首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hemodynamic forces are important determinants for the formation of atherosclerotic plaques. The recruitment of circulating monocytes into the arterial wall is an important step during atherogenesis. Monocyte chemotactic protein‐1 (MCP‐1) has been shown to be a key factor for monocyte transmigration. This study examined the effects of cyclic strain on MCP‐1 mRNA expression levels of cultured rat aortic smooth muscle cells. The MCP‐1 mRNA levels of aortic smooth muscle cells first increased as the duration of cyclic strain increased, reaching the maximum at 6–12 h, maintained at high levels throughout the 48‐h strain period. To explore signaling pathways mediating cyclic strain‐stimulated MCP‐1 mRNA expression, we examined the involvement of tyrosine kinase and protein kinase C (PKC). Tyrosine kinase inhibitors, genistein and tyrphostin 51, at 50 μM blocked cyclic strain‐stimulated MCP‐1 mRNA expression. Preincubation with a PKC activator, phorbol 12‐myristate 13‐acetate (PMA), 2 μM, for 24 h to downregulate PKC did not decrease cyclic strain‐induced MCP‐1 mRNA expression. A 6‐h incubation with 0.1 μM PMA to activate PKC, which stimulated MCP‐1 expression when applied alone, abolished the stimulatory effects of cyclic strain. A specific PKC inhibitor, calphostin C (0.1 μM), diminished cyclic strain‐stimulated MCP‐1 mRNA expression. Angiotensin II at 10 or 1,000 nM induced a moderate upregulation of MCP‐1 mRNA, and no synergistic effects were observed between angiotensin II and cyclic strain. These results indicate that cyclic strain stimulates MCP‐1 mRNA expression in smooth muscle cells through signaling pathway(s) mediated by tyrosine kinase activation. J. Cell. Biochem. 76:303–310, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

2.
This study aimed to identify the intracellular signaling pathway in angiotensin II (Ang II)-induced upregulation of plasminogen activator inhibitor type 1 (PAI-1) mRNA expression in cultured rat glomerular mesangial cells, and to examine the interaction between Ang II and TGF-beta signaling. Ang II-induced upregulation of PAI-1 mRNA expression was prevented by a protein kinase C (PKC) inhibitor, bisindorylmaleimide I. While phorbol 12-myristate 13-acetate (PMA) upregulated the PAI-1 mRNA expression, a calcium ionophore, ionomycin, had little effect. Mesangial cells pretreated with PMA for 24 h to downregulate PKC demonstrated attenuated response to Ang II. A protein tyrosine kinase inhibitor, genistein, completely blocked both Ang II- and PMA-induced PAI-1 mRNA expression. Transforming growth factor-beta1 (TGF-beta1) alone induced the expression, and in the presence of Ang II, TGF-beta1 superinduced PAI-1 mRNA expression to a higher extent. Both bisindorylmaleimide I and genistein suppressed the Ang II plus TGF-beta1-induced PAI-1 mRNA upregulation to the basal level, while downregulation of PKC attenuated the synergistic upregulation of PAI-1 mRNA expression to the level comparable to TGF-beta1 alone. These data suggest that, in rat mesangial cells, (1) PKC and protein tyrosine kinase(s) are involved in the Ang II signaling cascade, (2) protein tyrosine kinase(s) works downstream from PKC in the cascade, and (3) there is an interaction between the Ang II and TGF-beta signal pathways downstream from PKC. In in vivo settings, local activation of renin-angiotensin and TGF-beta systems in the glomeruli may synergistically augment PAI-1 expression, promote mesangial matrix accumulation and progression of glomerular injury.  相似文献   

3.
Monocyte chemoattractant protein-1 (MCP-1) is an inflammatory chemokine that promotes atherosclerosis and is a mediator of the response to arterial injury. We previously demonstrated that platelet-derived growth factor (PDGF) and angiotensin II (Ang) induce the accumulation of MCP-1 mRNA in vascular smooth muscle cells mainly by increasing mRNA stability. In the present study, we have examined the signaling pathways involved in this stabilization of MCP-1 mRNA. The effect of PDGF (BB isoform) and Ang on MCP-1 mRNA stability was mediated by the PDGF β and angiotensin II receptor AT1R, respectively, and did not involve transactivation between the two receptors. The effect of PDGF-BB was blocked by inhibitors of protein kinase C (PKC), but not by inhibitors of phosphoinositol 3-kinase (PI3K), Src, or NADPH oxidase (NADPHox). In contrast, the effect of Ang was blocked by inhibitors of Src, and PKC, but not by inhibitors of PI3 K, or NADPHox. The effect of PDGF BB on MCP-1 mRNA stability was blocked by siRNA directed against PKCδ and protein kinase D (PKD), whereas the effect of Ang was blocked only by siRNA directed against PKCδ. These results suggest that the enhancement of MCP-1 mRNA stability by PDGF-BB and Ang are mediated by distinct “proximal” signaling pathways that converge on activation of PKCδ. This study identifies a novel role for PKCδ in mediating mRNA stability in smooth muscle cells.  相似文献   

4.
5.
6.
7.
Recent evidence supports a role of Toll-like receptor (TLR) signaling in the development of atherosclerotic lesions. In this study, we tested whether TLR4 signaling promotes a proinflammatory phenotype in human and mouse arterial smooth muscle cells (SMC), characterized by increased cytokine and chemokine synthesis and increased TLR expression. Human arterial SMC were found to express mRNA encoding TLR4 and the TLR4-associated molecules MD-2 and CD14 but not TLR2 mRNA. Mouse aortic SMC, on the other hand, expressed both TLR2 and TLR4 mRNA constitutively. Human SMC derived from the coronary artery, but not those from the pulmonary artery, were found to express cell surface-associated CD14. Low concentrations (ng/ml) of Escherichia coli LPS, the prototypical TLR4 agonist, markedly stimulated extracellular regulated kinase 1/2 (ERK1/2) activity, induced release of monocyte-chemoattractant protein-1 (MCP-1) and interleukin (IL)-6, and stimulated IL-1alpha expression in human aortic SMC, and exogenous CD14 enhanced these effects. Expression of a dominant negative form of TLR4 in human SMC attenuated LPS-induced ERK1/2 and MCP-1 release. LPS was a potent inducer of NF-kappaB activity, ERK1/2 phosphorylation, MCP-1 release, and TLR2 mRNA expression in wild-type mice but not in TLR4-signaling deficient mouse aortic SMC. These studies show that TLR4 signaling promotes a proinflammatory phenotype in vascular smooth muscle cells (VSMC) and suggest that VSMC may potentially play an active role in vascular inflammation via the release of chemokines, proinflammatory cytokines, and increased expression of TLR2.  相似文献   

8.
The muscarinic agonist, acetylcholine (ACh), stimulates phospholipase D (PLD) activity in tracheal smooth muscle cells. Direct activation of protein kinase C (PKC) by phorbol-12-myristate-13-acetate (PMA) also stimulates PLD in this tissue. Activation of ACh-induced PLD was inhibited by the tyrosine kinase inhibitor genistein in a concentration-dependent manner. Presently known isoforms of PLD, PLD1 and PLD2, were identified in tracheal smooth muscle and their activation-induced phosphorylation status studied. Both ACh and PMA increased phosphorylation of PLD1 that was significantly blocked by genistein or the PKC inhibitor calphostin C. PLD2 phosphorylation was not detected in the present experiments. Western blots probed with an anti-phosphotyrosine antibody indicate that PLD1 in this tissue is phosphorylated on tyrosine residues after ACh or PMA stimulation. Tyrosine phosphorylation of PLD1 was blocked by genistein and calphostin C. No tyrosine residues were phosphorylated on PLD2. Taken together, these results demonstrate that porcine tracheal smooth muscle cells express both isoforms PLD1 and PLD2. However, on muscarinic activation only PLD1 in this tissue is phosphorylated by PKC via a tyrosine-kinase-dependent pathway.  相似文献   

9.
Normally, signaling mechanisms that activate large-conductance, calcium- and voltage-activated potassium (BK(Ca)) channels in pulmonary vascular smooth muscle cause pulmonary vasodilatation. BK(Ca)-channel modulation is important in the regulation of pulmonary arterial pressure, and inhibition (decrease in the opening probability) of the BK(Ca) channel has been implicated in the development of pulmonary vasoconstriction. Protein kinase C (PKC) causes pulmonary vasoconstriction, but little is known about the effect of PKC on BK(Ca)-channel activity in pulmonary vascular smooth muscle. Accordingly, studies were done to determine the effect of PKC on BK(Ca)-channel activity using patch-clamp studies in pulmonary arterial smooth muscle cells (PASMCs) of the Sprague-Dawley rat. The PKC activators phorbol myristate acetate (PMA) and thymeleatoxin opened BK(Ca) channels in single Sprague-Dawley rat PASMC. The activator response to both PMA and thymeleatoxin on BK(Ca)-channel activity was blocked by G?-6983, which selectively blocks PKC-alpha, -delta, -gamma, and -zeta, and by rottlerin, which selectively inhibits PKC-delta. In addition, the specific cyclic GMP-dependent protein kinase antagonist KT-5823 blocked the responses to PMA and thymelatoxin, whereas the specific cyclic AMP-dependent protein kinase blocker KT-5720 had no effect. In isolated pulmonary arterial vessels, both PMA and forskolin caused vasodilatation, which was inhibited by KT-5823, G?-6983, or the BK(Ca)-channel blocker tetraethylammonium. The results of this study indicate that activation of specific PKC isozymes increases BK(Ca)-channel activity in Sprague-Dawley rat PASMC via cyclic GMP-dependent protein kinase, which suggests a unique signaling mechanism for vasodilatation.  相似文献   

10.
11.
12.
Mechanical stretch activates a number of signaling pathways in endothelial cells, and it elicits a variety of functional responses including increases in the phosphorylation of focal adhesion kinase (FAK), a nonreceptor tyrosine kinase involved in integrin-mediated signal transduction. Stretch also triggers an increase in the generation of reactive oxygen species (ROS), which may function as second messengers in the signal transduction cascades that activate cellular responses to strain. Mitochondria represent an important source of ROS in the cell, and these organelles may release ROS in response to strain by virtue of their attachment to cytoskeletal proteins. We therefore tested whether cyclic stretch increases FAK phosphorylation at Tyr397 through a mitochondrial ROS signaling pathway in bovine pulmonary artery endothelial cells (BPAEC). Oxidant signaling, measured using 2'7'-dichlorofluorescin (DCFH), increased 152 +/- 16% during 1.5 h of cyclic strain relative to unstrained controls. The mitochondrial inhibitors diphenylene iodonium (5 microM) or rotenone (2 microM) attenuated this increase, whereas L-nitroarginine (100 microM), allopurinol (100 microM), or apocynin (30 microM) had no effect. The antioxidants ebselen (5 microM) and dithiodidiethyldithiocarbamate (1 mM) inhibited the strain-induced increase in oxidant signaling, but Hb (5 microM) had no effect. These results indicate that strain induces oxidant release from mitochondria. Treatment with cytochalasin D (5 microM) abrogated strain-induced DCFH oxidation in BPAEC, indicating that actin filaments were required for stretch-induced mitochondrial ROS generation. Cyclic strain increased FAK phosphorylation at Tyr397, but this was abolished by mitochondrial inhibitors as well as by antioxidants. Strain-induced FAK phosphorylation was abrogated by inhibition of protein kinase C (PKC) with Ro-31-8220 or G?-6976. These findings indicate that mitochondrial oxidants generated in response to endothelial strain trigger FAK phosphorylation through a signaling pathway that involves PKC.  相似文献   

13.
To localize activated protein kinase C (PKC) in smooth muscle cells, an antibody directed to the catalytic site of the enzyme was used to assess PKC distribution by immunofluorescence techniques in gastric smooth muscle cells isolated from Bufo marinus. An antibody to vinculin was used to delineate the cell membrane. High-resolution three-dimensional images of immunofluorescence were obtained from a series of images collected through focus with a digital imaging microscope. Cells were untreated or treated with agents that increase PKC activity (10 microM carbachol for 1 min, 1 microM phorbol 12-myristate 13-acetate (PMA) for 10 min), or have no effect on PKC activity (1 micrometer 4-alpha phorbol, 12,13-didecanoate (4-alpha PMA)). In unstimulated cells, activated PKC and vinculin were located and organized at the cell surface. Cell cytosol labeling for activated PKC was sparse and diffuse and was absent for vinculin. After treatment with carbachol, which stimulates contraction and PKC activity, in addition to the membrane localization, the activated PKC exhibited a pronounced cytosolic fibrillar distribution and an increased total fluorescence intensity relative to vinculin. The distributions of activated PKC observed after PMA but not 4-alpha PMA were similar to those observed with carbachol. Our results indicate that in resting cells there is a pool of activated PKC near the cell membrane, and that after stimulation activated PKC is no longer membrane-confined, but is present throughout the cytosol. Active PKC appears to associate with contractile filaments, supporting a possible role in modulation of contraction.  相似文献   

14.
The p21 (cip1/waf1) protein induces cell cycle arrest through inhibition of the activity of cdk (cyclin dependent kinase)/cyclin complexes. Expression of p21 is induced in a p53-dependent manner by DNA damage. p21 can also be induced independently of p53 by phorbol ester or okadaic acid. In this study, we have addressed the role of the PKC (protein kinase C) signaling pathway in the induction of p21 in response to PMA (phorbol myristate acetate) and okadaic acid. Levels of p21 (protein and mRNA) rapidly increased (within approximately 4 h) in U937 cells treated with PMA. The PKC-specific inhibitors RO 31-8220 and GF109203X down-regulated PMA or okadaic acid-induced p21 expression. Following persistent PKC activation, p21 mRNA levels remained elevated, indicating an enhanced stability of the mRNA. Using actinomycin D to measure mRNA stability and p21 promoter luciferase assays to measure activity, we provide evidence to support a role for the PKC signaling pathway in p21 mRNA stability. Thus, PKC regulates the amount of p21 in U937 cells at the level of mRNA accumulation and translation.  相似文献   

15.
Protein kinase C (PKC) activation, enhanced by hyperglycemia, is associated with many tissue abnormalities observed in diabetes. Akt is a serine/threonine kinase that mediates various biological responses induced by insulin. We hypothesized that the negative regulation of Akt in the vasculature by PKC could contribute to insulin resistant states and, may therefore play a role in the pathogenesis of cardiovascular disease. In this study, we specifically looked at the ability of PKC to inhibit Akt activation induced by insulin in cultured rat aortic vascular smooth muscle cells (VSMCs). Activation of Akt was determined by immunoblotting with a phospho-Akt antibody that selectively recognizes Ser473 phosphorylated Akt. A PKC activator, phorbol 12-myristate 13-acetate (PMA), inhibited insulin-dependent Akt phosphorylation. However, PMA did not inhibit platelet-derived growth factor (PDGF)-induced activation of Akt. We further showed that the PKC inhibitor, G06983, blocked the PMA-induced inhibition of Akt phosphorylation by insulin. In addition, we demonstrated that PMA inhibited the insulin-induced tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1). From these data, we conclude that PKC is a potent negative regulator of the insulin signal in the vasculature, which indicate an important role of PKC in the development of insulin resistance in cardiovascular disease.  相似文献   

16.
In rat aortic smooth muscle cells, vasopressin (AVP) induces prostacyclin (PGI2) production, probably as the consequence of phospholipase C activation. Our study analyzes the effects of phorbol 12-myristate 13-acetate (PMA)-induced protein kinase C (PKC) activation on AVP-induced inositol 1,4,5-trisphosphate formation, cytosolic free Ca2+ concentration [( Ca2+]c), and PGI2 production. PMA rapidly decreased PKC activity in the cytosol of smooth muscle cells, while increasing it transiently in the membranes with a maximum around 20 min. Prior exposure of the cells to PMA resulted in a transient inhibition of both AVP-induced inositol 1,4,5-trisphosphate formation and [Ca2+]c rise. This was inversely correlated with membraneous PKC activity and partially reversed by the PKC inhibitor staurosporine. In contrast, pretreating the cells with PMA markedly potentiated A23187 or AVP-induced PGI2 production. Under those conditions, AVP-induced PGI2 production did not correlate either with PMA-induced membranous PKC activity or with AVP-induced PLC activation. However, this potentiating effect of PMA was reversed by staurosporine and was not mimicked by the 4 alpha-phorbol, an inactive analogue of PMA. Thus, the possibility is raised that, while inhibiting AVP-induced PLC activation, PMA-induced PKC activation increases the Ca2+ sensitivity of the cellular signaling system leading to PGI2 production.  相似文献   

17.
Vascular endothelial growth factor (VEGF) stimulates angiogenesis during development and in disease. In pheochromocytoma (PC12) cells, VEGF expression is regulated by A(2A) adenosine receptor (A(2A)AR) activation. The present work examines the underlying signaling pathway. The adenylyl cyclase-protein kinase A cascade has no role in the down-regulation of VEGF mRNA induced by the A(2A)AR agonist, 2-[4-[(2-carboxyethyl)phenyl]ethylamino]-5'-N-ethylcarboxamidoadenosine (CGS21680). Conversely, 6-h exposure of cells to either phorbol 12-myristate 13-acetate (PMA) or protein kinase C (PKC) inhibitors mimicked the CGS21680-induced down-regulation. PMA activated PKCalpha, PKCepsilon, and PKCzeta, and CGS21680 activated PKCepsilon and PKCzeta as assessed by cellular translocation. By 6 h, PMA but not CGS21680 decreased PKCalpha and PKCepsilon expression. Neither compound affected PKCzeta levels. Following prolonged PMA treatment to down-regulate susceptible PKC isoforms, CGS21680 but not PMA inhibited the cobalt chloride induction of VEGF mRNA. The proteasome inhibitor, MG-132, abolished PMA- but not CGS21680-induced down-regulation of VEGF mRNA. Phorbol 12,13-diacetate reduced VEGF mRNA levels while down-regulating PKCepsilon but not PKCalpha expression. In cells expressing a dominant negative PKCzeta construct, CGS21680 was unable to reduce VEGF mRNA. Together, the findings suggest that phorbol ester-induced down-regulation of VEGF mRNA occurs as a result of a reduction of PKCepsilon activity, whereas that mediated by the A(2A)AR occurs following deactivation of PKCzeta.  相似文献   

18.
Contractile agonists may stimulate mitogenic responses in airway smooth muscle by mechanisms that involve tyrosine kinases. The role of contractile agonist-evoked activation of tyrosine kinases in contractile signaling is not clear. We addressed this issue using cultured rat airway smooth muscle cells. In these cells, serotonin (5-HT, 1 microM) caused contraction (quantitated by a decrease in cell area), which was blocked by the tyrosine kinase inhibitor genistein (40 microM). Genistein and tyrphostin 23 (40 and 10 microM, respectively) significantly decreased 5-HT-evoked peak Ca(2+) responses, and the effect of genistein could be observed in the absence of extracellular Ca(2+). The specific inhibitor of mitogen-activated protein kinase kinase PD-98059 (30 microM) had no significant effect on peak Ca(2+) levels. Western analysis of cell extracts revealed that 5-HT caused a significant increase in tyrosine phosphorylation of proteins with molecular masses of approximately 70 kDa within 10 s of stimulation but no measurable tyrosine phosphorylation of the gamma isoform of phospholipase C (PLC-gamma). Tyrosine phosphorylation was inhibited by genistein. Furthermore, genistein (40 microM) significantly attenuated 5-HT-induced inositol phosphate production. We conclude that in airway smooth muscle contractile agonists acting on G protein-coupled receptors may activate tyrosine kinase(s), which in turn modulate calcium signaling by affecting, directly or indirectly, PLC-beta activity. It is unlikely that PLC-gamma or the mitogen-activated protein kinase pathway is involved in Ca(2+) signaling to 5-HT.  相似文献   

19.
Lee JS  Kim IS  Ryu JS  Yun CY 《Cytokine》2008,42(3):365-371
The house dust mite (Dermatophagoides pteronissinus) plays an important role in the pathogenesis of allergic diseases, including atopic dermatitis, and asthma. Monocyte chemotactic protein 1 (MCP-1/CCL2)/IL-6/IL-8 (CXCL8) plays a pivotal role in mediating the infiltration of various cells into the skin of atopic dermatitis and psoriasis. The aim of this study was to investigate the effect of D. pteronissinus extract (DpE) on expression of MCP-1/IL-6/IL-8 mRNA and protein and the signal transduction in the human monocytic cell line, THP-1. The mRNA and protein expression of MCP-1/CCL2, IL-6, and IL-8 were elevated by DpE in a time and dose-dependent manner in THP-1 cells. The increased expression of MCP-1, IL-6, and IL-8 was not affected by aprotinin (serine protease inhibitor) or E64 (cysteine protease inhibitor). We found that MCP-1 and IL-6 expression due to DpE was related to Src, protein kinase C δ (PKC δ), extracellular-signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) and IL-8 expression was involved in Src family tyrosine kinase, PKC δ, ERK. DpE increased the phosphorylation of ERK and p38 MAPK after 5 min and peaked at 30 min. The activation was significantly blocked by PP2, an inhibitor of Src family tyrosine kinase and rottlerin, an inhibitor of PKC δ (p < 0.01). DpE increases MCP-1, IL-6, and IL-8 expression and transduces its signal via Src family tyrosine kinase, PKC, and ERK in a protease-independent manner. This finding may contribute to the elucidation of the pathogenic mechanism triggered by DpE .  相似文献   

20.
蛋白激酶C对大鼠支气管平滑肌KV通道的影响   总被引:11,自引:5,他引:11  
Liu XS  Xu YJ  Zhang ZX  Ni W  Chen SX 《生理学报》2003,55(2):135-141
用全细胞膜片钳、Western印迹法和逆转录—PCR技术,观察蛋白激酶C(protein kinase C,PKC)对大鼠支气管平滑肌细胞(bronchial smooth muscle cells,BSMCs)电压依赖性延迟整流钾通道(Kv)活性及其亚型Kvl.5表达的影响。结果为:(1)PKC激活剂豆蔻酰佛波醇乙酯(phorbol 12-myristate 13-acetate,PMA)显著抑制急性分离大鼠BSMCs的Kv通道电流,该效应被PKC阻断剂Ro31—8220显著抑制;(2)PMA显著抑制体外培养大鼠BSMCs的Kvl.5 mRNA和蛋白质的表达,该效应被Ro31—8220显著抑制。上述观察结果提示,PKC活化可抑制大鼠BSMCs的Kv通道电流活性,下调Kvl.5亚型的表达水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号