首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role and regulation of specific plant myosins in cyclosis is not well understood. In the present report, an affinity-purified antibody generated against a conserved tail region of some class XI plant myosin isoforms was used for biochemical and immunofluorescence studies of Zea mays. Myosin XI co-localized with plastids and mitochondria but not with nuclei, the Golgi apparatus, endoplasmic reticulum, or peroxisomes. This suggests that myosin XI is involved in the motility of specific organelles. Myosin XI was more than 50% co-localized with tailless complex polypeptide-1alpha (TCP-1alpha) in tissue sections of mature tissues located more than 1.0 mm from the apex, and the two proteins co-eluted from gel filtration and ion exchange columns. On Western blots, TCP-1alpha isoforms showed a developmental shift from the youngest 5.0 mm of the root to more mature regions that were more than 10.0 mm from the apex. This developmental shift coincided with a higher percentage of myosin XI /TCP-1alpha co-localization, and faster degradation of myosin XI by serine protease. Our results suggest that class XI plant myosin requires TCP-1alpha for regulating folding or providing protection against denaturation.  相似文献   

2.
Myosin is believed to act as the molecular motor for many actin-based motility processes in eukaryotes. It is becoming apparent that a single species may possess multiple myosin isoforms, and at least seven distinct classes of myosin have been identified from studies of animals, fungi, and protozoans. The complexity of the myosin heavy-chain gene family in higher plants was investigated by isolating and characterizing myosin genomic and cDNA clones from Arabidopsis thaliana. Six myosin-like genes were identified from three polymerase chain reaction (PCR) products (PCR1, PCR11, PCR43) and three cDNA clones (ATM2, MYA2, MYA3). Sequence comparisons of the deduced head domains suggest that these myosins are members of two major classes. Analysis of the overall structure of the ATM2 and MYA2 myosins shows that they are similar to the previously-identified ATM1 and MYA1 myosins, respectively. The MYA3 appears to possess a novel tail domain, with five IQ repeats, a six-member imperfect repeat, and a segment of unique sequence. Northern blot analyses indicate that some of the Arabidopsis myosin genes are preferentially expressed in different plant organs. Combined with previous studies, these results show that the Arabidopsis genome contains at least eight myosin-like genes representing two distinct classes.  相似文献   

3.
Novel myosins     
The traditional view of myosin, drawn from studies of myosins from striated muscles, is that of an elongated two-headed molecule that assembles into filaments. However, biochemical, molecular genetic and genetic studies have uncovered a host of ubiquitous single-headed nonfilamentous myosins known collectively as myosins I. All of the myosins I possess the myosin head domain, the motor portion of muscle myosins they have tail the filament-forming tail domain of muscle myosins they have tail domains that interact variously with membranes, actin and calmodulin. These alternative molecular interactions confer novel motile properties on myosins I, such as the ability to move membranes relative to actin and to move actin relative to actin without having to assemble into filaments. The numerous actin-based movements retained by cells lacking myosin II, the two-headed filamentous form of nonmuscle myosin, may be supported by myosins I.  相似文献   

4.
Nonmuscle myosin heavy chain II-A is responsible for MYH9-related disease, which is characterized by macrothrombocytopenia, granulocyte inclusions, deafness, cataracts, and renal failure. Since another two highly conserved nonmuscle myosins, II-B and II-C, are known, an analysis of their tissue distribution is fundamental for the understanding of their biological roles. In mouse, we found that all forms are ubiquitously expressed. However, megakaryocytic and granulocytic lineages express only II-A, suggesting that congenital features, macrothrombocytopenia, and leukocyte inclusions correlate with its exclusive presence. In kidney, eye, and ear, where clinical manifestations have a late onset, as well as in other tissues apparently not affected in patients, II-A and at least one of the other two isoforms are expressed, suggesting that II-B and II-C can partially compensate for each other. We hypothesize that cells expressing only II-A manifest the congenital defects, while tissues expressing additional myosin II isoforms show either late onset of abnormalities or no pathological sign.  相似文献   

5.
Regulation of non-muscle myosin structure and function   总被引:11,自引:0,他引:11  
In vertebrate and invertebrate nonmuscle myosins, light- and heavy-chain phosphorylation regulate myosin assembly into filaments, and interaction with actin. Vertebrate non-muscle myosins can exist in vitro in three main states, either ‘folded’ (assembly-blocked) or ‘extended’ (assembly-competent) monomers, and filaments. Light-chain phosphorylation regulates the ‘dynamic equilibrium’ between these states. The ability of the myosin to undergo changes in conformation and state of assembly may be an important mechanism in regulating the organization of the cytoskeleton and cell motility.  相似文献   

6.
Summary Chronically stimulated fast-twitch muscles of the rabbit were histochemically and immunohistochemically analyzed in serial cross sections (1) for percentages of fiber types, and (2) for the presence of myosin heavy chain isoforms during fast-to-slow transformation. By four weeks of stimulation the number of type-I fibers had increased more than fourfold, while only about 6% of the original IIB fibers remained. Type-IC and -IIC fibers transiently rose to 20% of the total fiber population. After 16 weeks, the number of type-I fibers had increased to 42%. With prolonged stimulation fewer fibers reacted with antibodies against embryonic and neonatal myosins and more with the antibody against slow myosin. The reaction for embryonic myosin was most often detected in the C fibers (IC, IIC). Immunohistochemical subtypes were observed for each fiber type in the stimulated muscles. The greatest number was seen in type-IIC fibers, which, in addition to their reaction for fast/neonatal and slow myosins, might also react with the antibodies against neonatal/embryonic and embryonic myosins. These findings indicated that the transforming fibers temporarily expressed myosin heavy chain isoforms normally not detectable in adult skeletal muscle. Myotubes reacted strongly with the antibodies against fast/neonatal and embryonic myosins, and some of them also with the antibody against slow myosin. Thus, it appears that under the influence of the low frequency stimulus pattern some of the newly formed myotubes developed into type-I fibers.  相似文献   

7.
Embryonic chick heart ventricle myocytes retain the ability to alternate between proliferation and functional differentiation. A cytoplasmic isoform of myosin is present in cleavage furrows of various nonmuscle cells during cytokinesis, whereas one or more of the cardiac myosin isoforms are localized in sarcomeres of beating cardiomyocytes. Antibodies were employed to reveal the subcellular localizations of cytoplasmic and cardiac myosin isoforms in embryonic chick ventricle cardiomyocytes during cytokinesis. Monoclonal anticytoplasmic myosin antibodies were prepared against myosin purified from brains of 1-day-posthatched chickens and shown to react with chick brain myosin heavy chain by Western blots and/or ELISA tests. One monoclonal antibrain myosin antibody also cross-reacted with chick cardiac myosin but not with skeletal or smooth muscle myosins. Two antichick cardiac myosin monoclonal antibodies and one antichick skeletal myosin polyclonal antibody that cross-reacts with cardiac myosin were employed to identify cardiac sarcomeric myosin. Cells were isolated from day 8 embryonic chick heart ventricles, enriched for myocytes, grown in vitro for 3 days, and then examined by immunofluorescence techniques. Monoclonal antibodies against cytoplasmic myosin preferentially localized in the cleavage furrows of both cardiofibroblasts and cardiomyocytes in all stages of cytokinesis. In contrast, antibodies that recognize cardiac myosin were distributed throughout cardiomyocytes during early stages of cytokinesis, but became progressively excluded from the furrow area during middle and late stages of cytokinesis. These data suggest that in cells that contain both cytoplasmic and sarcomeric myosin isoforms, only cytoplasmic myosin isoforms are mobilized to from the contractile ring for cytokinesis.  相似文献   

8.
Despite their near sequence identity, actin isoforms cannot completely replace each other in vivo and show marked differences in their tissue-specific and subcellular localization. Little is known about isoform-specific differences in their interactions with myosin motors and other actin-binding proteins. Mammalian cytoplasmic β- and γ-actin interact with nonsarcomeric conventional myosins such as the members of the nonmuscle myosin-2 family and myosin-7A. These interactions support a wide range of cellular processes including cytokinesis, maintenance of cell polarity, cell adhesion, migration, and mechano-electrical transduction. To elucidate differences in the ability of isoactins to bind and stimulate the enzymatic activity of individual myosin isoforms, we characterized the interactions of human skeletal muscle α-actin, cytoplasmic β-actin, and cytoplasmic γ-actin with human myosin-7A and nonmuscle myosins-2A, -2B and -2C1. In the case of nonmuscle myosins-2A and -2B, the interaction with either cytoplasmic actin isoform results in 4-fold greater stimulation of myosin ATPase activity than was observed in the presence of α-skeletal muscle actin. Nonmuscle myosin-2C1 is most potently activated by β-actin and myosin-7A by γ-actin. Our results indicate that β- and γ-actin isoforms contribute to the modulation of nonmuscle myosin-2 and myosin-7A activity and thereby to the spatial and temporal regulation of cytoskeletal dynamics. FRET-based analyses show efficient copolymerization abilities for the actin isoforms in vitro. Experiments with hybrid actin filaments show that the extent of actomyosin coupling efficiency can be regulated by the isoform composition of actin filaments.  相似文献   

9.
We have completely sequenced a gene encoding the heavy chain of myosin II, a nonmuscle myosin from the soil ameba Acanthamoeba castellanii. The gene spans 6 kb, is split by three small introns, and encodes a 1,509-residue heavy chain polypeptide. The positions of the three introns are largely conserved relative to characterized vertebrate and invertebrate muscle myosin genes. The deduced myosin II globular head amino acid sequence shows a high degree of similarity with the globular head sequences of the rat embryonic skeletal muscle and nematode unc 54 muscle myosins. By contrast, there is no unique way to align the deduced myosin II rod amino acid sequence with the rod sequence of these muscle myosins. Nevertheless, the periodicities of hydrophobic and charged residues in the myosin II rod sequence, which dictate the coiled-coil structure of the rod and its associations within the myosin filament, are very similar to those of the muscle myosins. We conclude that this ameba nonmuscle myosin shares with the muscle myosins of vertebrates and invertebrates an ancestral heavy chain gene. The low level of direct sequence similarity between the rod sequences of myosin II and muscle myosins probably reflects a general tolerance for residue changes in the rod domain (as long as the periodicities of hydrophobic and charged residues are largely maintained), the relative evolutionary "ages" of these myosins, and specific differences between the filament properties of myosin II and muscle myosins. Finally, sequence analysis and electron microscopy reveal the presence within the myosin II rodlike tail of a well-defined hinge region where sharp bending can occur. We speculate that this hinge may play a key role in mediating the effect of heavy chain phosphorylation on enzymatic activity.  相似文献   

10.
It has been reported that catch and striated muscle myosin heavy chains of scallop are generated through alternative splicing from a single gene [Nyitray et al. (1994) Proc. Natl. Acad. Sci. USA 91, 12686-12690]. They suggested that the catch muscle type myosin was expressed in various tissues of scallop, including the gonad, heart, foot, and mantle. However, there have been no reports of the primary structure of myosin from tissues other than the adductor muscles. In this study, we isolated a cDNA encoding the motor domain of myosin from the mantle tissue of scallop (Patinopecten yessoensis), and determined its nucleotide sequence. Sequence analysis revealed that mantle myosin exhibited 65% identity with Drosophila non muscle myosin, 60% with chicken gizzard smooth muscle myosin, and 44% with scallop striated muscle myosin. The mantle myosin has inserted sequences in the 27 kDa domain of the head region, and has a longer loop 1 structure than those of scallop striated and catch muscle myosins. Phylogenetic analysis suggested that the mantle myosin is classified as a smooth/nonmuscle type myosin. Western blot analysis with antibodies produced against the N-terminal region of the mantle myosin revealed that this myosin was specifically expressed in the mantle pallial cell layer consisting of nonmuscle cells. Our results show that mantle myosin is classified as a nonmuscle type myosin in scallop.  相似文献   

11.
Myosin was partially purified from ciliated protozoan Tetrahymena pyriformis. Tetrahymena myosin has a fibrous tail with two globular heads at one end and contains 220-kDa heavy chains. The tail length of the molecule (200 nm) is longer than that of myosins from other animals (approximately 160 nm). A sample after HPLC column chromatography containing 220-kDa peptide showed a myosin-specific K+-/NH4+-EDTA-ATPase activity. Polyclonal anti-crayfish myosin heavy chain antibody reacted with Tetrahymena 220-kDa myosin heavy chain, and monoclonal anti-pan myosin antibody reacted with Tetrahymena 180-kDa peptide. The isolated 180-kDa peptide was identified as a clathrin heavy chain.  相似文献   

12.
Intramolecular interaction between myosin heads, blocking key sites involved in actin-binding and ATPase activity, appears to be a critical mechanism for switching off vertebrate smooth-muscle myosin molecules, leading to relaxation. We have tested the hypothesis that this interaction is a general mechanism for switching off myosin II-based motile activity in both muscle and nonmuscle cells. Electron microscopic images of negatively stained myosin II molecules were analyzed by single particle image processing. Molecules from invertebrate striated muscles with phosphorylation-dependent regulation showed head-head interactions in the off-state similar to those in vertebrate smooth muscle. A similar structure was observed in nonmuscle myosin II (also phosphorylation-regulated). Surprisingly, myosins from vertebrate skeletal and cardiac muscle, which are not intrinsically regulated, undergo similar head-head interactions in relaxing conditions. In all of these myosins, we also observe conserved interactions between the 'blocked' myosin head and the myosin tail, which may contribute to the switched-off state. These results suggest that intramolecular head-head and head-tail interactions are a general mechanism both for inducing muscle relaxation and for switching off myosin II-based motile activity in nonmuscle cells. These interactions are broken when myosin is activated.  相似文献   

13.
Myosin heavy-chain isoforms in human smooth muscle   总被引:2,自引:0,他引:2  
The myosin heavy-chain composition of human smooth muscle has been investigated by sodium dodecyl sulfate/polyacrylamide gel electrophoresis, enzyme immunoassay, and enzyme-immunoblotting procedures. A polyclonal and a monoclonal antibody specific for smooth muscle myosin heavy chains were used in this study. The two antibodies were unreactive with sarcomeric myosin heavy chains and with platelet myosin heavy chain on enzyme immunoassay and immunoblots, and stained smooth muscle cells but not non-muscle cells in cryosections and cultures processed for indirect immunofluorescence. Two myosin heavy-chain isoforms, designated MHC-1 and MHC-2 (205 kDa and 200 kDa, respectively) were reactive with both antibodies on immunoblots of pyrophosphate extracts from different smooth muscles (arteries, veins, intestinal wall, myometrium) electrophoresed in 4% polyacrylamide gels. In the pulmonary artery, a third myosin heavy-chain isoform (MHC-3, 190 kDa) electrophoretically and antigenically distinguishable from human platelet myosin heavy chain, was specifically recognized by the monoclonal antibody. Analysis of muscle samples, directly solubilized in a sodium dodecyl sulfate solution, and degradation experiments performed on pyrophosphate extracts ruled out the possibility that MHC-3 is a proteolytic artefact. Polypeptides of identical electrophoretic mobility were also present in the other smooth muscle preparations, but were unreactive with this antibody. The presence of three myosin heavy-chain isoforms in the pulmonary artery may be related to the unique physiological properties displayed by the smooth muscle of this artery.  相似文献   

14.
The effect of drug-induced hypothyroidism on ventricular myosin gene expression was explored in a small marsupial, Antechinus flavipes. Pyrophosphate gel electrophoresis, SDS-PAGE and western blotting were used to analyse changes in native myosin isoforms and myosin heavy chains (MyHCs) in response to hypothyroidism. In some animals, five instead of the normal three native myosin components were found: V1a, V1b,V1c, V2 and V3, in order of decreasing mobility. In western blots, V1a, V1b, and V1c reacted with anti-α-MyHC antibody, but not with anti-β-MyHC, whereas V2 and V3 reacted with anti-β-MyHC antibody. SDS-PAGE of the unusual ventricular myosins revealed three MyHC isoforms, two of which bound anti-α-MyHC antibody while the third bound anti-β-MyHC antibody. We conclude that V1a, V1b, V1c are triplets arising from the dimerization of two distinct α-MyHC isoforms. Hypothyroidism, verified by metabolic studies, decreased α-MyHC content significantly (t-test, P < 0.001) from 91.6 ± 5.9% (SEM, n = 4) in control animals to 67.2 ± 5.7% (SEM, n = 4) in hypothyroid animals, with a concomitant increase in β-MyHC content. We conclude that in adult marsupials, ventricular myosins are also responsive to changes in the thyroid state as found in eutherians, and suggest that evolution of the molecular mechanisms underlying this thyroid responsiveness predate the divergence of marsupials and eutherians.  相似文献   

15.
A single human myosin light chain kinase gene (MLCK; MYLK)   总被引:7,自引:0,他引:7  
Lazar V  Garcia JG 《Genomics》1999,57(2):256-267
The myosin light chain kinase (MLCK) gene, a muscle member of the immunoglobulin gene superfamily, yields both smooth muscle and nonmuscle cell isoforms. Both isoforms are known to regulate contractile activity via calcium/calmodulin-dependent myosin light chain phosphorylation. We previously cloned from a human endothelial cell (EC) cDNA library a high-molecular-weight nonmuscle MLCK isoform (EC MLCK (MLCK 1) with an open reading frame that encodes a protein of 1914 amino acids. We now describe four novel nonmuscle MLCK isoforms (MLCK 2, 3a, 3b, and 4) that are the alternatively spliced variants of an mRNA precursor that is transcribed from a single human MLCK gene. The primary structure of the cDNA encoding the nonmuscle MLCK isoform 2 is identical to the previously published human nonmuscle MLCK (MLCK 1) (J. G. N. Garcia et al., 1997, Am. J. Respir. Cell Mol. Biol. 16, 489-494) except for a deletion of nucleotides 1428-1634 (D2). The full nucleotide sequence of MLCK isoforms 3a and 3b and partial sequence for MLCK isoform 4 revealed identity to MLCK 1 except for deletions at nucleotides 5081-5233 (MLCK 3a, D3), double deletions of nucleotides 1428-1634 and 5081-5233 (MLCK 3b), and nucleotide deletions 4534-4737 (MLCK 4, D4). Northern blot analysis demonstrated the extended expression pattern of the nonmuscle MLCK isoform(s) in both human adult and human fetal tissues. RT-PCR using primer pairs that were designed to detect specifically nonmuscle MLCK isoforms 2, 3, and 4 deletions (D2, D3, and D4) confirmed expression in both human adult and human fetal tissues (lung, liver, brain, and kidney) and in human endothelial cells (umbilical vein and dermal). Furthermore, relative quantitative expression studies demonstrated that the nonmuscle MLCK isoform 2 is the dominant splice variant expressed in human tissues and cells. Further analysis of the human MLCK gene revealed that the MLCK 2 isoform represents the deletion of an independent exon flanked by 5' and 3' neighboring introns of 0.6 and 7.0 kb, respectively. Together these studies demonstrate for the first time that the human MLCK gene yields multiple nonmuscle MLCK isoforms by alternative splicing of its transcribed mRNA precursor with differential distribution of these isoforms in various human tissues and cells.  相似文献   

16.
Both smooth muscle (SM) and nonmuscle class II myosin molecules are expressed in SM tissues comprising hollow organ systems. Individual SM cells may express one or more of multiple myosin II isoforms that differ in myosin heavy chain (MHC) and myosin light chain (MLC) subunits. Although much has been learned, the expression profiles, organization within contractile filaments, localization within cells, and precise roles in various contractile functions of these different myosin molecules are still not well understood. However, data supporting unique physiological roles for certain isoforms continues to build. Isoform differences located in the S1 head region of the MHC can alter actin binding and rates of ATP hydrolysis. Differences located in the MHC tail can alter the formation, stability, and size of the myosin thick filament. In these distinct ways, both head and tail isoform differences can alter force generation and muscle shortening velocities. The MLCs that are associated with the lever arm of the S1 head can affect the flexibility and range of motion of this domain and possibly the motion of the S2 and motor domains. Phosphorylation of MLC(20) has been associated with conformational changes in the S1 and/or S2 fragments regulating enzymatic activity of the entire myosin molecule. A challenge for the future will be delineation of the physiological significance of the heterogeneous expression of these isoforms in developmental, tissue-specific, and species-specific patterns and or the intra- and intercellular heterogeneity of myosin isoform expression in SM cells of a given organ.  相似文献   

17.
18.
Clones possessing inserts of brain myosin II have been obtained by screening a rat brain cDNA expression library with a polyclonal antibody, raised against myosin II from the mouse neuroblastoma cell line, Neuro-2A. A partial sequence comprising the 3' coding and non-coding regions of the myosin message has been determined which is markedly different from other myosin sequences. The derived amino-acid sequence comprises the C-terminal 90 amino acids: VSS(PO4)LKNKLRRGDLPFVVTRRLVRKGTLELS(PO4)DDDDESKASLINETQPPQCLDQQ LDQQ LDQLFNWPVNAGCVCGWGVEQTQGEEAVHKCRT(CO2H). This sequence encompasses regions homologous to both the casein kinase II and protein kinase C heavy-chain phosphorylation sites. The non-helical "tail-piece" is considerably longer (an additional 39 amino acid residues) than found in other myosins. Northern blot analysis demonstrates this myosin II message to be unique to cerebral cortex, with no expression in all other non-cortical brain regions and peripheral tissues tested. Our results suggest functional diversity for myosin II isozymes within the brain.  相似文献   

19.
Nascent muscle fiber appearance in overloaded chicken slow-tonic muscle   总被引:4,自引:0,他引:4  
The application of a weight overload to the humerus of chickens induces a hypertrophy of anterior latissimus dorsi (ALD) muscle fibers. This growth is accompanied by a rapid and almost complete replacement of one slow-tonic myosin isoform, SM-1, by another slow-tonic isoform, SM-2. In addition, a population of small fibers appears mainly in extrafascicular spaces and, concurrently, three additional myosin bands are detected by gel electrophoresis. Five antibodies against myosin heavy chain (MHC) isoforms were selected as immunocytochemical probes to determine the cellular location and nature of these myosins. The antibodies react with ventricular, fast skeletal muscle and either SM-1 or SM-2, or both the slow-tonic MHCs. The antifast and antiventricular antibodies react with myosin present in the 10-day embryonic ALD muscle but do not react with myosin in posthatch ALD muscle. The small fibers in overloaded muscle contain a myosin isoform characteristically expressed during the embryonic stage of ALD muscle development and therefore are named nascent myofibers. Some of the nascent myofibers do not react with the antibody to both slow-tonic MHCs, indicating the lack of the normal adult slow-tonic myosins which are expressed in 10-day embryos. In order to explore the origin of the nascent fibers, an electron microscopic study was performed. Stereological analysis of the existing fibers shows a stimulation of numbers and sizes of satellite cells. In addition, the volume occupied by nonmuscle and undifferentiated cells increases dramatically. Myotube formation with incipient myofibrils is seen in extrafascicular spaces. These data suggest that new muscle fiber formation accompanies hypertrophy in overloaded chicken ALD muscle and the process may involve satellite cell migration.  相似文献   

20.
Myosins play an important role in various developmental processes in plants. We have identified 14 myosin genes in rice (Oryza sativa cv. Nipponbare) genome using sequence information available in public databases. Phylogenetic analysis of these sequences with other plant and non-plant myosins revealed that two of the predicted sequences belonged to class VIII and the others to class XI. All of these genes were distributed on seven chromosomes in the rice genome. Domain searches on these sequences indicated that a typical rice myosin consisted of Myosin_N, head domain, neck (IQ motifs), tail, and dilute (DIL) domain. Based on the sequence information obtained from predicted myosins, we isolated and sequenced two full-length cDNAs, OsMyoVIIIA and OsMyoXIE, representing each of the two classes of myosins. These two cDNAs isolated from different organs existed in isoforms due to differential splicing and showed minor differences from the predicted myosin in exon organization. Out of 14 myosin genes 11 were expressed in three major organs: leaves, panicles, and roots, among which three myosins exhibited different expression levels. On the other hand, three of the total myosin sequences showed organ-specific expression. The existence of different myosin genes and their isoforms in different organs or tissues indicates the diversity of myosin functions in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号