首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of thermal aggregation of glycogen phosphorylase b (Phb) from rabbit skeletal muscle have been studied by dynamic light scattering (0.08M Hepes, pH 6.8, containing 0.1M NaCl; 48 degrees C). The hydrodynamic radius of the start aggregates determined from the initial linear parts of the dependences of the hydrodynamic radius (R(h)) on time was found to be 16.7 +/- 1.0 nm. At rather high values of time, the R(h) value for the protein aggregates becomes proportional to t(1/1.8) = t(0.56) suggesting that the aggregation process proceeds in the regime of diffusion-limited cluster-cluster aggregation. In the presence of alpha-crystallin, a protein possessing the chaperone-like activity, the process of protein aggregation switches to the regime of reaction-limited cluster-cluster aggregation as indicated by the exponential dependence of the R(h) value on time. It was shown that the addition of alpha-crystallin raises the rate of thermal inactivation of Phb. These data in combination with the results of the study of interaction of Phb with alpha-crystallin by analytical ultracentrifugation suggest that alpha-crystallin interacts with the intermediates of unfolding of the Phb molecule.  相似文献   

2.
The kinetics of heat-induced and cetyltrimethylammonium bromide induced amorphous aggregation of tobacco mosaic virus coat protein in Na(+)/Na(+) phosphate buffer, pH 8.0, have been studied using dynamic light scattering. In the case of thermal aggregation (52 degrees C) the character of the dependence of the hydrodynamic radius (R(h)) on time indicates that at certain instant the population of aggregates is split into two components. The size of the aggregates of one kind remains practically constant in time, whereas the size of aggregates of other kind increases monotonously in time reaching the values characteristic of aggregates prone to precipitation (R(h)=900-1500 nm). The construction of the light scattering intensity versus R(h) plots shows that the large aggregates (the start aggregates) exist in the system at the instant the initial increase in the light scattering intensity is observed. For thermal aggregation the R(h) value for the start aggregates is independent of the protein concentration and equal to 21.6 nm. In the case of the surfactant-induced aggregation (at 25 degrees C) no splitting of the aggregates into two components is observed and the size of the start aggregates turns out to be much larger (107 nm) than on the thermal aggregation. The dependence of R(h) on time for both heat-induced aggregation and surfactant-induced aggregation after a lapse of time follows the power law indicating that the aggregation process proceeds in the kinetic regime of diffusion-limited cluster-cluster aggregation. Fractal dimension is close to 1.8. The molecular chaperone alpha-crystallin does not affect the kinetics of tobacco mosaic virus coat protein thermal aggregation.  相似文献   

3.
The structure of aggregates formed by heating dilute BSA solution was analyzed with the fractal concept using light scattering methods. BSA was dissolved in HEPES buffer of pH 7.0 and acetate buffer of pH 5.1 to 0.1% and 0.001% solutions, respectively, and heated at 95°C, varying the heating time ta. The fractal dimension Df of the aggregate in the solution was evaluated from static light scattering experiments. The polydispersity exponent τ and the average hydrodynamic radius <Rh> of the aggregates were calculated from dynamic light scattering experiments using master curves obtained by Klein et al. The values of Df and τ of heat-induced aggregates of BSA at pH 7.0 were about 2.1 and 1.5, respectively, the values of which agreed with those predicted by the reaction-limited cluster–cluster aggregation (RLCCA) model. On the other hand, Df of heat-induced aggregates at pH 5.1 was about 1.8, which agreed with that predicted by the diffusion-limited cluster–cluster aggregation (DLCCA) model. The dependence of <Rh> for the sample of pH 7.0 on ta was similar to that of the polystyrene colloids reported previously.  相似文献   

4.
Thermal aggregation of rabbit skeletal muscle glycogen phosphorylase b (Phb) has been investigated using dynamic light scattering under conditions of a constant rate of temperature increase (1 K/min). The linear behavior of the dependence of the hydrodynamic radius on temperature for Phb aggregation is consistent with the idea that thermal aggregation of proteins proceeds in the kinetic regime wherein the rate of aggregation is limited by diffusion of the interacting particles (the regime of "diffusion-limited cluster-cluster aggregation"). In the presence of alpha-crystallin, a protein exhibiting chaperone-like activity, the dependence of the hydrodynamic radius on temperature follows the exponential law; this suggests that the aggregation process proceeds in the kinetic regime where the sticking probability for colliding particles becomes lower than unity (the regime of "reaction-limited cluster-cluster aggregation"). Based on analysis of the ratio between the light scattering intensity and the hydrodynamic radius of Phb aggregates, it has been concluded that the addition of alpha-crystallin results in formation of smaller size starting aggregates. The data on differential scanning calorimetry indicate that alpha-crystallin interacts with the intermediates of the unfolding process of the Phb molecule. The proposed scheme of thermal denaturation and aggregation of Phb includes the stage of reversible dissociation of dimers of Phb into monomers, the stage of the formation of the starting aggregates from the denatured monomers of Phb, and the stage of the sticking of the starting aggregates and higher order aggregates. Dissociation of Phb dimer into monomers at elevated temperatures has been confirmed by analytical ultracentrifugation.  相似文献   

5.
Understanding protein aggregation may hold important clues to understanding what goes wrong with protein folding in neurodegenerative disorders and in bioreactors in which proteins are overexpressed. Unfortunately, aggregates tend to be intractable to most standard methods of biochemical investigation. Thus, relatively little is even now known about the micro- and macro-structural features of aggregates. To gain insights into the thermal aggregation of a model globular protein [bovine carbonic anhydrase (BCA)], we have used spectrofluorimetry to examine the binding of a hydrophobic dye, 8-anilinonaphthalene sulfonate (ANS), to hydrophobic clusters on the protein's surface both before and after heat-induced aggregation and upon cooling. Whereas native BCA shows no surface hydrophobicity, thermally aggregated BCA displays significant hydrophobicity both in the heated state and upon cooling. The timing of the addition of ANS in the course of aggregation makes no net difference to the ANS bound; we argue that this suggests that aggregates are essentially porous. Cooling of aggregates results in a dramatic, fully reversible increase in ANS binding that cannot be explained by the temperature dependence of fluorescence quantum yield alone; we argue that the enhancement of fluorescence upon cooling indicates possible structural consolidation of unfolded regions within aggregates (akin to refolding), with the required structural reorganization being facilitated by porosity. Finally, implications of porosity in aggregates are discussed, in particular, for the possible immobilization of enzymes through fusion with aggregation-prone protein domains.  相似文献   

6.
Stefan Auer  Dimo Kashchiev 《Proteins》2010,78(11):2412-2416
Under favorable conditions, many proteins can assemble into macroscopically large aggregates such as the amyloid fibrils that are associated with Alzheimer's, Parkinson's, and other neurological and systemic diseases. The overall process of protein aggregation is characterized by initial lag time during which no detectable aggregation occurs in the solution and by maximal aggregation rate at which the dissolved protein converts into aggregates. In this study, the correlation between the lag time and the maximal rate of protein aggregation is analyzed. It is found that the product of these two quantities depends on a single numerical parameter, the kinetic index of the curve quantifying the time evolution of the fraction of protein aggregated. As this index depends relatively little on the conditions and/or system studied, our finding provides insight into why for many experiments the values of the product of the lag time and the maximal aggregation rate are often equal or quite close to each other. It is shown how the kinetic index is related to a basic kinetic parameter of a recently proposed theory of protein aggregation. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
The kinetics of heat-induced aggregation of apo-concanavalin A (aConA) was investigated as a function of temperature and protein concentration by circular dichroism and turbidity. Heat-induced aggregation, as well as conformational change, of aConA was fitted to stretched-exponential equations. The exponent of the conformational change maintained 0.5 despite the protein concentration and temperature, indicating the presence of a common intermediate during the conformational change. After the process, aggregates grew with increasing temperature and initial protein concentration. The reaction order of aggregation was 1.5, indicating that the rate-limiting steps of aConA aggregation involve both conformational change and aggregation.  相似文献   

8.

1. 1.|We developed a turbidimetric assay system for quantitation of heat-induced protein aggregation which is presumably caused by protein denaturation.

2. 2.|Rhodanese in 6 M guanidinium chloride was employed in the assay system, because this protein recognizes hydrophobic sites on denatured proteins and aggregates.

3. 3.|Turbidity caused by protein-rhodanase aggregation was recorded at 320 nm by using a u.v./VIS spectrophotometer.

4. 4.|When heated, alcohol dehydrogenase (ADH) aggregates with rhodanese. The increase of ADH-rhodanese aggregation was correlated with the loss of enzymatic activity.

5. 5.|These results indicated that the aggregation was proportional to the extent of ADH denaturation which assumingly caused the loss of ADH activity during heating at 45.5°C.

6. 6.|Similar results were observed when cytosolic proteins from CHO cells were heated at 45.5°C. Heated cytosolic proteins promoted aggregation by complex formation with rhodanese. The aggregation increased with increasing heat dose.

7. 7.|Therefore, the rhodanese assay system can be employed usefully to quantitate the protein aggregation after heat stress.

Author Keywords: Turbidimetric assay; rhodanese; protein aggregation; hyperthermia  相似文献   


9.
Formation of misfolded aggregates is an essential part of what proteins can do. The process of protein aggregation is central to many human diseases and any aggregating event needs to be prevented within a cell and in protein design. In order to aggregate, a protein needs to unfold its native state, at least partially. The conformational state that is prone to aggregate is difficult to study, due to its aggregating potential and heterogeneous nature. Here, we use a systematic approach of limited proteolysis, in combination with electrospray ionisation mass spectrometry, to investigate the regions that are most flexible and solvent-exposed within the native, ligand-bound and amyloidogenic states of muscle acylphosphatase (AcP), a protein previously shown to form amyloid fibrils in the presence of trifluoroethanol. Seven proteases with different degrees of specificity have been used for this purpose. Following exposure to the aggregating conditions, a number of sites along the sequence of AcP become susceptible to proteolytic digestion. The pattern of proteolytic cleavages obtained under these conditions is considerably different from that of the native and ligand-bound conformations and includes a portion within the N-terminal tail of the protein (residues 6-7), the region of the sequence 18-23 and the position 94 near the C terminus. There is a significant overlap between the regions of the sequence found to be solvent-exposed from the present study and those previously identified to be critical in the rate-determining steps of aggregation from protein engineering approaches. This indicates that a considerable degree of solvent exposure is a feature of the portions of a protein that initiate the process of aggregation.  相似文献   

10.
The SH3 domains are small protein modules of 60-85 amino acid residues that are found in many proteins involved in intracellular signal transduction. The SH3 domain of the p85alpha subunit of bovine phosphatidylinositol 3'-kinase (PI3-SH3) under acidic solution adopts a compact denatured state from which amyloid fibrils are readily formed. This aggregation process has been found to be modulated substantially by solution conditions. Here, we have analyzed the conformational features of the native and acid denatured states of PI3-SH3 by limited proteolysis experiments using proteinase K and pepsin, respectively. Moreover, we have analyzed the propensity of PI3-SH3 to be hydrolyzed by pepsin at different stages in the process of aggregation and amyloid formation at pH 1.2 and 2.0 and compared the sites of proteolysis under these conditions with the conformational features of both native and aggregated PI3-SH3. The results demonstrate that the denatured state of PI3-SH3 formed at low pH is relatively resistant to proteolysis, indicating that it is partially folded. The long loop connecting beta-strands b and c in the native protein is the region in this structure most susceptible to proteolysis. Remarkably, aggregates of PI3-SH3 that are formed initially from this denatured state in acid solution display enhanced susceptibility to proteolysis of the long loop, suggesting that the protein becomes more unfolded in the early stages of aggregation. By contrast, the more defined amyloid fibrils that are formed over longer periods of time are completely resistant to proteolysis. We suggest that the protein aggregates formed initially are relatively dynamic species that are able readily to reorganize their interactions to enable formation of very well ordered fibrillar structures. In addition, the disordered and non-native character of the polypeptide chains in the early aggregates could be important in determining the high cytotoxicity that has been revealed in previous studies of these species.  相似文献   

11.
Protein misfolding, self-assembly, and aggregation are an essential problem in cell biology, biotechnology, and biomedicine. The protein aggregates are very different morphologically varying from soluble amorphous aggregates to highly ordered amyloid-like fibrils. The objective of this study was to elucidate the role of the amino acid l-arginine (Arg), a widely used suppressor of protein aggregation, in the regulation of transformations of soluble aggregation-prone proteins into supramolecular structures of higher order. However, a striking potential of Arg to govern the initial events in the process of protein aggregation has been revealed under environment conditions where the protein aggregation in its absence was not observed. Using dynamic light scattering we have demonstrated that Arg (10–100 mM) dramatically accelerated the dithiothreitol-induced aggregation of acidic model proteins. The inhibitory effect on the protein aggregation was revealed at higher concentrations of Arg. Using atomic force microscopy it was shown that aggregation of α-lactalbumin from bovine milk induced upon addition of Arg reached a state of formation of supramolecular structures of non-fibrillar species profoundly differing from those of the individual protein in type, size, and shape. The interaction of another positively charged amino acid l-lysine with α-lactalbumin also resulted in profound acceleration of the aggregation process and transformation of supramolecular structures of the aggregates.  相似文献   

12.
Heat-induced nuclear protein aggregation and subsequent disaggregation were measured in nonpreheated and preheated (thermotolerant) HeLa S3 cells. The effect of thermotolerance on the formation of and recovery from heat-induced nuclear protein aggregates was related to the cellular levels of hsp27, hsp60, hsp70, hsc70, and hsp90. Cells heated at different time points after the thermotolerance trigger showed various levels of protection against heat-induced nuclear protein aggregation. This protection, however, did not parallel the development and decay of thermotolerance on cell survival. The protection was maximal when the thermotolerance level already had started to decay. The level of protection against nuclear protein aggregation did however parallel the cellular level of hsp70 indicating that hsp70 may be involved in this process. At all stages during the development and decay, thermotolerant cells showed a more rapid recovery (disaggregation) from the heat-induced nuclear protein aggregates than non-thermotolerant cells. The rates of disaggregation during development and decay of thermotolerance paralleled the cellular levels of hsp27 suggesting that hsp27 is somehow involved in this recovery process from heat-induced nuclear protein aggregates. The total cellular levels of none of the individual hsp's completely correlate with development and decay of thermotolerance, indicating that overexpression of any of these hsp's alone does not determine the level of thermotolerance. Clonogenic cell survival paralleled the rates of disaggregation, leading to the notion that recovery processes are the most important determinant for the thermotolerant state of HeLa S3 cells. The best corelation with clonogenic survival was found when both initial aggregation and subsequent disaggregation were taken into account, suggesting that the combined action of various hsp's in these two processes have to be included in thermotolerance development and decay. © 1995 Wiley-Liss, Inc.  相似文献   

13.
The effect of protein aggregates on the aggregation of d-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) during unfolding and refolding has been studied. The aggregation of GAPDH follows a sigmoid course. The presence of protein aggregates increases the aggregation rate during unfolding and refolding of GAPDH but does not change the extent of aggregation and the final renaturation yield. It is suggested that protein aggregates function as seeds for aggregation via hydrophobic interaction with only GAPDH folding intermediates destined to aggregate and do not affect the distribution between pathways leading to correct folding and aggregation. Moreover, two different proteins do not interfere with each other during their simultaneous refolding together in a buffer. These findings provide insight into a mechanism by which cells prevent protein folding against the interference from aggregation of other proteins.  相似文献   

14.
Protein aggregation is a ubiquitous phenomenon significant to all aspects of science. Notably, the formation of protein aggregates is frequently encountered in biochemical research and biopharmaceutical industry. Formation of protein aggregates is generally regarded to be associated with partially folded intermediate species that are susceptible to self-association due to the exposure of hydrophobic core. Evidence supports the concept that the formation of aggregates in vitro is a generic property of proteins. In human etiology, more than 20 different devastating human diseases have been reported to be associated with protein aggregation. Although protein aggregation diseases have been the center of intense research, much remains to be learned regarding the underlying molecular mechanisms. In this review, the general background information on protein aggregation is first provided. Next, we summarize the properties, characteristics and causes of protein aggregates. Finally, from the perspectives of epidemiology, pathogenesis, existing mechanisms, relevant hypotheses, and current as well as potential therapeutic approaches, two examples of protein aggregation diseases, Alzheimer's disease and cataract, are briefly discussed. Importantly, while a variety of molecules have been suggested, the effective therapeutic drugs for curing the diseases involving protein aggregation have yet to be identified. We believe that a better understanding of the mechanisms of protein aggregation process and an extensive investigation into the drug penetration, efficacy, and side effects will certainly aid in developing the successful pharmacological agents for these diseases.  相似文献   

15.
Some physicochemical properties and the microstructure of heat-induced aggregates of globulin from common buckwheat (Fagopyrum esculentum Moench) (BWG) formed at 100 °C in 0.01 M phosphate buffer containing 1.0 M NaCl, pH 7.4 were studied. Differential scanning calorimetric (DSC) analysis shows a re-distribution of native and extensively denatured proteins in the heat-induced aggregates of BWG, particularly in the ISA fraction. Sodium dodecyl sulfate polyacrylamide gel electrophoretic (SDS-PAGE) analysis suggests the occurrence of both dissociation and association of molecules and the involvement of intermolecular disulfide linkages during thermal aggregation. Transmission electron microscopy (TEM) reveals that native BWG appeared as uniform compact globules with diameters ranging between 11.7 and 12.5 nm. TEM examination of the buffer-soluble aggregates, fractionated by sucrose density gradient ultracentrifugation, demonstrates the formation of strand-like small aggregates and large compact globular soluble macroaggregates.  相似文献   

16.
Pressure can restrain the heat-induced aggregation and dissociate the heat-induced aggregates. We investigated the aggregation-preventing pressure effect and the aggregates-dissociating pressure effect to characterize the heat-induced aggregation of equine serum albumin (ESA) by Fourier transform infrared spectroscopy. The results suggest that the alpha-helical structure collapses at the beginning of heat-induced aggregation, then the rearrangement of structure from partially unfolded structure to the intermolecular beta-sheet takes place through the activated state. We determined the activation volume for the heat-induced aggregation (DeltaV( not equal)=+92+/-8 ml mol(-1)) and the partial molar volume difference between native state and heat-induced aggregates (DeltaV(N-->HA)=+32 ml mol(-1)). This positive partial molar volume difference suggests that the heat-induced aggregates have larger internal voids than the native structure. Moreover, the positive volume change implies that the formation of the intermolecular beta-sheet is unfavorable under high pressure. We also determined the free energy profile of ESA. This energy profile explains the restriction of the formation of heat-induced aggregates by pressure. These results explain the structural differences between heat-induced aggregates with intermolecular beta-sheet and pressure-induced aggregates without intermolecular beta-sheet.  相似文献   

17.
Protein particles undergo Brownian motion and collisions in solution. The diffusive collisions may lead to aggregation. For proteins to fold successfully the process has to occur quickly and before significant collision takes place. The speed of protein folding was deduced by studying the correlation time of a lysozyme refolding process from autocorrelation function analysis of the mean collision time and aggregation/soluble ratio of protein. It is a measure of time before which an aggregate can be formed and also is the time measure for a protein to fold into a stable state. We report on the protein folding stabilizing time of a lysozyme system to be 25.5-27.5 micros (<+/-4%) between 295 and 279K via direct folding experimental studies, supported by a three-dimensional random walk simulation of diffusion-limited aggregation model. Aggregation is suppressed when the protein is folded to a stable form. Spontaneous folding and diffusion-limited aggregation are antagonistic in nature. Meanwhile, the resultant aggresome, suggested by Raman and mass spectroscopy, may be formed by cross-linkages of disulfide bonds and hydrophobic interactions.  相似文献   

18.
Metal ions are implicated in protein aggregation processes of several neurodegenerative pathologies. In this work the effects of Cu(II) and Zn(II) ions on heat-induced structural modifications of bovine serum albumin (BSA) were studied, with the aim of delineating the role of these ions in the early stages of proteins aggregation kinetics. A joint application of different techniques was used. The aggregate growth was followed by dynamic light scattering measurements, whereas the conformational changes occurring in the protein structure were monitored by Raman and IR spectroscopy. Both in absence and in presence of metal ions, heating treatment gave rise to β-structures to the detriment of α-helix conformation of BSA. The temperature of protein unfolding was not sensitively affected by the presence of Zn(II) or Cu(II) ions; on the contrary, only Zn(II) ions slightly promoted the heat-induced aggregation of the protein, since bigger aggregates were formed in their presence. The different efficacy of the Cu(II) and Zn(II) ions in promoting the BSA aggregation were highlighted by Raman measurements, assessing the role of His residues in metal binding. A distinct polypeptide folding of the two metal-BSA systems takes place, since the predominant mode of metal binding depends on metal. In particular, in Zn-BSA the metal coordination involves the imidazole Nτ atom of His which can promote inter-molecular cross-linking.  相似文献   

19.
The supramolecular aggregation of alpha-crystallin, the major protein of the eye lens, was investigated by means of static and dynamic light scattering. The aggregation was induced by generating heat-modified alpha-crystallin forms and by stabilizing the clusters with calcium ions. The kinetic pattern of the aggregation and the structural features of the clusters can be described according to the reaction limited cluster-cluster aggregation theory previously adopted for the study of colloidal particles aggregation systems. Accordingly, the average mass and the hydrodynamic radius of alpha-crystallin supramolecular aggregates grow exponentially in time. The structure factor of the clusters is typical of fractal aggregates. A fractal dimension df approximately 2.15 was determined, indicating a low probability of sticking together of the primitive aggregating particles. As a consequence, the slow-forming clusters assemble a rather compact structure. The basic units forming the fractal aggregates were found to have a radius about twice (approximately 17 nm) that of the native protein and 5.3 times its size, which is consistent with an intermediate molecular assembly corresponding to the already known high molecular weight forms of alpha-crystallin.  相似文献   

20.
The fractal dimension, Df, of aggregates in a dilute BSA system with added salt was evaluated by static light scattering (SLS). A fractal structure was observed for the system with NaCl addition. The values of Df increased with increasing heating time and ionic strength. The values of Df were larger than those (Df = 1.8 or 2.1) predicted by the conventional cluster-cluster aggregation model, probably due to a "restructuring" of aggregates during the aggregation process. On the other hand, a fractal structure was not apparent for the system with added CaCl2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号