首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heart failure (HF) is characterized by a reduced tolerance to exercise due to early fatigue and dyspnea; this may be due in part to skeletal muscle myopathy with a shift from slow to fast fibers and loss of muscle mass. Muscle wasting does not occur similarly in all types of muscle fiber, thus we tested the hypothesis that HF induces skeletal muscle atrophy in a fiber type-specific manner altering the expression of atrogin-1 and MuRF1 in a fast muscle of rats with monocrotaline-induced heart failure. We studied extensor digitorum longus (EDL) muscle from both HF and control Wistar rats. Atrogin-1 and MuRF1 mRNA content were determined using Real-Time RT-qPCR while muscle fiber cross-sectional area (CSA) from sections stained histochemically for myofibrillar ATPase were used as an index of type-specific fiber atrophy. The measurement of gene expression by RT-qPCR revealed that EDL muscle mRNA expression of MuRF1 and atrogin-1 was significantly increased in the HF group. Muscle fiber type IIB CSA decreased in the HF group compared to the CT group; there was no significant difference in muscle fiber types I and IIA/D CSA between the HF and CT groups. In conclusion, we showed that HF induces fiber type IIB specific atrophy, up-regulating atrogin-1 and MuRF1 mRNA expression in EDL muscle of monocrotaline treated rats.  相似文献   

2.
有鳞类(蛇和蜥蜴)具有较发达的嗅器和犁鼻器,对其不同种类嗅觉结构的认识有助于阐明爬行动物化学感觉的进化。本文采用组织学方法比较了草原沙蜥(Phrynocephalus frontalis)、荒漠沙蜥(P. przewalskii)、密点麻蜥(Eremias multiocellata)和秦岭滑蜥(Scincella tsinlingensis)的嗅器及犁鼻器。结果发现,草原沙蜥的鼻腔较为狭长,秦岭滑蜥呈梨形,其他两种蜥蜴的鼻腔略成圆形。秦岭滑蜥的嗅上皮最厚,其次是密点麻蜥和草原沙蜥,荒漠沙蜥最薄。犁鼻器主要由犁鼻腔、犁鼻感觉上皮、犁鼻神经及蘑菇体等组成,没有腺体。草原沙蜥和荒漠沙蜥的犁鼻腔较为宽阔,密点麻蜥和秦岭滑蜥的较窄。4种蜥蜴的犁鼻感觉上皮均较嗅上皮厚,蘑菇体向后逐渐缩小至消失,犁鼻感觉上皮成闭环状,包围犁鼻腔。密点麻蜥和秦岭滑蜥的犁鼻感觉上皮位于犁鼻器的背侧,蘑菇体位于腹侧;与此不同,两种沙蜥的犁鼻感觉上皮偏向于犁鼻器的腹内侧,蘑菇体位于背外侧。密点麻蜥的犁鼻感觉上皮最厚,其次为秦岭滑蜥,两种沙蜥最薄;秦岭滑蜥犁鼻感觉上皮的感觉细胞密度最高,其次是密点麻蜥,两种沙蜥最低。这些结果提示,密点麻蜥和秦岭滑蜥对嗅觉信号的依赖和投入较两种沙蜥多;4种蜥蜴犁鼻器的结构差异间接地佐证了有鳞类犁鼻器系统发生的特异性。  相似文献   

3.
本研究采用免疫荧光组织化学染色法和蛋白免疫印迹法比较研究了后肢去负荷大鼠(Rattus norvegicus)和冬眠不活动达乌尔黄鼠(Spermophilus dauricus)不同类型骨骼肌氧化应激水平和抗氧化防御能力及与肌萎缩之间的关系。结果显示,后肢去负荷14 d后,大鼠比目鱼肌和趾长伸肌肌萎缩程度显著升高,过氧化氢和丙二醛水平增加,Nrf2介导的抗氧化信号通路及下游抗氧化酶蛋白表达及活性显著下降;而冬眠不活动达乌尔黄鼠骨骼肌中肌萎缩指标并未出现变化,氧化应激水平维持夏季组水平,抗氧化酶和调控因子出现不同程度升高。研究表明,后肢去负荷导致非冬眠大鼠骨骼肌氧化应激水平升高,抗氧化防御能力减弱,可能是导致大鼠废用性肌萎缩的重要机制之一;而冬眠动物达乌尔黄鼠骨骼肌在自然废用状态下,抗氧化防御能力增强可能是防止自然冬眠不活动引起的废用性肌萎缩的重要机制。  相似文献   

4.
 The hypothesis that the limited adaptive range observed in fast rat muscles in regard to expression of the slow myosin is due to intrinsic properties of their myogenic stem cells was tested by examining myosin heavy chain (MHC) expression in regenerated rat extensor digitorum longus (EDL) and soleus (SOL) muscles. The muscles were injured by bupivacaine, transplanted to the SOL muscle bed and innervated by the SOL nerve. Three months later, muscle fibre types were determined. MHC expression in muscle fibres was demonstrated immunohistochemically and analysed by SDS-glycerol gel electrophoresis. Regenerated EDL transplants became very similar to the control SOL muscles and indistinguishable from the SOL transplants. Slow type 1 fibres predominated and the slow MHC-1 isoform was present in more than 90% of all muscle fibres. It contributed more than 80% of total MHC content in the EDL transplants. About 7% of fibres exhibited MHC-2a and about 7% of fibres coexpressed MHC-1 and MHC-2a. MHC-2x/d contributed about 5–10% of the whole MHCs in regenerated EDL and SOL transplants. The restricted adaptive range of adult rat EDL muscle in regard to the synthesis of MHC-1 is not rooted in muscle progenitor cells; it is probably due to an irreversible maturation-related change switching off the gene for the slow MHC isoform. Accepted: 11 June 1996  相似文献   

5.
HF is syndrome initiated by a reduction in cardiac function and it is characterized by the activation of compensatory mechanisms. Muscular fatigue and dyspnoea are the more common symptoms in HF; these may be due in part to specific skeletal muscle myopathy characterized by reduced oxidative capacity, a shift from slow fatigue resistant type I to fast less fatigue resistant type II fibers and downregulation of myogenic regulatory factors (MRFs) gene expression that can regulate gene expression of nicotinic acetylcholine receptors (nAChRs). In chronic heart failure, skeletal muscle phenotypic changes could influence the maintenance of the neuromuscular junction morphology and nAChRs gene expression during this syndrome. Two groups of rats were studied: control (CT) and Heart Failure (HF), induced by a single intraperitoneal injection of monocrotaline (MCT). At the end of the experiment, HF was evaluated by clinical signs and animals were sacrificed. Soleus (SOL) muscles were removed and processed for morphological, morphometric and molecular NMJ analyses. Our major finding was an up-regulation in the gene expression of the alpha1 and epsilon subunits of nAChR and a spot pattern of nAChR in SOL skeletal muscle in this acute monocrotaline induced HF. Our results suggest a remodeling of nAChR alpha1 and epsilon subunit during heart failure and may provide valuable information for understanding the skeletal muscle myopathy that occurs during this syndrome.  相似文献   

6.
To reveal the effect of foreign innervation and altered thyroid status on fiber type composition and the myosin heavy chain (MyHC) isoform expression in the rat slow soleus (SOL) and fast extensor digitorum longus (EDL) muscles, a method of heterochronous isotransplantation was developed. In this experimental procedure, the SOL or EDL muscles of young inbred Lewis rats are grafted either into the host EDL or SOL muscles of adult rats of the same strain with normal or experimentally altered thyroid status. To estimate the extent of fiber type transitions in the transplanted muscles, the SOL and EDL muscle from the unoperated leg and unoperated muscles from the operated leg could be legitimately used as controls, but only when the experimental procedure itself does not affect these muscles. To verify this assumption, we have compared the fiber type composition and the MyHC isoform content of unoperated contralateral SOL and EDL muscles and ipsilateral unoperated SOL muscle of experimental rats after unilateral isotransplantation into the host EDL muscle with corresponding muscles of the naive rats of the same age and strain. We provide compelling evidence that the unilateral heterochronous isotransplantation has no significant effect on the fiber type composition and the MyHC isoform content of unoperated muscles of experimental animals. Hence, these muscles can be used as controls in our grafting experiments.  相似文献   

7.
The present study was designed to determine if changes in function and metabolism of heart muscle induce alterations in characteristics of skeletal muscle. We investigated the histochemical and biochemical properties of soleus (SOL) and extensor digitorum longus (EDL) muscles in Wistar rats at the chronic phase after coronary artery occlusion/reperfusion. The size of myocardial infarct region was evaluated using a high resolution pinhole single photo emission computed tomography (SPECT) system. 4 wk after left coronary artery occlusion/reperfusion, the SOL and EDL of hindlimb were dissected out and immersed in isopentane cooled with liquid nitrogen for subsequent histochemical and biochemical analysis. From SPECT imaging, the blood circulation was recovered, but the recovery of fatty acid metabolism was not observed in infarct region of heart. Citrate synthase (CS) and 3-hydroxyacyl-CoA dehydrogenase (HAD) activities in infarct region of heart were lower in the myocardial infarction (MI, n = 6) group compared with that of age-matched sham-operated (Sham, n = 6) group. In addition, heart muscle hypertrophy caused by the dysfunction in MI group was observed. In skeletal muscle, the atrophy and transition of fiber type distribution in MI group, reported in previous studies of heart failure, were not observed. However, the succinate dehydrogenase (SDH) activity in the slow twitch oxidative (SO) from SOL of MI group decreased by 9.8% and in the fast twitch oxidative glycolytic fibers (FOG), 8.0% as compared with sham group. Capillary density of the SO fibers from SOL of MI group also reduced by 18.5% and in the FOG fibers, 18.2% as compared with Sham group. Decreased capillary density in this study related significantly to decreased SDH activity of single muscle fibers in chronic phase of perfusion after surgical infarction. Our results make it clear that there is a difference in the reaction of skeletal muscle to coronary artery occlusion/reperfusion compared with chronic heart failure. However, our data would support the notion that there is a linkage between the function of heart and physiological properties of skeletal muscle.  相似文献   

8.
The loss of muscle weight in the soleus (SOL) and extensor digitorum longus (EDL) muscles was compared after denervation and in the course of reflex muscle atrophy induced by unilateral fracture of metatarsal bones of the paw and local injection of 0.02 ml turpentine oil subcutaneously. This so-called reflex atrophy is significantly greater after 3 days than that after denervation. Seven days after the nociceptive stimulus, reflex and denervation atrophy are grossly similar in both muscles. This also applies in case that the nociceptive stimulus had been repeated on the third day. The EDL:SOL enzyme activities of energy supply metabolism reflect the differences between a glycolytic-aerobic (EDL) and predominantly aerobic type (SOL) of muscle. No consistent changes were found in either type of atrophy after 3 days. In 7 days' denervation, the activity of hydroxyacetyl-CoA-dehydrogenase (HOADH) and citrate synthase (CS) was decreased in the SOL, while glycerolphosphate:NAD dehydrogenase (GPDH) was enhanced. In the EDL, the activity of triosephosphate dehydrogenase (TPDH), GPDH, malate dehydrogenase (MDH), CS and HOADH was decreased. Acid phosphatase (AcP) was greatly increased in both muscles. Seven days after application of the nociceptive stimulus, all enzyme activities were altered in a grossly analogous manner as after denervation.  相似文献   

9.
To determine whether mitochondrial dysfunction is causally related to muscle atrophy with aging, we examined respiratory capacity, H(2) O(2) emission, and function of the mitochondrial permeability transition pore (mPTP) in permeabilized myofibers prepared from four rat muscles that span a range of fiber type and degree of age-related atrophy. Muscle atrophy with aging was greatest in fast-twitch gastrocnemius (Gas) muscle (-38%), intermediate in both the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus (Sol) muscles (-21%), and non-existent in adductor longus (AL) muscle (+47%). In contrast, indices of mitochondrial dysfunction did not correspond to this differential degree of atrophy. Specifically, despite higher protein expression for oxidative phosphorylation (oxphos) system in fast Gas and EDL, state III respiratory capacity per myofiber wet weight was unchanged with aging, whereas the slow Sol showed proportional decreases in oxphos protein, citrate synthase activity, and state III respiration. Free radical leak (H(2) O(2) emission per O(2) flux) under state III respiration was higher with aging in the fast Gas, whereas state II free radical leak was higher in the slow AL. Only the fast muscles had impaired mPTP function with aging, with lower mitochondrial calcium retention capacity in EDL and shorter time to mPTP opening in Gas and EDL. Collectively, our results underscore that the age-related changes in muscle mitochondrial function depend largely upon fiber type and are unrelated to the severity of muscle atrophy, suggesting that intrinsic changes in mitochondrial function are unlikely to be causally involved in aging muscle atrophy.  相似文献   

10.
Stimuli during pregnancy, such as protein restriction, can affect morphophysiological parameters in the offspring with consequences in adulthood. The phenomenon known as fetal programming can cause short- and long-term changes in the skeletal muscle phenotype. We investigated the morphology and the myogenic regulatory factors (MRFs) MyoD and myogenin expression in soleus, SOL; oxidative and slow twitching and in extensor digitorum longus, EDL; glycolytic and fast twitching muscles in the offspring of dams subjected to protein restriction during pregnancy. Four groups of male Wistar offspring rats were studied. Offspring from dams fed a low-protein diet (6?% protein, LP) and normal protein diet (17?% protein, NP) were euthanized at 30 and 112?days old, and their muscles were removed and kept at ?80?°C. Muscles histological sections (8?μm) were submitted to a myofibrillar adenosine triphosphatase histochemistry reaction for morphometric analysis. Gene and protein expression levels of MyoD and myogenin were determined by RT-qPCR and western blotting. The major findings observed were distinct patterns of morphological changes in SOL and EDL muscles in LP offspring at 30 and 112?days old without changes in MRFs MyoD and myogenin expression. Our results indicate that maternal protein restriction followed by normal diet after birth induced morphological changes in muscles with distinct morphofunctional characteristics over the long term, but did not alter the MRFs MyoD and myogenin expression. Further studies are necessary to better understand the mechanisms underlying the maternal protein restriction response on skeletal muscle.  相似文献   

11.
The purpose of this study was to investigate alterations in structural and functional properties in the soleus (SOL) and extensor digitorum longus (EDL) muscles of rats after 1, 2, and 5 wk of tail suspension. Maximal O2 uptake was 19% lower after 5 wk suspension. Loss of muscle mass was greater in SOL (63%) than in EDL (22%) muscle. A reduction of type I distribution was accompanied by an increase of intermediate fiber subgroups (int I in SOL, int II in EDL). The cross-sectional area of all three fiber types was reduced by hypokinesia. The decrease in capillaries per fiber in SOL was greater than the decrease in citrate synthase and 3-hydroxyacyl-CoA dehydrogenase activities after 5 wk. No alteration in lactate dehydrogenase activity was noted. In EDL, no changes in fiber area, capillarization, and enzymatic activities occurred. Energy charge remained unchanged (0.91) whatever the muscle. These results suggest that type I fibers showed an earlier and greater susceptibility than type II fibers to suspension which is also accompanied by a decreased aerobic capacity.  相似文献   

12.
Huntington´s disease (HD) is a hereditary neurodegenerative disease resulting from an expanded polyglutamine sequence (poly-Q) in the protein huntingtin (HTT). Various studies report atrophy and metabolic pathology of skeletal muscle in HD and suggest as part of the process a fast-to-slow fiber type transition that may be caused by the pathological changes in central motor control or/and by mutant HTT in the muscle tissue itself. To investigate muscle pathology in HD, we used R6/2 mice, a common animal model for a rapidly progressing variant of the disease expressing exon 1 of the mutant human gene. We investigated alterations in the extensor digitorum longus (EDL), a typical fast-twitch muscle, and the soleus (SOL), a slow-twitch muscle. We focussed on mechanographic measurements of excised muscles using single and repetitive electrical stimulation and on the expression of the various myosin isoforms (heavy and light chains) using dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of whole muscle and single fiber preparations. In EDL of R6/2, the functional tests showed a left shift of the force-frequency relation and decrease in specific force. Moreover, the estimated relative contribution of the fastest myosin isoform MyHC IIb decreased, whereas the contribution of the slower MyHC IIx isoform increased. An additional change occurred in the alkali MyLC forms showing a decrease in 3f and an increase in 1f level. In SOL, a shift from fast MyHC IIa to the slow isoform I was detectable in male R6/2 mice only, and there was no evidence of isoform interconversion in the MyLC pattern. These alterations point to a partial remodeling of the contractile apparatus of R6/2 mice towards a slower contractile phenotype, predominantly in fast glycolytic fibers.  相似文献   

13.
Young Wistar rats underwent dynamic (D) or static (S) exercise from the 5th to 35th day after birth. Histochemical and biochemical analysis were performed in the extensor digitorum longus (EDL) and the soleus muscle (SOL). Lactate dehydrogenase (LDH) (regulating anaerobic metabolism) and citrate synthase (CS) and hydroxyacyl-CoA dehydrogenase (HAD) (both regulating aerobic metabolism) activities were determined spectrophotometrically. An increase of the fast oxidative-glycolytic (FOG) muscle fibres was found in the slow SOL muscle in both trained groups, i.e. by 10% in group D and by 7% in group S in comparison with the C group. The EDL muscle fibre distribution did not differ from those of control animals in respect to the slow oxidative (SO) fibre type. A higher percentage of FOG fibres by 19% was found in group D contrary to a decreased number of the fast glycolytic (FG) muscle fibres in this trained group. The greatest increase of CS (EDL 185%, SOL 176%) and HAD (EDL 83%, SOL 178%) activities were found in group D as compared with control group (C). Only small differences were observed in LDH activity. The values of characteristic enzyme activity ratios show that dynamic training resulted in an elevation of oxidative capacity of skeletal muscle, while the static load led preferentially along the glycolytic pathway. It may be concluded that an adaptive response to the training load during early postnatal development is different due to the type of exercise (dynamic or static) and/or the type of skeletal muscle (fast or slow).  相似文献   

14.
Changes in mitochondrial function with age vary between different muscle types, and mechanisms underlying this variation remain poorly defined. We examined whether the rate of mitochondrial protein turnover contributes to this variation. Using heavy label proteomics, we measured mitochondrial protein turnover and abundance in slow‐twitch soleus (SOL) and fast‐twitch extensor digitorum longus (EDL) from young and aged mice. We found that mitochondrial proteins were longer lived in EDL than SOL at both ages. Proteomic analyses revealed that age‐induced changes in protein abundance differed between EDL and SOL with the largest change being increased mitochondrial respiratory protein content in EDL. To determine how altered mitochondrial proteomics affect function, we measured respiratory capacity in permeabilized SOL and EDL. The increased mitochondrial protein content in aged EDL resulted in reduced complex I respiratory efficiency in addition to increased complex I‐derived H2O2 production. In contrast, SOL maintained mitochondrial quality, but demonstrated reduced respiratory capacity with age. Thus, the decline in mitochondrial quality with age in EDL was associated with slower protein turnover throughout life that may contribute to the greater decline in mitochondrial dysfunction in this muscle. Furthermore, mitochondrial‐targeted catalase protected respiratory function with age suggesting a causal role of oxidative stress. Our data clearly indicate divergent effects of age between different skeletal muscles on mitochondrial protein homeostasis and function with the greatest differences related to complex I. These results show the importance of tissue‐specific changes in the interaction between dysregulation of respiratory protein expression, oxidative stress, and mitochondrial function with age.  相似文献   

15.
16.
Muscle fiber type, myosin heavy chain (MHC) isoform composition, capillary density (CD) and citrate synthase (CS) activity were investigated in predominantly slow-twitch (soleus or SOL) and fast-twitch (extensor digitorum longus or EDL) skeletal muscle from mice with inherited differences in hypoxic exercise tolerance. Striking differences in hypoxic exercise tolerance previously have been found in two inbred strains of mice, Balb/cByJ (C) and C57BL/6J (B6), and their F1 hybrid following exposure to hypobaric hypoxia. Mice from the three strains were exposed for 8 weeks to either normobaric normoxia or hypobaric hypoxia (1/2 atm). Hypoxia exposure led to a slightly higher 2b fiber composition and a lower fiber area of types 1 and 2a in SOL of all mice. In the EDL, muscle fiber and MHC isoform composition remained unaffected by chronic hypoxia. Chronic hypoxia did not significantly affect CD in either muscle from any of the three strains. There were relatively larger differences in CS activity among strains and treatment, and in SOL the highest CS activity was found in the F1 mice that had been acclimated to hypoxia. In general, however, neither differences among strains nor treatment in these properties of muscle vary in a way that clearly relates to inherited hypoxic exercise tolerance.  相似文献   

17.
The purpose of this study was to determine if PKB signaling is decreased and contractile protein degradation is increased in extensor digitorum longus (EDL) and soleus (SOL) muscles from middle-aged (MA) and aged (AG) mice. We also examined the effect of age on atrogene expression in quadriceps muscle. PKB activity, as assessed by Thr(308) and Ser(473) phosphorylation, was significantly higher in EDL and SOL muscles from AG than MA mice. The age-related increase in PKB activity appears to be due to an increase in expression of the kinase, as PKB-α and PKB-β levels were significantly higher in EDL and SOL muscles from AG than MA mice. The phosphorylation of forkhead box 3a (FOXO3a) on Thr(32), a PKB target, was significantly higher in EDL muscles from AG than MA mice. The rate of contractile protein degradation was similar in EDL and SOL muscles from AG and MA mice. Atrogin-1 and muscle-specific RING finger protein 1 (MuRF-1) mRNA levels did not change in muscles from AG compared with MA mice, indicating that ubiquitin-proteasome proteolysis does not contribute to sarcopenia. A significant decrease in Bcl-2 and 19-kDa interacting protein 3 (Bnip3) and GABA receptor-associated protein 1 (Gabarap1) mRNA was observed in muscles from AG compared with MA mice, which may contribute to age-related contractile dysfunction. In conclusion, the mechanisms responsible for sarcopenia are distinct from experimental models of atrophy and do not involve atrogin-1 and MuRF-1 or enhanced proteolysis. Finally, a decline in autophagy-related gene expression may provide a novel mechanism for impaired contractile function and muscle metabolism with advancing age.  相似文献   

18.
1. Initiation of subsynaptic sarcolemmal specialization and expression of different molecular forms of AChE were studied in fast extensor digitorum longus (EDL) and slow soleus (SOL) muscle of the rat under different experimental conditions in order to understand better the interplay of neural influences with intrinsic regulatory mechanisms of muscle cells. 2. Former junctional sarcolemma still accumulated AChE and continued to differentiate morphologically for at least 3 weeks after early postnatal denervation of EDL and SOL muscles. In noninnervated regenerating muscles, postsynaptic-like sarcolemmal specializations with AChE appeared (a) in the former junctional region, possibly induced by a substance in the former junctional basal lamina, and (b) in circumscribed areas along the whole length of myotubes. Therefore, the muscle cells seem to be able to produce a postsynaptic organization guiding substance, located in the basal lamina. The nerve may enhance the production or accumulation of this substance at the site of the future motor end plate. 3. Significant differences in the patterns of AChE molecular forms in EDL and SOL muscles arise between day 4 and day 10 after birth. The developmental process of downregulation of the asymmetric AChE forms, eliminating them extrajunctionally in the EDL, is less efficient in the SOL. The presence of these AChE forms in the extrajunctional regions of the SOL correlates with the ability to accumulate AChE in myotendinous junctions. The typical distribution of the asymmetric AChE forms in the EDL and SOL is maintained for at least 3 weeks after muscle denervation. 4. Different patterns of AChE molecular forms were observed in noninnervated EDL and SOL muscles regenerating in situ. In innervated regenerates, patterns of AChE molecular forms typical for mature muscles were instituted during the first week after reinnervation. 5. These results are consistent with the hypothesis that intrinsic differences between slow and fast muscle fibers, concerning the response of their AChE regulating mechanism to neural influences, may contribute to different AChE expression in fast and slow muscles, in addition to the influence of different stimulation patterns.  相似文献   

19.
We hypothesized that a shift in muscle fiber type induced by clenbuterol would change monocarboxylate transporter 1 (MCT1) content and activity of lactate dehydrogenase (LDH) and isoform pattern and shift myosin heavy chain (MHC) pattern in soleus (Sol) and extensor digitorum longus (EDL) of male rats. In the clenbuterol-administered rats (2.0 mg x kg(-1) x day(-1) subcutaneously for 4 wk), the ratio of muscle weight to body weight increased in the Sol (P < 0.05) and the EDL (P < 0.01). Clenbuterol induced the appearance of fast MHC(2D) and decreased slow MHC(1) in Sol (13%) but had no effect on EDL. The MHC pattern of Sol changed from slow to fast type. Clenbuterol increased LDH-specific activity (P < 0.01) and the ratio of the muscle-type isozyme of LDH to the heart type (P < 0.05) in Sol. The LDH total activity of the EDL muscle was also increased (P < 0.05). Furthermore, MCT1 content significantly (P < 0.05) decreased in both Sol and EDL (27 and 52%, respectively). This study suggests that clenbuterol might mediate the shift of MHC from slow to fast type and the changes in the regulation of lactate metabolism. Novel to this study is the observation that clenbuterol decreases MCT1 content in the hindlimb muscles and that the decrease in MCT1 is not muscle-type specific. It may suggest that the genetic expressions of individual factors involving slow-type MHC, heart-type isozyme of LDH, and MCT1 are associated with one another but are regulated independently.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号