共查询到20条相似文献,搜索用时 15 毫秒
1.
Correa-Meyer E Pesce L Guerrero C Sznajder JI 《American journal of physiology. Lung cellular and molecular physiology》2002,282(5):L883-L891
Mechanical stimuli are transduced into intracellular signals in lung alveolar epithelial cells (AEC). We studied whether mitogen-activated protein kinase (MAPK) pathways are activated during cyclic stretch of AEC. Cyclic stretch induced a rapid (within 5 min) increase in extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in AEC. The inhibition of Na(+), L-type Ca(2+) and stretch-activated ion channels with amiloride, nifedipine, and gadolinium did not prevent the stretch-induced ERK1/2 activation. The inhibition of Grb2-SOS interaction with an SH3 binding sequence peptide, Ras with a farnesyl transferase inhibitor, and Raf-1 with forskolin did not affect the stretch-induced ERK1/2 phosphorylation. Moreover, cyclic stretch did not increase Ras activity, suggesting that stretch-induced ERK1/2 activation is independent of the classical receptor tyrosine kinase-MAPK pathway. Pertussis toxin and two specific epidermal growth factor receptor (EGFR) inhibitors (AG-1478 and PD-153035) prevented the stretch-induced ERK1/2 activation. Accordingly, in primary AEC, cyclic stretch activates ERK1/2 via G proteins and EGFR, in Na(+) and Ca(2+) influxes and Grb2-SOS-, Ras-, and Raf-1-independent pathways. 相似文献
2.
Tanaka Y Sekiguchi F Hong H Kawabata A 《Biochemical and biophysical research communications》2008,377(2):622-626
Proteinase-activated receptor-2 (PAR2) plays pro-inflammatory roles in many organs including the gastrointestinal (GI) tract. To clarify the downstream pro-inflammatory signaling of PAR2 in the GI tract, we examined interleukin-8 (IL-8) release and the underlying cellular signaling following PAR2 stimulation in human colorectal cancer-derived HCT-15 cells and human gastric adenocarcinoma-derived MKN-45 cells. A PAR2-activating peptide, but not a PAR2-inactive scrambled peptide or a PAR1- activating peptide, caused IL-8 release in these GI epithelial cells. The PAR2-triggered IL-8 release was suppressed by inhibitors of MEK (U0126) or PI3-kinase (LY294002), and PAR2 stimulation indeed activated the downstream kinases, ERK and Akt. U0126 blocked the phosphorylation of ERK, but not Akt, and LY294002 blocked the phosphorylation of Akt, but not ERK. Together, PAR2 triggers IL-8 release via two independent signaling pathways, MEK/ERK and PI3-kinase/Akt, suggesting a role of PAR2 as a pro-inflammatory receptor in the GI tract. 相似文献
3.
Kwon DS Kwon CH Kim JH Woo JS Jung JS Kim YK 《European journal of cell biology》2006,85(11):1189-1199
The extracellular signal-regulated kinase (ERK) and Akt have been reported to be activated by ischemia/reperfusion in vivo. However, the signaling pathways involved in activation of these kinases and their potential roles were not fully understood in the postischemic kidney. In the present study, we observed that these kinases are activated by hypoxia/reoxygenation (H/R), an in vitro model of ischemia/reperfusion, in opossum kidney (OK) cells and elucidated the signaling pathways of these kinases. ERK and Akt were transiently activated during the early phase of reoxygenation following 4-12h of hypoxia. The ERK activation was inhibited by U0126, a specific inhibitor of ERK upstream MAPK/ERK kinase (MEK), but not by LY294002, a specific inhibitor of phosphoinositide 3-kinase (PI3K), whereas Akt activation was blocked by LY294002, but not by U0126. Inhibitors of epidermal growth factor receptor (EGFR) (AG 1478), Ras and Raf, as well as antioxidants inhibited activation of ERK and Akt, while the Src inhibitor PP2 had no effect. PI3K/Akt activation was shown to be associated with up-regulation of X chromosome-linked inhibitor of apoptosis (XIAP), but not survivin. Reoxygenation following 4-h hypoxia-stimulated cell proliferation, which was dependent on ERK and Akt activation and was also inhibited by antioxidants and AG 1478. Taken together, these results suggest that H/R induces activation of MEK/ERK and PI3K/Akt/XIAP survival signaling pathways through the reactive oxygen species-dependent EGFR/Ras/Raf cascade. Activation of these kinases may be involved in the repair process during ischemia/reperfusion. 相似文献
4.
James A. McCubrey Linda S. Steelman Richard A. Franklin Steven L. Abrams William H. Chappell Ellis W.T. Wong Brian D. Lehmann David M. Terrian Jorg Basecke Franca Stivala Massimo Libra Camilla Evangelisti Alberto M. Martelli 《Advances in enzyme regulation》2007,47(1):64-103
We have presented data which documents the importance of the Raf>MEK>ERK and PI3K>Akt pathways in the development of drug resistance in hematopoietic cells. Further understanding of how these pathways interact and induce drug resistance could result in the identification of novel approaches to treat drug resistance in leukemia. Furthermore, p53 played a role in drug resistance in these cells as introduction of a DN-p53 construct increased the resistance of the cells to chemotherapeutic drugs. The drug-sensitive and drug-resistant FL/ΔAkt:ER+ΔRaf-1:AR cells will allow us the ability to determine not only which downstream components are induced by either Raf>MEK>ERK or PI3K>Akt that are necessary for proliferation and prevention of apoptosis, but also which components are important in drug resistance and how these two pathways can interact to influence drug resistance. 相似文献
5.
Lei J Ingbar DH 《American journal of physiology. Lung cellular and molecular physiology》2011,301(5):L765-L771
We previously reported that the 3,5,3'-triiodo-L-thyronine (T3)-induced increase of Na-K-ATPase activity in rat alveolar epithelial cells (AECs) required activation of Src kinase, PI3K, and MAPK/ERK1/2. In the present study, we assessed the role of Akt in Na-K-ATPase activity and the interaction between the PI3K and MAPK in response to T3 by using MP48 cells, inhibitors, and constitutively active mutants in the MP48 (alveolar type II-like) cell line. The Akt inhibitor VIII blocked T3-induced increases in Na-K-ATPase activity and amount of plasma membrane Na-K-ATPase protein. The Akt inhibitor VIII also abolished the increase in Na-K-ATPase activity induced by constitutively active mutants of either Src kinase or PI3K. Moreover, constitutively active mutants of Akt increased Na-K-ATPase activity in the absence of T3. Thus activation of Akt was required for T3-induced Na-K-ATPase activity in AECs and is sufficient in the absence of T3. Inhibitors of Src kinase (PP1), PI3K (wortmannin), and ERK1/2 (U0126) all blocked the T3-induced Na-K-ATPase activity. PP1 blocked the activation of PI3K and also ERK1/2 by T3, whereas U0126 did not prevent T3 activation of Src kinase or PI3K activity. Wortmannin did not significantly alter T3-increased MAPK/ERK1/2 activity, suggesting that T3-activated PI3K/Akt and MAPK/ERK1/2 pathways acted downstream of the Src kinase. Furthermore, in the absence of T3, a constitutively active mutant of Src kinase increased activities of Na-K-ATPase, PI3K, and MAPK/ERK1/2. A constitutively active mutant of PI3K enhanced Na-K-ATPase activity but did not alter the MAPK/ERK1/2 activity significantly. In summary, in adult rat AECs T3-stimulated Src kinase activity can activate both PI3K/Akt and MAPK/ERK1/2, and activation of Akt is necessary for T3-induced Na-K-ATPase activity. 相似文献
6.
7.
Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance 总被引:1,自引:0,他引:1
James A. McCubrey Linda S. Steelman John T. Lee Fred E. Bertrand David M. Terrian Richard A. Franklin Antonio B. D’Assoro Maria Clorinda Mazzarino Massimo Libra 《Advances in enzyme regulation》2006,46(1):249-279
The Ras/Raf/MEK/ERK and PI3K/PTEN/AKT signaling cascades play critical roles in the transmission of signals from growth factor receptors to regulate gene expression and prevent apoptosis. Components of these pathways are mutated or aberrantly expressed in human cancer (e.g., Ras, B-Raf, PI3K, PTEN, Akt). Also, mutations occur at genes encoding upstream receptors (e.g., EGFR and Flt-3) and chimeric chromosomal translocations (e.g., BCR-ABL) which transmit their signals through these cascades. These pathways interact with each other to regulate growth and in some cases tumorigenesis. For example, in some cells, PTEN mutation may contribute to suppression of the Raf/MEK/ERK cascade due to the ability of elevated activated Akt levels to phosphorylate and inactivate Raf-1. We have investigated the genetic structures and functional roles of these two signaling pathways in the malignant transformation and drug resistance of hematopoietic, breast and prostate cancer cells. Although both of these pathways are commonly thought to have anti-apoptotic and drug resistance effects on cells, they display different cell-lineage-specific effects. Induced Raf expression can abrogate the cytokine dependence of certain hematopoietic cell lines (FDC-P1 and TF-1), a trait associated with tumorigenesis. In contrast, expression of activated PI3K or Akt does not abrogate the cytokine dependence of these hematopoietic cell lines, but does have positive effects on cell survival. However, activated PI3K and Akt can synergize with activated Raf to abrogate the cytokine dependence of another hematopoietic cell line (FL5.12) which is not transformed by activated Raf expression by itself. Activated Raf and Akt also confer a drug-resistant phenotype to these cells. Raf is more associated with proliferation and the prevention of apoptosis while Akt is more associated with the long-term clonogenicity. In breast cancer cells, activated Raf conferred resistance to the chemotherapeutic drugs doxorubicin and paclitaxel. Raf induced the expression of the drug pump Mdr-1 (a.k.a., Pgp) and the Bcl-2 anti-apoptotic protein. Raf did not appear to induce drug resistance by altering p53/p21Cip−1 expression, whose expression is often linked to regulation of cell cycle progression and drug resistance. Deregulation of the PI3K/PTEN/Akt pathway was associated with resistance to doxorubicin and 4-hydroxyl tamoxifen, a chemotherapeutic drug and estrogen receptor antagonist used in breast cancer therapy. In contrast to the drug-resistant breast cancer cells obtained after overexpression of activated Raf, cells expressing activated Akt displayed altered (decreased) levels of p53/p21Cip−1. Deregulated expression of the central phosphatase in the PI3K/PTEN/Akt pathway led to breast cancer drug resistance. Introduction of mutated forms of PTEN, which lacked lipid phosphatase activity, increased the resistance of the MCF-7 cells to doxorubicin, suggesting that these lipid phosphatase deficient PTEN mutants acted as dominant negative mutants to suppress wild-type PTEN activity. Finally, the PI3K/PTEN/Akt pathway appears to be more prominently involved in prostate cancer drug resistance than the Raf/MEK/ERK pathway. Some advanced prostate cancer cells express elevated levels of activated Akt which may suppress Raf activation. Introduction of activated forms of Akt increased the drug resistance of advanced prostate cancer cells. In contrast, introduction of activated forms of Raf did not increase the drug resistance of the prostate cancer cells. In contrast to the results observed in hematopoietic cells, Raf may normally promote differentiation in prostate cells which is suppressed in advanced prostate cancer due to increased expression of activated Akt arising from PTEN mutation. Thus in advanced prostate cancer it may be advantageous to induce Raf expression to promote differentiation, while in hematopoietic cancers it may be beneficial to inhibit Raf/MEK/ERK-induced proliferation. These signaling and anti-apoptotic pathways can have different effects on growth, prevention of apoptosis and induction of drug resistance in cells of various lineages which may be due to the expression of lineage-specific factors. 相似文献
8.
Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor (GHSR), is thought to exert a protective effect on the cardiovascular system, specifically by promoting vascular endothelial cell function such as cell proliferation, migration, survival and angiogenesis. However, the effect of ghrelin on angiogenesis and the corresponding mechanisms have not yet been extensively studied in cardiac microvascular endothelial cells (CMECs) isolated from left ventricular myocardium of adult Sprague-Dawley (SD) rats. In our study, we found that ghrelin and GHSR are constitutively expressed in CMECs. Ghrelin significantly increases CMECs proliferation, migration, and in vitro angiogenesis. The ghrelin-induced angiogenic process was accompanied by phosphorylation of ERK and Akt. MEK inhibitor PD98059 abolished ghrelin-induced phosphorylation of ERK, but had no effect on Akt phosphorylation. PI3K inhibitor LY294002 abolished ghrelin-induced phosphorylation of Akt, but had no effect on ERK phosphorylation. Ghrelin-induced angiogenesis was partially blocked by treatment with PD98059 or LY294002. In addition, this angiogenic effect was almost completely inhibited by PD98059+LY294002. Pretreatment with GHSR1a blocker [D-Lys3]-GHRP-6 abolished ghrelin-induced phosphorylation of ERK, Akt and in vitro angiogenesis. In conclusion, this is the first demonstration that ghrelin stimulates CMECs angiogenesis through GHSR1a-mediated MEK/ERK and PI3K/Akt signal pathways, indicating that two pathways are required for full angiogenic activity of ghrelin. This study suggests that ghrelin may play an important role in myocardial angiogenesis. 相似文献
9.
Hiroshi Matsuoka Masanobu Tsubaki Mitsuhiko Ogaki Tatsuki Itoh Shozo Nishida 《Experimental cell research》2009,315(12):2022-2032
In melanoma, several signaling pathways are constitutively activated. Among these, the protein kinase C (PKC) signaling pathways are activated through multiple signal transduction molecules and appear to play major roles in melanoma progression. Recently, it has been reported that tamoxifen, an anti-estrogen reagent, inhibits PKC signaling in estrogen-negative and estrogen-independent cancer cell lines. Thus, we investigated whether tamoxifen inhibited tumor cell invasion and metastasis in mouse melanoma cell line B16BL6. Tamoxifen significantly inhibited lung metastasis, cell migration, and invasion at concentrations that did not show anti-proliferative effects on B16BL6 cells. Tamoxifen also inhibited the mRNA expressions and protein activities of matrix metalloproteinases (MMPs). Furthermore, tamoxifen suppressed phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt through the inhibition of PKCα and PKCδ phosphorylation. However, other signal transduction factor, such as p38 mitogen-activated protein kinase (p38MAPK) was unaffected. The results indicate that tamoxifen suppresses the PKC/mitogen-activated protein kinase kinase (MEK)/ERK and PKC/phosphatidylinositol-3 kinase (PI3K)/Akt pathways, thereby inhibiting B16BL6 cell migration, invasion, and metastasis. Moreover, tamoxifen markedly inhibited not only developing but also clinically evident metastasis. These findings suggest that tamoxifen has potential clinical applications for the treatment of tumor cell metastasis. 相似文献
10.
Dan Wu Mulin Liang Hongxing Dang Fang Fang Feng Xu Chengjun Liu 《Biochemical and biophysical research communications》2018,495(2):1620-1627
Oxidative stress is regarded as a key regulator in the pathogenesis of prolonged hyperoxia-induced lung injury, which causes injury to alveolar epithelial cells and eventually leads to development of bronchopulmonary dysplasia (BPD). Many studies have shown that hydrogen has a protective effect in a variety of cells. However, the mechanisms by which hydrogen rescues cells from damage due to oxidative stress in BPD remains to be fully elucidated. This study sought to evaluate the effects of hydrogen on hyperoxia-induced lung injury and to investigate the underlying mechanism. Primary type II alveolar epithelial cells (AECIIs) were divided into four groups: control (21% oxygen), hyperoxia (95% oxygen), hyperoxia + hydrogen, and hyperoxia + hydrogen + LY294002 (a PI3K/Akt inhibitor). Proliferation and apoptosis of AECIIs were assessed using MTS assay and flow cytometry (FCM), respectively. Gene and protein expression were detected by quantitative polymerase chain reaction (q-PCR) and western blot analysis. Stimulation with hyperoxia decreased the expression of P-Akt, P- FoxO3a, cyclinD1 and Bcl-2. Hyperoxic conditions increased levels of Bim, Bax, and Foxo3a, which induced proliferation restriction and apoptosis of AECIIs. These effects of hyperoxia were reversed with hydrogen pretreatment. Furthermore, the protective effects of hydrogen were abrogated by PI3K/Akt inhibitor LY294002. The results indicate that hydrogen protects AECIIs from hyperoxia-induced apoptosis by inhibiting apoptosis factors and promoting the expression of anti-apoptosis factors. These effects were associated with activation of the PI3K/Akt/FoxO3a pathway. 相似文献
11.
12.
Background
FAK localization to focal adhesions is essential for its activation and function. Localization of FAK is mediated through the C-terminal focal adhesion targeting (FAT) domain. Recent structural analyses have revealed two paxillin-binding sites in the FAT domain of FAK. To define the role of paxillin binding to each site on FAK, point mutations have been engineered to specifically disrupt paxillin binding to each docking site on the FAT domain of FAK individually or in combination.Results
These mutants have been characterized and reveal an important role for paxillin binding in FAK subcellular localization and signaling. One paxillin-binding site (comprised of α-helices 1 and 4 of the FAT domain) plays a more prominent role in localization than the other. Mutation of either paxillin-binding site has similar effects on FAK activation and downstream signaling. However, the sites aren't strictly redundant as each mutant exhibits phosphorylation/signaling defects distinct from wild type FAK and a mutant completely defective for paxillin binding.Conclusion
The studies demonstrate that the two paxillin-binding sites of FAK are not redundant and that both sites are required for FAK function. 相似文献13.
《中国科学:生命科学英文版》2015,(6)
This paper aims to observe the changes of the inflammatory cytokines in microglial BV2 cells stimulated by apelin, and investigate the mechanism of inflammatory cytokines secretion after apelin stimulation. Immunofluorescence and quantitative real-time PCR were performed to observe expression of TNF-α, IL-1β, IL-10, MIP-1α, and MCP-1 in BV2 cells. Western blot was used to investigate the expression of phosphorylation PI-3K/Akt and phosphorylation Erk signaling pathways in BV2 cells after stimulation by apelin. Furthermore, PI-3K/Akt inhibitor(LY294402) and Erk inhibitor(U0126) were used as antagonists to detect the secretion mechanisms of cytokines in BV2 cells stimulated by apelin. Exogenous recombinant apelin activated the expression of TNF-α, IL-1β, MCP-1 and MIP-1α in BV2 cells by the detection of fluorescence expression and m RNA. Apelin also unregulated the protein expression of p-PI-3K/Akt and p-Erk in BV2 cells induced by apelin. LY294002 and U0126 inhibited activation of p-PI-3K/Akt and p-Erk expression by Western blot and attenuated the expression of inflammation factors in BV2 cells by fluorescence staining. This study demonstrates that apelin is a potential activator of inflammation factors through the PI3K/Akt and Erk signaling pathway and is potential therapeutically relevant to inflammatory responses of microglia cells. 相似文献
14.
Xu D Guthrie JR Mabry S Sack TM Truog WE 《American journal of physiology. Lung cellular and molecular physiology》2006,291(5):L966-L975
Oxygen toxicity is one of the major risk factors in the development of the chronic lung disease or bronchopulmonary dysplasia in premature infants. Using proteomic analysis, we discovered that mitochondrial aldehyde dehydrogenase (mtALDH or ALDH2) was downregulated in neonatal rat lung after hyperoxic exposure. To study the role of mtALDH in hyperoxic lung injury, we overexpressed mtALDH in human lung epithelial cells (A549) and found that mtALDH significantly reduced hyperoxia-induced cell death. Compared with control cells (Neo-A549), the necrotic cell death in mtALDH-overexpressing cells (mtALDH-A549) decreased from 25.3 to 6.5%, 50.5 to 9.1%, and 52.4 to 15.1% after 24-, 48-, and 72-h hyperoxic exposure, respectively. The levels of intracellular and mitochondria-derived reactive oxygen species (ROS) in mtALDH-A549 cells after hyperoxic exposure were significantly lowered compared with Neo-A549 cells. mtALDH overexpression significantly stimulated extracellular signal-regulated kinase (ERK) phosphorylation under normoxic and hyperoxic conditions. Inhibition of ERK phosphorylation partially eliminated the protective effect of mtALDH in hyperoxia-induced cell death, suggesting ERK activation by mtALDH conferred cellular resistance to hyperoxia. mtALDH overexpression augmented Akt phosphorylation and maintained the total Akt level in mtALDH-A549 cells under normoxic and hyperoxic conditions. Inhibition of phosphatidylinositol 3-kinase (PI3K) activation by LY294002 in mtALDH-A549 cells significantly increased necrotic cell death after hyperoxic exposure, indicating that PI3K-Akt activation by mtALDH played an important role in cell survival after hyperoxia. Taken together, these data demonstrate that mtALDH overexpression attenuates hyperoxia-induced cell death in lung epithelial cells through reduction of ROS, activation of ERK/MAPK, and PI3K-Akt cell survival signaling pathways. 相似文献
15.
CDDP [cisplatin or cis-diamminedichloroplatinum(II)] and CDDP-based combination chemotherapy have been confirmed effective against gastric cancer. However, CDDP efficiency is limited because of development of drug resistance. In this study, we found that PAK4 (p21-activated kinase 4) expression and activity were elevated in gastric cancer cells with acquired CDDP resistance (AGS/CDDP and MKN-45/CDDP) compared with their parental cells. Inhibition of PAK4 or knockdown of PAK4 expression by specific siRNA (small interfering RNA)-sensitized CDDP-resistant cells to CDDP and overcome CDDP resistance. Combination treatment of [the inhibitor of PI3K (phosphoinositide 3-kinase)/Akt (protein kinase B or PKB) pathway] or PD98509 {the inhibitor of MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase] pathway} with PF-3758309 (the PAK4 inhibitor) resulted in increased CDDP efficacy compared with LY294002 or PD98509 alone. However, after the concomitant treatment of LY294002 and PD98509, PF-3758309 administration exerted no additional enhancement of CDDP cytotoxicity in CDDP-resistant cells. Inhibition of PAK4 by PF-3758309 could significantly suppress MEK/ERK and PI3K/Akt signalling in CDDP-resistant cells. Furthermore, inhibition of PI3K/Akt pathway while not MEK/ERK pathway could inhibit PAK4 activity in these cells. The in vivo results were similar with those of in vitro. In conclusion, these results indicate that PAK4 confers CDDP resistance via the activation of MEK/ERK and PI3K/Akt pathways. PAK4 and PI3K/Akt pathways can reciprocally activate each other. Therefore, PAK4 may be a potential target for overcoming CDDP resistance in gastric cancer. LY294002相似文献
16.
17.
Chung BH Kim JD Kim CK Kim JH Kim JH Won MH Lee HS Dong MS Ha KS Kwon YG Kim YM 《Biochemical and biophysical research communications》2008,376(2):404-408
We investigated the molecular effect and signal pathway of icariin, a major flavonoid of Epimedium koreanum Nakai, on angiogenesis. Icariin stimulated in vitro endothelial cell proliferation, migration, and tubulogenesis, which are typical phenomena of angiogenesis, as well as increased in vivo angiogenesis. Icariin activated the angiogenic signal modulators, ERK, phosphatidylinositol 3-kinase (PI3K), Akt, and endothelial nitric oxide synthase (eNOS), and increased NO production, without affecting VEGF expression, indicating that icariin may directly stimulate angiogenesis. Icariin-induced ERK activation and angiogenic events were significantly inhibited by the MEK inhibitor PD98059, without affecting Akt and eNOS phosphorylation. The PI3K inhibitor Wortmannin suppressed icariin-mediated angiogenesis and Akt and eNOS activation without affecting ERK phosphorylation. Moreover, the NOS inhibitor NMA partially reduced the angiogenic activity of icariin. These results suggest that icariin stimulated angiogenesis by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways and may be a useful drug for angiogenic therapy. 相似文献
18.
Yuen HF Abramczyk O Montgomery G Chan KK Huang YH Sasazuki T Shirasawa S Gopesh S Chan KW Fennell D Janne P El-Tanani M Murray JT 《Bioscience reports》2012,32(4):413-422
Inhibition of the PI3K (phosphoinositide 3-kinase)/Akt/mTORC1 (mammalian target of rapamycin complex 1) and Ras/MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase]/ERK pathways for cancer therapy has been pursued for over a decade with limited success. Emerging data have indicated that only discrete subsets of cancer patients have favourable responses to these inhibitors. This is due to genetic mutations that confer drug insensitivity and compensatory mechanisms. Therefore understanding of the feedback mechanisms that occur with respect to specific genetic mutations may aid identification of novel biomarkers that predict patient response. In the present paper, we show that feedback between the PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways is cell-line-specific and highly dependent on the activating mutation of K-Ras or overexpression c-Met. We found that cell lines exhibited differential signalling and apoptotic responses to PD184352, a specific MEK inhibitor, and PI103, a second-generation class I PI3K inhibitor. We reveal that feedback from the PI3K/Akt/mTORC1 to the Ras/MEK/ERK pathway is present in cancer cells harbouring either K-Ras activating mutations or amplification of c-Met but not the wild-type counterparts. Moreover, we demonstrate that inhibition of protein phosphatase activity by OA (okadaic acid) restored PI103-mediated feedback in wild-type cells. Together, our results demonstrate a novel mechanism for feedback between the PI3K/Akt/mTORC1 and the Ras/MEK/ERK pathways that only occurs in K-Ras mutant and c-Met amplified cells but not the isogenic wild-type cells through a mechanism that may involve inhibition of a specific endogenous phosphatase(s) activity. We conclude that monitoring K-Ras and c-Met status are important biomarkers for determining the efficacy of PI103 and other PI3K/Akt inhibitors in cancer therapy. 相似文献
19.
Xiujuan Qu Yingchun Li Jing Liu Ling Xu Ye Zhang Xuejun Hu Kezuo Hou Yunpeng Liu 《Molecular and cellular biochemistry》2010,340(1-2):107-114
The ubiquitin ligase Cbl-b is a negative regulator of the PI3K/Akt pathway, the survival pathway implicated in chemotherapy resistance. However, it remains unclear whether Cbl-b can regulate chemosensitivity through modulating Akt activation. In this study, VP-16-induced RBL-2H3 cells apoptosis was accompanied by the activation of Akt and ERK. The PI3K inhibitor LY294002, not the ERK inhibitor PD98059, enhanced the apoptosis. In addition, down-regulation of Cbl-b was also detected. Over expression of Cbl-b significantly enhanced VP-16-induced cell apoptosis with inhibition of Akt activity, while a dominant negative (DN) RING Finger domain mutation completely abolished this enhancement. On the other hand, ERK activity was enhanced by Cbl-b, and the ERK inhibitor PD98059 reversed Cbl-b-enhanced apoptosis. The consistent results were also showed in the process of Ara-c treatment. These observations indicate that Cbl-b promotes RBL-2H3 apoptosis induced by VP-16 or Ara-c, probably through inhibition of Akt and activation of ERK. 相似文献
20.
Tammy Sobolik Ying-jun Su Sam Wells Gregory D. Ayers Rebecca S. Cook Ann Richmond 《Molecular biology of the cell》2014,25(5):566-582
Aberrant expression of CXCR4 in human breast cancer correlates with metastasis to tissues secreting CXCL12. To understand the mechanism by which CXCR4 mediates breast cancer metastasis, MCF-7 breast carcinoma cells were transduced to express wild-type CXCR4 (CXCR4WT) or constitutively active CXCR4 (CXCR4ΔCTD) and analyzed in two-dimensional (2D) cultures, three-dimensional reconstituted basement membrane (3D rBM) cultures, and mice using intravital imaging. Two-dimensional cultures of MCF-7 CXCR4ΔCTD cells, but not CXCR4WT, exhibited an epithelial-to-mesenchymal transition (EMT) characterized by up-regulation of zinc finger E box–binding homeobox 1, loss of E-cadherin, up-regulation of cadherin 11, p120 isoform switching, activation of extracellular signal-regulated kinase 1/2, and matrix metalloproteinase-2. In contrast to the 2D environment, MCF-7 CXCR4WT cells cultured in 3D rBM exhibited an EMT phenotype, accompanied by expression of CXCR2, CXCR7, CXCL1, CXCL8, CCL2, interleukin-6, and granulocyte–macrophage colony stimulating factor. Dual inhibition of CXCR2 with CXCR4, or inhibition of either receptor with inhibitors of mitogen-activated protein kinase 1 or phosphatidylinositol 3-kinase, reversed the aggressive phenotype of MCF-7 CXCR4-expressing or MDA-MB-231 cells in 3D rBM. Intravital imaging of CXCR4-expressing MCF-7 cells revealed that tumor cells migrate toward blood vessels and metastasize to lymph nodes. Thus CXCR4 can drive EMT along with an up-regulation of chemokine receptors and cytokines important in cell migration, lymphatic invasion, and tumor metastasis. 相似文献