首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theoretical and in vitro experiments suggest that protein folding cores form early in the process of folding, and that proteins may have evolved to optimize both folding speed and native-state stability. In our previous work (Chen et al., Structure, 14 (2006) 1401), we developed a set of empirical potential functions and used them to analyze interaction energies among secondary-structure elements in two β-sandwich proteins. Our work on this group of proteins demonstrated that the predicted folding core also harbors residues that form native-like interactions early in the folding reaction. In the current work, we have tested our empirical potential functions on structurally-different proteins for which the folding cores have been revealed by protein hydrogen-deuterium exchange experiments. Using a set of 29 unrelated proteins, which have been extensively studied in the literature, we demonstrate that the average prediction result from our method is significantly better than predictions based on other computational methods. Our study is an important step towards the ultimate goal of understanding the correlation between folding cores and native structures.  相似文献   

2.
Inter-residue interactions in protein folding and stability   总被引:6,自引:0,他引:6  
During the process of protein folding, the amino acid residues along the polypeptide chain interact with each other in a cooperative manner to form the stable native structure. The knowledge about inter-residue interactions in protein structures is very helpful to understand the mechanism of protein folding and stability. In this review, we introduce the classification of inter-residue interactions into short, medium and long range based on a simple geometric approach. The features of these interactions in different structural classes of globular and membrane proteins, and in various folds have been delineated. The development of contact potentials and the application of inter-residue contacts for predicting the structural class and secondary structures of globular proteins, solvent accessibility, fold recognition and ab initio tertiary structure prediction have been evaluated. Further, the relationship between inter-residue contacts and protein-folding rates has been highlighted. Moreover, the importance of inter-residue interactions in protein-folding kinetics and for understanding the stability of proteins has been discussed. In essence, the information gained from the studies on inter-residue interactions provides valuable insights for understanding protein folding and de novo protein design.  相似文献   

3.
Torshin IY  Harrison RW 《Proteins》2001,43(4):353-364
Electrostatic interactions are important for protein folding. At low resolution, the electrostatic field of the whole molecule can be described in terms of charge center(s). To study electrostatic effects, the centers of positive and negative charge were calculated for 20 small proteins of known structure, for which hydrogen exchange cores had been determined experimentally. Two observations seem to be important. First, in all 20 proteins studied 30-100% of the residues forming hydrogen exchange core(s) were clustered around the charge centers. Moreover, in each protein more than half of the core sequences are located near the centers of charge. Second, the general architecture of all-alpha proteins from the set seems to be stabilized by interactions of residues surrounding the charge centers. In most of the alpha-beta proteins, either or both of the centers are located near a pair of consecutive strands, and this is even more characteristic for alpha/Beta and all-beta structures. Consecutive strands are very probable sites of early folding events. These two points lead to the conclusion that charge centers, defined solely from the structure of the folded protein may indicate the location of a protein's hydrogen exchange/folding core. In addition, almost all the proteins contain well-conserved continuous hydrophobic sequences of three or more residues located in the vicinity of the charge centers. These hydrophobic sequences may be primary nucleation sites for protein folding. The results suggest the following scheme for the order of events in folding: local hydrophobic nucleation, electrostatic collapse of the core, global hydrophobic collapse, and slow annealing to the native state. This analysis emphasizes the importance of treating electrostatics during protein-folding simulations.  相似文献   

4.
Li J  Wang J  Wang W 《Proteins》2008,71(4):1899-1907
In the native structure of a protein, all the residues are tightly parked together in a specific order following its folding and every residue contacts with some spatially neighbor residues. A residue contact network can be constructed by defining the residues as nodes and the native contacts as edges. During the folding of small single-domain proteins, there is a set of contacts (or bonds), defined as the folding nucleus (FN), which is formed around the transition state, i.e., a rate-limiting barrier located at about the middle between the unfolded states and the native state on the free energy landscape. Such a FN plays an essential role in the folding dynamics and the residues, which form the related contacts called as folding nucleus residues (FNRs). In this work, the FNRs in proteins are identified by using quantities which characterize the topology of residue contact networks of proteins. By comparing the specificities of residues with the network quantities K(R), L(R), and D(R), up to 90% FNRs of six typical proteins found experimentally are identified. It is found that the FNRs behave the full-closeness centrals rather than degree or closeness centers in the residue contact network, implying that they are important to the folding cooperativity of proteins. Our study shows that the FNRs can be identified solely from the native structures of proteins based on the analysis of residue contact network without any knowledge of the transition state ensemble.  相似文献   

5.
Understanding the parameters influencing the formation of transition state structures in proteins is an important problem in protein folding and kinetics. In this work, we have analyzed the structure-based parameters, surrounding hydrophobicity, secondary structure, solvent accessibility, number of medium- and long-range contacts, and surrounding residues for understanding the transition state structures of 15 proteins. The analysis of Φ-values shows that 29% of the studied 378 mutants have a Φ-value of more than 0.5. The combination of different structure-based parameters could discriminate the residues that have a Φ-value cutoff of more than 0.5 with a 5-fold cross-validation accuracy of 68%, which indicates that the surrounding residues and contacts play important roles in the formation of transition state structures. Systematic analysis on different proteins reveals that the proteins azurin, cold shock protein, and C-terminal domain of ribosomal protein L9 are influenced by the number of medium- and long-range proteins, whereas barnase, FK506 binding protein, and IM9 are influenced by surrounding residues. The discrimination accuracy lies in the ranges of 81–95% and 74–85% for these respective classes of protein. Furthermore, the combination of surrounding residues and contacts improved the accuracy up to 24% in other considered proteins. We suggest that the structure-based parameters along with noncovalent interactions and conservation of residues may aid in identifying the potential residues in the formation of transition state structures in proteins.  相似文献   

6.
A novel algorithm has been developed for scoring the match between an imprecise sparse signature and all the protein sequences in a sequence database. The method was applied to a specific problem: signatures were derived from the probable folding nucleus and positions obtained from the determined interactions that occur during the folding of three small globular proteins and points of inter-element contact and sequence comparison of the actual three-dimensional structures of the same three proteins. In the case of two of these, lysozyme and myoglobin, the residues in the folding nucleus corresponded well to the key residues spotted by examination of the structures and in the remaining case, barnase, they did not. The diagnostic performance of the two types of signatures were compared for all three proteins. The significance of this for the application of an understanding of the protein folding mechanisms for structure prediction is discussed. The algorithm is generic and could be applied to other user-defined problems of sequence analysis.  相似文献   

7.
The journey of nascent polypeptides from synthesis at the peptidyl transferase center of the ribosome ("birth") to full function ("maturity") involves multiple interactions, constraints, modifications and folding events. Each step of this journey impacts the ultimate expression level and functional capacity of the translated protein. It has become clear that the kinetics of protein translation is predominantly modulated by synonymous codon usage along the mRNA, and that this provides an active mechanism for coordinating the synthesis, maturation and folding of nascent polypeptides. Multiple quality control systems ensure that proteins achieve their native, functional form. Unproductive co-translational folding intermediates that arise during protein synthesis may undergo enhanced interaction with components of these systems, such as chaperones, and/or be subjects of co-translational degradation ("death"). This review provides an overview of our current understanding of the complex co-translational events that accompany the synthesis, maturation, folding and degradation of nascent polypeptide chains.  相似文献   

8.
In addition to its involvement in protein synthesis, the ribosome is implicated in protein folding. Some co-translational events, such as the rhythm of protein synthesis, the passage through the exit tunnel of the ribosome, or the interaction with ribosome-associated chaperones may help protein folding. Ribosomes from prokaryotes, eukaryotes, and mitochondria have also been shown to assist the folding of denatured proteins in vitro in a translation-independent way. This intriguing protein-folding activity of the ribosome (PFAR, also termed RPFA) has been mapped to the domain V of the large rRNA of the large subunit of the ribosome. Unfolded, newly synthesized proteins catalyze the dissociation of the two ribosomal subunits in vitro, thereby promoting ribosome recycling and facilitating accessibility of domain V to these proteins, which in turn may help their folding by PFAR. The recent identification of 6AP and GA - the two first drugs that specifically inhibit PFAR without affecting protein translation - will help decipher the biological significance of PFAR in vivo. Of note, 6AP and GA were initially isolated on the basis of their activity against prion-based diseases. Recently, 6AP and GA were also shown to be active in vivo in a drosophila model for oculopharyngeal muscular dystrophy, which is another amyloid-based disease. This effect is mimicked by large deletions in the ribosomal DNA (rDNA) locus. In addition, small deletions in the rDNA locus show a synergistic effect with low doses of 6AP and GA. Hence, PFAR may be involved in various amyloid-based diseases.  相似文献   

9.
Molecular Dynamics (MD) simulations at low dielectric constant have been carried out for peptides matching the double spanning segments of transmembrane proteins. Different folding dynamics have been observed. The peptides folded into the stable helix-turn-helix conformation-alpha-hairpin-with antiparallel-oriented strands or unstable alpha-hairpin conformation that unfolded later into the straight helical structure. The peptide having flexible residues in the TM helices often misfolded into a tangled structure that can be avoided by restricting the flexibility of these residues. General conclusions can be drawn from the observed folding dynamics. The stability and folding of some double spanning transmembrane fragments are self-assembling. The following and/or neighboring peptide chains of the protein may support the stability of the hairpin structure of other fragments. The stability of the TM helices containing flexible residues could be maintained due to contacts with neighboring TM segments.  相似文献   

10.
In the cell, protein folding into stable globular conformations is in competition with aggregation into non-functional and usually toxic structures, since the biophysical properties that promote folding also tend to favor intermolecular contacts, leading to the formation of β-sheet-enriched insoluble assemblies. The formation of protein deposits is linked to at least 20 different human disorders, ranging from dementia to diabetes. Furthermore, protein deposition inside cells represents a major obstacle for the biotechnological production of polypeptides. Importantly, the aggregation behavior of polypeptides appears to be strongly influenced by the intrinsic properties encoded in their sequences and specifically by the presence of selective short regions with high aggregation propensity. This allows computational methods to be used to analyze the aggregation properties of proteins without the previous requirement for structural information. Applications range from the identification of individual amyloidogenic regions in disease-linked polypeptides to the analysis of the aggregation properties of complete proteomes. Herein, we review these theoretical approaches and illustrate how they have become important and useful tools in understanding the molecular mechanisms underlying protein aggregation.  相似文献   

11.
We simulate the aggregation thermodynamics and kinetics of proteins L and G, each of which self-assembles to the same alpha/beta [corrected] topology through distinct folding mechanisms. We find that the aggregation kinetics of both proteins at an experimentally relevant concentration exhibit both fast and slow aggregation pathways, although a greater proportion of protein G aggregation events are slow relative to those of found for protein L. These kinetic differences are correlated with the amount and distribution of intrachain contacts formed in the denatured state ensemble (DSE), or an intermediate state ensemble (ISE) if it exists, as well as the folding timescales of the two proteins. Protein G aggregates more slowly than protein L due to its rapidly formed folding intermediate, which exhibits native intrachain contacts spread across the protein, suggesting that certain early folding intermediates may be selected for by evolution due to their protective role against unwanted aggregation. Protein L shows only localized native structure in the DSE with timescales of folding that are commensurate with the aggregation timescale, leaving it vulnerable to domain swapping or nonnative interactions with other chains that increase the aggregation rate. Folding experiments that characterize the structural signatures of the DSE, ISE, or the transition state ensemble (TSE) under nonaggregating conditions should be able to predict regions where interchain contacts will be made in the aggregate, and to predict slower aggregation rates for proteins with contacts that are dispersed across the fold. Since proteins L and G can both form amyloid fibrils, this work also provides mechanistic and structural insight into the formation of prefibrillar species.  相似文献   

12.
Zuo G  Wang J  Wang W 《Proteins》2006,63(1):165-173
The downhill folding observed experimentally for a small protein BBL is studied using off-lattice Gō-like model. Our simulations show that the downhill folding has low cooperativity and is barrierless, which is consistent with the experimental findings. As an example of comparison in detail, the two-state folding behavior of proteins, for example, protein CI2, is also simulated. By observing the formation of contacts between the residues for these two proteins, it is found that the physical origin of the downhill folding is due to the deficiency of nonlocal contacts which determine the folding cooperatively. From a statistics on contacts of the native structures of 17 well-studied proteins and the calculation of their cooperativity factors kappa2 based on folding simulations, a strong correlation between the number of nonlocal contacts per residue NN and the factors kappa2 is obtained. Protein BBL with a value of NN = 0.73 has the lowest cooperativity factor kappa2 = 0.34 among all 17 proteins. A crossover around NNc approximately 0.9 could be defined to separate the two-state folders and the downhill folder roughly. A protein would behave downhill folding when its NN = NNc. For proteins with their NN values are about (or slightly larger than) NNc, the folding behaves with low cooperativity and the barriers are small, showing a weak two-state behavior or a downhill-like behavior. Furthermore, simulations on mutants of a two-state folder show that a mutant becomes a downhill folder when its NN is reduced to a value smaller than NNc. These could enable us to identify the downhill folding or the cooperative two-state folding behavior solely from the native structures of proteins.  相似文献   

13.
WW domain proteins are usually regarded as simple models for understanding the folding mechanism of β-sheet. CC45 is an artificial protein that is capable of folding into the same structure as WW domain. In this article, the replica exchange molecular dynamics simulations are performed to investigate the folding mechanism of CC45. The analysis of thermal stability shows that β-hairpin 1 is more stable than β-hairpin 2 during the unfolding process. Free energy analysis shows that the unfolding of this protein substantially proceeds through solvating the smaller β-hairpin 2, followed by the unfolding of β-hairpin 1. We further propose the unfolding process of CC45 and the folding mechanism of two β-hairpins. These results are similar to the previous folding studies of formin binding protein 28 (FBP28). Compared with FBP28, it is found that CC45 has more aromatic residues in N-terminal loop, and these residues contact with C-terminal loop to form the outer hydrophobic core, which increases the stability of CC45. Knowledge about the stability and folding behaviour of CC45 may help in understanding the folding mechanisms of the β-sheet and in designing new WW domains.  相似文献   

14.
The folding of multisubunit proteins is of tremendous biological significance since the large majority of proteins exist as protein-protein complexes. Extensive experimental and computational studies have provided fundamental insights into the principles of folding of small monomeric proteins. Recently, important advances have been made in extending folding studies to multisubunit proteins, in particular homodimeric proteins. This review summarizes the equilibrium and kinetic theory and models underlying the quantitative analysis of dimeric protein folding using chemical denaturation, as well as the experimental results that have been obtained. Although various principles identified for monomer folding also apply to the folding of dimeric proteins, the effects of subunit association can manifest in complex ways, and are frequently overlooked. Changes in molecularity typically give rise to very different overall folding behaviour than is observed for monomeric proteins. The results obtained for dimers have provided key insights pertinent to understanding biological assembly and regulation of multisubunit proteins. These advances have set the stage for future advances in folding involving protein-protein interactions for natural multisubunit proteins and unnatural assemblies involved in disease.  相似文献   

15.
The use of force probes to induce unfolding and refolding of single molecules through the application of mechanical tension, known as single-molecule force spectroscopy (SMFS), has proven to be a powerful tool for studying the dynamics of protein folding. Here we provide an overview of what has been learned about protein folding using SMFS, from small, single-domain proteins to large, multi-domain proteins. We highlight the ability of SMFS to measure the energy landscapes underlying folding, to map complex pathways for native and non-native folding, to probe the mechanisms of chaperones that assist with native folding, to elucidate the effects of the ribosome on co-translational folding, and to monitor the folding of membrane proteins.  相似文献   

16.
Nölting B  Agard DA 《Proteins》2008,73(3):754-764
We investigate the structures of the major folding transition states of nine proteins by correlation of published Phi-values with inter-residue contact maps. Combined with previous studies on six proteins, the analysis suggests that at least 10 of the 15 small globular proteins fold via a nucleation-condensation mechanism with a concurrent build-up of secondary and tertiary structure contacts, but a structural consolidation that is clearly nonuniformly distributed over the molecule and most intense in a single structural region suggesting the occurrence of a single folding nucleus. However, on average helix- and sheet-forming residues show somewhat larger Phi-values in the major transition state, suggesting that secondary structure formation is one important driving force in the nucleation-condensation in many proteins and that secondary-structure forming residues tend to be more prominent in folding nuclei. We synthesize the combined information on these 10 of 15 proteins into a unified nucleation-condensation mechanism which also accounts for effects described by the framework, hydrophobic collapse, zipper, and funnel models.  相似文献   

17.
MOTIVATION: Hydrophobic or non-polar contacts in proteins are important for protein folding, protein stability and protein-protein interactions. In particular, in the interior of a protein, in the hydrophobic core, a large number of such contacts are found. The residues involved in these contacts often form a tightly packed cluster of atoms. It is useful for the understanding of protein structure to be able to identify and analyse such clusters. RESULTS: Tools for hierarchical cluster analysis of non-polar contacts in proteins are described. These tools allow for efficient identification of clusters of non-polar interactions in proteins, both internal clusters and clusters involved in protein-protein contacts. The non-polar contacts are represented by a dendrogram structure, which is a simple approach for flexible identification of clusters by visual inspection. The tools are demonstrated on the structure of crambin, the structure of the complex between human growth hormone and the human growth hormone binding protein, and a pair of lipase/esterase structures. Availability: On request from the author.  相似文献   

18.
In order to understand the mechanism of protein folding and to assist the rational de-novo design of fast-folding, non-aggregating and stable artificial enzymes it is very helpful to be able to simulate protein folding reactions and to predict the structures of proteins and other biomacromolecules. Here, we use a method of computer programming called "evolutionary computer programming" in which a program evolves depending on the evolutionary pressure exerted on the program. In the case of the presented application of this method on a computer program for folding simulations, the evolutionary pressure exerted was towards faster finding deep minima in the energy landscape of protein folding. Already after 20 evolution steps, the evolved program was able to find deep minima in the energy landscape more than 10 times faster than the original program prior to the evolution process.  相似文献   

19.
Despite the large number of publications on three‐helix protein folding, there is no study devoted to the influence of handedness on the rate of three‐helix protein folding. From the experimental studies, we make a conclusion that the left‐handed three‐helix proteins fold faster than the right‐handed ones. What may explain this difference? An important question arising in this paper is whether the modeling of protein folding can catch the difference between the protein folding rates of proteins with similar structures but with different folding mechanisms. To answer this question, the folding of eight three‐helix proteins (four right‐handed and four left‐handed), which are similar in size, was modeled using the Monte Carlo and dynamic programming methods. The studies allowed us to determine the orders of folding of the secondary‐structure elements in these domains and amino acid residues which are important for the folding. The obtained data are in good correlation with each other and with the experimental data. Structural analysis of these proteins demonstrated that the left‐handed domains have a lesser number of contacts per residue and a smaller radius of cross section than the right‐handed domains. This may be one of the explanations of the observed fact. The same tendency is observed for the large dataset consisting of 332 three‐helix proteins (238 right‐ and 94 left‐handed). From our analysis, we found that the left‐handed three‐helix proteins have some less‐dense packing that should result in faster folding for some proteins as compared to the case of right‐handed proteins.Proteins 2013; © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Small β-hairpin peptides have been widely used as models for the folding of β-sheets. But how applicable is the folding of such models to β-structure in larger proteins with conventional hydrophobic cores? Here we present multiple unfolding simulations of three such proteins that contain the WW domain double hairpin β-sheet motif: cold shock protein A (CspA), cold shock protein B (CspB) and glucose permease IIA domain. We compare the behavior of the free motif in solution and in the context of proteins of different size and architecture. Both Csp proteins lost contacts between the double-hairpin motif and the protein core as the first step of unfolding and proceeded to unfold with loss of the third β-strand, similar to the isolated WW domain. The glucose permease IIA domain is a larger protein and the contacts between the motif and the core were not lost as quickly. Instead the unfolding pathway of glucose permease IIA followed a different pathway with β1 pulling away from the sheet first. Interestingly, when the double hairpin motif was excised from the glucose permease IIA domain and simulated in isolation in water it unfolded by the same pathway as the WW domain, indicating that it is tertiary interactions with the protein that alter the motif’s unfolding not a sequence dependent effect on its intrinsic unfolding behavior. With respect to the unfolding of the hairpins, there was no consistent order to the loss of hydrogen bonds between the β-strands in the hairpins in any of the systems. Our results show that while the folding behavior of the isolated WW domain is generally consistent with the double hairpin motif’s behavior in the cold shock proteins, it is not the case for the glucose permease IIA domain. So, one must be cautious in extrapolating findings from model systems to larger more complicated proteins where tertiary interactions can overwhelm intrinsic behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号