首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intravenous injection is a clinically applicable manner to deliver therapeutics. For adult rodents and larger animals, intravenous injections are technically feasible and routine. However, some mouse models can have early onset of disease with a rapid progression that makes administration of potential therapies difficult. The temporal (or facial) vein is just anterior to the ear bud in mice and is clearly visible for the first two days after birth on either side of the head using a dissecting microscope. During this window, the temporal vein can be injected with volumes up to 50 μl. The injection is safe and well tolerated by both the pups and the dams. A typical injection procedure is completed within 1-2 min, after which the pup is returned to the home cage. By the third postnatal day the vein is difficult to visualize and the injection procedure becomes technically unreliable. This technique has been used for delivery of adeno-associated virus (AAV) vectors, which in turn can provide almost body-wide, stable transgene expression for the life of the animal depending on the viral serotype chosen.  相似文献   

2.
通过睾丸内注射转染外源DNA在小鼠精子的表达   总被引:1,自引:0,他引:1  
为研究睾丸内注射外源DNA法生产转基因小鼠(Mus musculus)的可行性,并探讨注射DNA的最佳浓度。将环形的质粒DNA pEGFP-N1与脂质体混合制备DNA-脂质体复合物,按DNA浓度不同分为0.08μg/μl、0.12μg/μl和0.24μg/μl3组,分别注射入成年SPF级昆明小鼠睾丸内,同时设空白对照;每组处理公鼠2只,注射5d后每只与3只成年母鼠同笼,20d后在荧光显微镜下检测公鼠附睾精子,并制作睾丸石蜡切片,检测绿色荧光蛋白(GFP)的表达;PCR法检测各组后代阳性率。结果显示,3组小鼠附睾荧光精子比例分别为9.09%、47.06%和27.78%。3组小鼠的睾丸石蜡切片中均可看到不同强度的GFP表达。后代经PCR检测阳性率分别为17.26%、47.61%和22.11%。本实验证实了睾丸注射法能使外源DNA整合进入精子基因组,并能在自身和后代中得到表达,本研究中外源DNA注射浓度以0.12μg/μl效果为最佳。  相似文献   

3.
Injection of adult mouse peritoneal exudate cells into newborn mice results in a premature decrease of splenic suppressor cell activity in the neonates. The effect becomes apparent 4–5 days after ip injection of 10–15 × 106 thioglycollate-induced peritoneal exudate cells into mice on the day of birth. The macrophage in the peritoneal exudate is the responsible cell type. The effect is not H-2 restricted or strain limited. Heat-killed peritoneal exudate cells or peritoneal cells from unstimulated donors can also decrease neonatal suppressor cell activity prematurely. Adult spleen cells, injected into neonatal mice, do not affect suppressor cell activity. The data are discussed in light of the hypothesis that macrophages control suppressor activity in neonatal mice and that an increase in the number and/or function of macrophages shortly after birth results in a decrease in the number and/or function of suppressor cells, allowing for immunological competence to emerge.  相似文献   

4.
Intrathymic injection is a common technique used for research concerning immunotolerance induction, gene therapy and T cell development in mice. Traditionally used protocols involve major surgery that exposes the thoracic cavity, which results in injury to the mice and increased risk of poor recovery and postsurgical complications such as infection. We introduce a simplified intrathymic injection technique that does not expose the thoracic cavity and virtually eliminates pain, distress and postoperative complications while maintaining high injection efficiency. The technique is suitable for both adult and neonatal mice.  相似文献   

5.
An improved reversed-phase high-performance liquid chromatography (HPLC) procedure with ultraviolet detection is described for the simultaneous determination of S-adenosyl-l-methionine (SAM) and S-adenosyl-l-homocysteine (SAH) in mouse tissue. The method provides rapid resolution of both compounds in a 25-μl perchloric acid extract of the tissue. The limits of detection in 25-μl injection volumes were 22 and 20 pmol for SAM and SAH, respectively. The limits of quantitation in 25-μl injection volumes were 55 and 50 pmol for SAM and SAH, respectively, with recovery consistently >98%. The assay was validated over linear ranges of 55–11 000 pmol for SAM and 50–10 000 pmol for SAH. The intra-day precision and accuracy were ≤6.4% relative standard deviation (RSD) and 99.9–100.0% for SAH and ≤6.7% RSD and 100.0–100.1% for SAM. The inter-day precision and accuracy were ≤5.9% RSD and 99.9–100.6% for SAH and ≤7.0% RSD and 99.5–100.1% for SAM. Compared to earlier procedures, the HPLC method demonstrated significantly better separation, detection limit and linear range for SAM and SAH determination. The assay demonstrated applicability to monitoring in mice the time-course of the effect of methionine on SAM and SAH levels in the liver. Administering methionine to mice increased by 10-fold the liver concentration of SAM and SAH within 2 h, which then rapidly decreased to the control levels by 8 h. This indicated that methionine was promptly converted to SAM and then rapidly catabolized into SAH. Thus, the metabolism of methionine to SAM should be considered in the supplementation of methionine to maintain SAM levels in the body.  相似文献   

6.
7.
The permeability of the alveolar-capillary membrane of newborn and adult mice to horseradish peroxidase (HRP) and catalase was studied by means of ultrastructural cytochemistry, and the permeability to ferritin was studied by electron microscopy. The influence of varying volumes of intravenously injected fluid on the rate of leakage of the tracers from pulmonary capillaries was examined. The tracers were injected intravenously and the mice were sacrificed at timed intervals. Experiments on newborn mice with intranasally instilled HRP were also done. The tissues were fixed in formaldehyde-glutaraldehyde fixative. Chopped sections were incubated in Graham and Karnovsky's medium for peroxidase and in a modification of this medium for catalase. Tissues were postfixed in OsO4 and processed for electron microscopy. In both newborn and adult mice, the ready passage of peroxidase through endothelial clefts was dependent on the injection of the tracer in large volumes of saline. When the tracer was injected in small volumes of saline, its passage through endothelial clefts was greatly reduced. Endothelial junctions of newborn mice were somewhat more permeable to HRP than those of adult mice. In all animals, alveolar epithelial junctions were impermeable to HRP. Catalase and ferritin did not pass through endothelial junctions. Intranasally instilled HRP in newborn mice was taken up by pinocytotic vesicles and tubules of flat alveolar cells.  相似文献   

8.
To investigate the role of neonatal androgen stimulation in the development of the potential for masculine and feminine sexual behavior in the mouse, different groups of mice were hormonally manipulated early in life. One group of female mice was administered testosterone propionate (TP) within 24 hr of birth; a second group of females was given a control injection of oil on the day of birth; a third group of females received an injection of TP on the 10th day after birth. A group of males received a control injection of oil on the day of birth. All mice were gonadectomized at about 30 days of age. At 60 days of age, mice were injected with estrogen and progesterone and tested for sexual receptivity; several weeks later all mice were injected with TP and tested for male sexual behavior. Female behavior: Females given oil at birth and females given TP on the 10th day after birth showed high levels of sexual receptivity as adults following estrogen-progesterone treatment. Females given TP on the day of birth, and male mice, rarely exhibited lordosis following estrogen-progesterone treatment. Male behavior: Most mice, regardless of genetic sex or neonatal treatment, mounted in adulthood following administration of exogenous androgen. There was little difference in mounting frequency between groups, suggesting that exogenous or endogenous androgen stimulation of the neonatal mouse does not facilitate adult mounting behavior. These data for the mouse are in essential agreement with existing data for the rat, and indicate that sexual behavioral differentiation induced by androgen stimulation in infancy is best characterized as an inhibition of the potential to display feminine sexual behavior in adulthood.  相似文献   

9.
Previous studies demonstrated that neonatal mice up to about a week old are less susceptible than adult mice to infection by intraperitoneal inoculation with mouse-passaged scrapie. In peripherally inoculated adult mice, scrapie replicates in lymphoid tissues such as the spleen before invading the central nervous system. Here, we investigated scrapie susceptibility in neonatal mice in more detail, concentrating on spleen involvement. First, we demonstrated that neonatal mice are about 10 times less susceptible than adults to intraperitoneal scrapie inoculation. Then we injected mice intraperitoneally with a scrapie dose that produced disease in all mice inoculated at 10 days or older but in only about a third of neonatally inoculated mice. In this experiment, spleens collected 70 days after scrapie injection of mice 10 days old or older almost all contained pathological prion protein, PrPSc, and those that were bioassayed all contained high infectivity levels. In contrast, at this early stage, only two of six spleens from neonatally inoculated mice had detectable, low infectivity levels; no PrPSc was detected, even in the two spleens. Therefore, neonatal mice have an impaired ability to replicate scrapie in their spleens, suggesting that replication sites are absent or sparse at birth but mature within 10 days. The increase in susceptibility with age correlated with the first immunocytochemical detection of the normal cellular form of prion protein, PrPc, on maturing follicular dendritic cell networks. As lymphoid tissues are more mature at birth in sheep, cattle, and humans than in mice, our results suggest that in utero infection with scrapie-like agents is theoretically possible in these species.  相似文献   

10.
目的:研究针对TGF-βⅡ型受体的RNA干扰质粒对α-SMA表达的抑制作用,探讨RNA干扰TGF-βRII的方法对肾间质纤维化的抑制作用。方法:单侧结扎输尿管方法制备肾间质纤维化小鼠动物模型。分别经输尿管逆行注射a:RNA干扰质粒;b:错配对照质粒;c:空载体;d:生理盐水;e:正常对照。通过western-blot及免疫组织化学方法检测第3、5、10天后肾组织内TGF-βRⅡ、α-SMA,观察其对肾间质纤维化的抑制作用。结果:针对TGF-βRII的RNA干扰质粒,明显抑制肾组织内TGF-βRⅡ、α-SMA表达;几组对照未见相应作用。结论:针对TGF-βRⅡ的RNA干扰质粒,能够抑制肾间质纤维化的发生、发展,可能成为延缓肾功能减退的有效方法。  相似文献   

11.
Targeted deletion of the surfactant protein (SP)-B locus in mice causes lethal neonatal respiratory distress. To assess the importance of SP-B for postnatal lung function, compound transgenic mice were generated in which the mouse SP-B cDNA was conditionally expressed under control of exogenous doxycycline in SP-B-/- mice. Doxycycline-regulated expression of SP-B fully corrected lung function in compound SP-B-/- mice and protected mice from respiratory failure at birth. Withdrawal of doxycycline from adult compound SP-B-/- mice resulted in decreased alveolar content of SP-B, causing respiratory failure when SP-B concentration was reduced to <25% of normal levels. Decreased SP-B was associated with low alveolar content of phosphatidylglycerol, accumulation of misprocessed SP-C proprotein in the air spaces, increased protein content in bronchoalveolar lavage fluid, and altered surfactant activity in vitro. Consistent with surfactant dysfunction, hysteresis, maximal tidal volumes, and end expiratory volumes were decreased. Reduction of alveolar SP-B content causes surfactant dysfunction and respiratory failure, indicating that SP-B is required for postnatal lung function.  相似文献   

12.
To study the role of the redox state regulator glutathione (GSH) in bacterial lipopolysaccharide (LPS)-induced anorexia we measured total reduced GSH (trGSH) in liver, serum and brain in response to intraperitoneal (ip) lipopolysaccharide (LPS, 4 microg/mouse) injection in LPS-na?ve and LPS-pretreated (4 microg/mouse given 3 days earlier) mice. LPS reduced food intake in LPS-na?ve mice and LPS pretreatment attenuated this effect. LPS decreased trGSH at 24 hours after injection in LPS-na?ve mice but 4 days later trGSH levels were upregulated in brain and liver, and this was associated with a significant attenuation of LPS-induced anorexia. In addition, LPS increased mitochondrial GSH levels in brain and liver at 4 days after injection. Pharmacological GSH depletion with diethylmaleate and L-buthionine sulfoximine in LPS-pretreated mice ablated the hyposensitivity to the anorexic effect of LPS. Together, these findings suggest a prominent role for GSH and its intracellular repartition in LPS anorexia.  相似文献   

13.
The dwarf mutant is an autosomal recessive mutation of the mouse which causes a defective development of those anterior pituitary cells responsible for the production of thyroid-stimulating hormone, growth hormone, and prolactin. These mice are thus genetically hypothyroid and provide a model system in which one can investigate the influence of thyroid hormone on the transitions of the myosin heavy chain isoforms. We have carried out a qualitative and quantitative investigation of the myosin heavy chain isoforms present at various developmental stages and following one injection of 1 microgram of thyroxine. Myosin heavy chains were identified by nondissociating gel electrophoresis, localized by indirect immunofluorescence, and quantitated by the enzyme-linked immunosorbent assay technique. We find that in skeletal muscle, the appearance of the adult fast myosin heavy chain is severely retarded, that the neonatal myosin heavy chain is never totally eliminated, and that there is an overall increase in the number of fibers containing slow myosin heavy chain. In cardiac tissue the adult phenotype is never attained and beta-cardiac myosin heavy chain remains the predominant isoform. A single injection of 1 microgram of thyroxine was sufficient to cause a slight acceleration in the appearance of the adult fast myosin heavy chain in skeletal muscle, but only after 6-8 days. However, in the cardiac muscle, one injection of thyroxine resulted in a more rapid but transient expression of the alpha-cardiac myosin heavy chain, suggesting that the mechanism of action of thyroid hormone is different in these two tissues.  相似文献   

14.
In mice, intravenous injections are commonly administered in the lateral tail vein. This technique is sometimes difficult to carry out and may cause stress to mice. Though injection through the retro-orbital venous sinus can provide certain advantages over lateral tail vein injection, this method is poorly defined and infrequently used. To compare the efficacy of these two routes of drug delivery, the authors injected MAFIA transgenic mice with the depletion agent AP20187, which selectively induces apoptosis in macrophages. Each mouse received five consecutive daily injections through either the lateral tail vein or the retro-orbital venous sinus. The authors then compared macrophage depletion in different tissues (lung, spleen, bone marrow and peritoneal exudate cells). Both routes of injection were similarly effective. A separate experiment using BALB/c mice indicated that retro-orbital venous sinus injection was the less stressful of the two methods.  相似文献   

15.
Central apelin-13 inhibits food intake via the CRF receptor in mice   总被引:1,自引:0,他引:1  
Lv SY  Yang YJ  Qin YJ  Mo JR  Wang NB  Wang YJ  Chen Q 《Peptides》2012,33(1):132-138
Apelin, the novel identified peptide, is the endogenous ligand for the APJ. Previous studies have reported the effect of apelin on food intake, however the action of acute central injected apelin on food intake in mice remains unknown. The present study was designed to investigate the mechanism as well as the effect of central apelin-13 on food intake in mice. During the dark period, the cumulative food intake was significantly decreased at 4h after the intracerebroventricular (i.c.v.) injection of 1 and 3μg/mouse apelin-13 and the period food intake was significantly reduced during 2-4h after treatment. In the fasted mice, the cumulative food intake was significantly decreased at 2 and 4h after injection of 3μg/mouse apelin-13. The cumulative water intake was significantly reduced by apelin-13 (3μg/mouse) at 4h after injection in freely feeding and fasted mice. However, during light period, apelin-13 had no influence on food and water intake in freely feeding mice. The APJ receptor antagonist apelin-13(F13A) (6μg/mouse) and the corticotrophin-releasing factor (CRF) receptor antagonist α-helical CRF(9-41) (3μg/mouse) could reverse the inhibitory effect on cumulative food intake/0-4h induced by apelin-13 (3μg/mouse) in freely feeding mice during the dark period, whereas the anorexic effect could not be antagonized by the arginie vasopressin (AVP) receptor antagonist deamino(CH(2))(5)Tyr(Me)AVP (0.5μg/mouse). Taken together, these results suggest that central apelin-13 inhibits food intake in mice and it seems that APJ receptor and CRF receptor, but not AVP receptor, might be involved in this process.  相似文献   

16.
Mutants of mammalian reoviruses, enteric double-stranded-RNA-containing viruses that spread systemically after primary replication in intestinal tissue, have been extensively studied as models of viral pathogenesis. While reovirus serotype 3 strain Dearing (T3D) causes acute encephalitis in newborn mice, adult severe combined immunodeficient (SCID) mice develop chronic infection with T3D, with some mice living more than 100 days after infection (B. L. Haller, M. L. Barkon, G. P. Vogler, and H. W. Virgin IV, J. Virol. 69:357-364, 1995). To determine whether organ-specific reovirus variants are selected during chronic infection, we characterized the pathogenetic properties of two variants of T3D isolated 87 days after intraperitoneal infection of adult SCID mice. A brain-specific variant (T3DvBr) (i) grew to a higher titer than T3D in SCID mouse brain (but not intestine) after intraperitoneal inoculation, (ii) killed adult SCID mice faster than T3D, and (iii) grew well in neonatal NIH Swiss [NIH(s)] mouse brain tissue after intramuscular but not peroral inoculation. An intestine-specific variant (T3DvInt) (i) grew to a higher titer than T3D in SCID mouse intestine (but not brain) after intraperitoneal inoculation, (ii) killed SCID mice with kinetics equivalent to those of T3D, (iii) was much less virulent than T3D in neonatal NIH(s) mice, (iv) grew better than T3D in intestines after intramuscular or peroral inoculation into neonatal NIH(s) mice, and (v) grew poorly in brain tissue of neonatal NIH(s) mice after intramuscular inoculation. During prolonged infection of SCID mice, organ-specific variants of T3D, which are more efficient than wild-type T3D at one specific stage in reovirus pathogenesis, are selected.  相似文献   

17.
Inherited metabolic disorders that affect the central nervous system typically result in pathology throughout the brain; thus, gene therapy strategies need to achieve widespread delivery. We previously found that although intraventricular injection of the neonatal mouse brain with adeno-associated virus serotype 2 (AAV2) results in dispersed gene delivery, many brain structures were poorly transduced. This limitation may be overcome by using different AAV serotypes because the capsid proteins use different cellular receptors for entry, which may allow enhanced global targeting of the brain. We tested this with AAV1 and AAV5 vectors. AAV5 showed very limited brain transduction after neonatal injection, even though it has different transduction patterns than AAV2 in adult brain injections. In contrast, AAV1 vectors, which have not been tested in the brain, showed robust widespread transduction. Complementary patterns of transduction between AAV1 and AAV2 were established and maintained in the adult brain after neonatal injection. In the majority of structures, AAV1 transduced many more cells than AAV2. Both vectors transduced mostly neurons, indicating that differential expression of receptors on the surfaces of neurons occurs in the developing brain. The number of cells positive for a vector-encoded secreted enzyme (beta-glucuronidase) was notably greater and more widespread in AAV1-injected brains. A comprehensive analysis of AAV1-treated brains from beta-glucuronidase-deficient mice (mucopolysaccharidosis type VII) showed complete reversal of pathology in all areas of the brain for at least 1 year, demonstrating that the combination of this serotype and experimental strategy is therapeutically effective for treating global neurometabolic disorders.  相似文献   

18.
19.
Epidermis was collected from newborn, growing and adult mice. Acylglucosylceramide, a structurally unique O-acylsphingolipid, was isolated from each sample, and the ester-linked fatty acids were analyzed by capillary column gas-liquid chromatography. The esterified acids of acylglucosylceramide from newborn mice contained 12% linoleate. The linoleate content of the acylsphingolipid increased rapidly, doubling within 4 days and reaching an adult level of 45% within 2 months. The increase in the linoleate content of the epidermal lipid was accompanied by decreases in 16-carbon monoenoic fatty acids and saturated fatty acids ranging from 14 up to and including 24 carbons in length. These results indicate several potential problems for experimentation involving neonatal skin. Also, the possibility that neonatal mouse epidermis may provide a useful model system for studies on the relationship between linoleic acid and epidermal cell proliferation is also raised.  相似文献   

20.
N-nitrosodimethylamine N-demethylase activity, DNA alkylation, capacity for O6-methylguanine repair and cell proliferation were measured in livers of newborn and adult CFW mice after a single carcinogenic dose of DMNA. DNA alkylation was found in newborn and adult mouse livers but it was significantly higher in the newborn. 6- and 7-methyl substitutions of guanine were identified by HPLC analysis in newborn and in adult mouse livers. Metabolic 14C incorporation into adenine and guanine was observed only in liver DNA of newborns. O6-methylguanine levels were higher in newborn than adult mice after a single i.p. dose of [14C]DNMA. Liver DNA repair capacity measured as O6-meG-DNA methyltransferase was higher in adults than in newborns. De novo liver DNA synthesis was more inhibited by DMNA pretreatment in newborn than in adult mice. The relationship between these parameters and the greater neonatal liver tumor susceptibility is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号