pinealocytes. Treatment with dibutyryl cGMP (DBcGMP) dose-dependently increased the phosphorylation of both p44 and p42 isoforms of MAPK. This effect of DBcGMP was abolished by PD98059 (a MAPK kinase inhibitor), H7 (a nonspecific protein kinase inhibitor), and KT5823 [a selective cGMP-dependent protein kinase (PKG) inhibitor]. Elevation of cellular cGMP content by treatment with norepinephrine, zaprinast (a cGMP phosphodiesterase inhibitor), or nitroprusside was effective in activating MAPK. Natriuretic peptides that were effective in elevating cGMP levels in this tissue were also effective in activating MAPK. Our results indicate that, in this neuroendocrine tissue, the cGMP/PKG signaling pathway is an important mechanism used by hormones and neurotransmitters in activating MAPK.  相似文献   

20.
Vascular endothelial growth factor-A (VEGF), which binds to both VEGF receptor-1 (Flt1) and VEGFR-2 (KDR/Flk-1), requires nitric oxide (NO) to induce angiogenesis in a cGMP-dependent manner. Here we show that VEGF-E, a VEGFR-2-selective ligand stimulates NO release and tube formation in human umbilical vein endothelial cells (HUVEC). Inhibition of phospholipase Cgamma (PLCgamma) with U73122 abrogated VEGF-E induced endothelial cell migration, tube formation and NO release. Inhibition of endothelial nitric oxide synthase (eNOS) using l-NNA blocked VEGF-E-induced NO release and angiogenesis. Pre-incubation of HUVEC with the soluble guanylate cyclase inhibitor, ODQ, or the protein kinase G (PKG) inhibitor, KT-5823, had no effect on angiogenesis suggesting that the action of VEGF-E is cGMP-independent. Our data provide the first demonstration that VEGFR-2-mediated NO signaling and subsequent angiogenesis is through a mechanism that is dependent on PLCgamma but independent of cGMP and PKG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号