首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A third ADP/ATP translocator gene in yeast   总被引:14,自引:0,他引:14  
The op1 mutation in yeast is known to be due to a defect in the mitochondrial ADP/ATP translocator. Sequencing of the gene AAC2 revealed that the mutation resulted from a single base change that caused a replacement of arginine 97 by a histidine. The gene encoding AAC2 was also cloned and sequenced from an op1 revertant capable of growth on glycerol as a sole carbon source. Sequence analysis indicates that the reverted gene underwent rearrangement in which a portion of an unknown gene was used to repair the mutation. An oligonucleotide complementary to this insert was used to clone a previously unrecognized gene encoding ADP/ATP translocator in yeast. The newly discovered gene, AAC3, is homologous with the previously known genes AAC1 and AAC2. Gene disruption experiments suggest that AAC2 encodes the majority of the translocator. Expression of AAC1 and AAC2 required derepressed conditions whereas expression of AAC3 occurred almost exclusively under anaerobic conditions. Both the op1 mutant and the strain that contains an interrupted AAC2 were able to grow under anaerobic conditions, suggesting that AAC3 can replace the gene product of AAC2. Indeed, when cloned into multicopy plasmid, AAC3 was able to replace the disrupted AAC2 in the JLY-73 strain. The concomitant disruption of the AAC2 and AAC3, however, results in arrest of cell growth under conditions of low oxygen tension. The discovery of a third gene encoding ADP/ATP translocator helps to clarify certain characteristics of op1 mutants which could not be resolved in the past.  相似文献   

2.
AAC1 and AAC2 genes in yeast each encode functional ADP/ATP carrier (AAC) proteins of the mitochondrial inner membrane. In the present study, mitochondria harboring distinct AAC proteins and the pet9 Arg96 to HIS mutant (Lawson, J., Gawaz, M., Klingenberg, M., and Douglas, M. G. (1990) J. Biol. Chem. 265, 14195-14201) protein have been characterized. In addition, properties of the different AAC proteins have been defined following reconstitution into proteoliposomes. Deletion of AAC2 but not AAC1 causes a major reduction in the mitochondrial cytochrome content and respiration, and this level remains low even when the level of AAC1 protein is increased to 20% that of the AAC2 gene product. In reconstitution studies, the rate of nucleotide transport by isolated AAC1 protein is approximately 40% that of the AAC2 protein. Thus, the lack of mitochondrial-dependent growth supported by the AAC1 gene product alone may be due to the combination of low abundance and reduced activity. Surprisingly, analysis of the Arg96 to His mutant protein revealed binding and transport activities similar to the functional AAC1 and AAC2 gene products. These observations are discussed in relation to a molecular analysis of this highly conserved small transporter and its function in conjunction with other proteins in the mitochondrial membrane.  相似文献   

3.
T Drgon  L Sabová  N Nelson  J Kolarov 《FEBS letters》1991,289(2):159-162
All three genes (AAC1, AAC2 and AAC3) encoding the mitochondrial ADP/ATP translocator, were inactivated in a haploid yeast strain by a gene disruption technique. The triple mutant was still able to grow on fermentable carbon sources but only in the presence of oxygen. Under aerobic conditions neither translocator-protein nor carrier-mediated transport was detected in all mutants in which the AAC2 gene was disrupted. It was further shown that a functional AAC genes product is essential only for anaerobic growth of Saccharomyces cerevisiae but not for growth under derepressed conditions. Under anaerobic conditions a non-detectable amount of AAC3 gene product is sufficient to ensure the cell growth and multiplication.  相似文献   

4.
A protocol has been devised to permit mutational analysis of the Rieske iron-sulfur protein of the mitochondrial cytochrome bc1 complex of Saccharomyces cerevisiae. The gene for this iron-sulfur protein (RIP1) has recently been cloned and sequenced (Beckmann, J. D., Ljungdahl, P. O., Lopez, J. L., and Trumpower, B. L. (1987) J. Biol. Chem. 262, 8901-8909). We have constructed a stable yeast deletion strain, JPJ1, in which the chromosomal copy of RIP1 was displaced by the yeast LEU2 gene by homologous recombination. A linear DNA fragment containing the LEU2 gene was inserted at the breakpoints of an 800-base pair deletion of the iron-sulfur protein gene and used to transform a leu- yeast strain. Leu+ transformants were obtained which were unable to grow on nonfermentable carbon sources. Southern analysis of the transformant, JPJ1, confirmed that the chromosomal copy of the RIP1 gene was deleted and replaced by the LEU2 gene. The genotype of JPJ1 was confirmed by genetic crosses. JPJ1 cannot grow on nonfermentable carbon sources but can be complemented to respiratory competence and transformed by yeast vectors containing the wild type RIP1 gene. The ability to complement strain JPJ1 with episomally encoded iron-sulfur protein provided the basis of a selection protocol by which mutagenized plasmids containing the RIP1 gene were assayed for mutations affecting respiratory growth. Five mutants of RIP1 were identified by their ability to complement JPJ1 to temperature-sensitive respiratory growth. DNA sequence analysis demonstrated that temperature-sensitive respiratory growth resulted from single point mutations within the protein coding region of RIP1. These mutations altered a single amino acid residue in each case. Mutations were dispersed throughout the terminal two-thirds of the protein. Each mutation was recessive and did not affect fermentative growth on dextrose. However, each mutation exerted unique temperature-sensitive growth characteristics on media containing the nonfermentable carbon source glycerol.  相似文献   

5.
Genetic and biochemical analysis of Saccharomyces cerevisiae containing a disruption of the nuclear gene (AAC1) encoding the mitochondrial ADP/ATP carrier has revealed a second gene for this protein. The second gene, designated AAC2, has been isolated by genetic complementation and sequenced. AAC2 contains a 954-base pair open reading frame coding for a protein of 318 amino acids which is highly homologous to the AAC1 gene product except that it is nine amino acids longer at the NH2 terminus. The two yeast genes are highly conserved at the level of DNA and protein and share identity with the ADP/ATP carriers from other organisms. Both genes complement an ADP/ATP carrier defect (op1 or pet9). However, the newly isolated gene AAC2 need be present only in one or two copies while the previously isolated AAC1 gene must be present in multiple copies to support growth dependent on a functional carrier protein. This gene dosage-dependent complementation combined with the high degree of conservation suggest that these two functionally equivalent genes may be differentially expressed.  相似文献   

6.
Smith CP  Thorsness PE 《Genetics》2008,179(3):1285-1299
AAC2 is one of three paralogs encoding mitochondrial ADP/ATP carriers in the yeast Saccharomyces cerevisiae, and because it is required for respiratory growth it has been the most extensively studied. To comparatively examine the relative functionality of Aac1, Aac2, and Aac3 in vivo, the gene encoding each isoform was expressed from the native AAC2 locus in aac1Delta aac3Delta yeast. Compared to Aac2, Aac1 exhibited reduced capacity to support growth of yeast lacking mitochondrial DNA or of yeast lacking the ATP/Mg-P(i) carrier, both conditions requiring ATP import into the mitochondrial matrix through the ADP/ATP carrier. Sixteen AAC1/AAC2 chimeric genes were constructed and analyzed to determine the key differences between residues or sections of Aac1 and Aac2. On the basis of the growth rate differences of yeast expressing different chimeras, the C1 and M2 loops of the ADP/ATP carriers contain divergent residues that are responsible for the difference(s) between Aac1 and Aac2. One chimeric gene construct supported growth on nonfermentable carbon sources but failed to support growth of yeast lacking mitochondrial DNA. We identified nine independent intragenic mutations in this chimeric gene that suppressed the growth phenotype of yeast lacking mitochondrial DNA, identifying regions of the carrier important for nucleotide exchange activities.  相似文献   

7.
Mitochondria prepared from the yeast nuclear pet mutant N9-84 lack a detectable F1-ATPase activity. Genetic complementation of this mutant with a pool of yeast genomic DNA in the yeast Escherichia coli shuttle vector YEp13 restored its growth on a nonfermentable carbon source. Mitochondria prepared from the transformed host contained an 8-fold higher than normal level of the F1 alpha-subunit and restored ATPase activity to 50% that of the wild-type strain. Deletion and nucleotide sequence analysis of the complementing DNA on the plasmid revealed a coding sequence designated ATP1 for a protein of 544 amino acids which exhibits 60 and 54% direct protein sequence homology with the proton-translocating ATPase alpha-subunits from tobacco chloroplast and E. coli, respectively. In vitro expression and mitochondrial import experiments using this ATP1 sequence showed that additional amino-terminal sequences not present in the comparable plant and bacterial subunits function as transient sequences for import.  相似文献   

8.
Temperature-sensitive mutants of Saccharomyces cerevisiae were isolated by insertional mutagenesis using the HIS3 marked retrotransposon TyH3HIS3. In such mutants, the TyHIS3 insertions are expected to identify loci which encode genes essential for cell growth at high temperatures but dispensable at low temperatures. Five mutations were isolated and named hit for high temperature growth. The hit1-1 mutation was located on chromosome X and conferred the pet phenotype. Two hit2 mutations, hit2-1 and hit2-2, were located on chromosome III and caused the deletion of the PET18 locus which has been shown to encode a gene required for growth at high temperatures. The hit3-1 mutation was located on chromosome VI and affected the CDC26 gene. The hit4-1 mutation was located on chromosome XIII. These hit mutations were analyzed in an attempt to identify novel genes involved in the heat shock response. The hit1-1 mutation caused a defect in synthesis of a 74-kD heat shock protein. Western blot analysis revealed that the heat shock protein corresponded to the SSC1 protein, a member of the yeast hsp70 family. In the hit1-1 mutant, the TyHIS3 insertion caused a deletion of a 3-kb DNA segment between the delta 1 and delta 4 sequences near the SUP4 locus. The 1031-bp wild-type HIT1 DNA which contained an open reading frame encoding a protein of 164 amino acids and the AGG arginine tRNA gene complemented all hit1-1 mutant phenotypes, indicating that the mutant phenotypes were caused by the deletion of these genes. The pleiotropy of the HIT1 locus was analyzed by constructing a disruption mutation of each gene in vitro and transplacing it to the chromosome. This analysis revealed that the HIT1 gene essential for growth at high temperatures encodes the 164-amino acid protein. The arginine tRNA gene, named HSX1, is essential for growth on a nonfermentable carbon source at high temperatures and for synthesis of the SSC1 heat shock protein.  相似文献   

9.
1. Close similarities between yeast and mammalian mitochondria were found with respect to (a) osmotic response in impermeable solutes, sorbitol and KCl, (b) substrate translocation, (c) properties of the adenine nucleotide translocation system. A separate transport system for succinate, distinct from the dicarboxylate translocator, may be present in yeast mitochondria.

2. Substrate translocation was found to be preserved in pro-mitochondria from anaerobically-grown cells and in mitochondria from a respiration-deficient mutant. Adenine nucleotide translocation was demonstrated not to be affected by the cytoplasmic mutation. Along with previous data of other investigators, these results allow a general conclusion that neither the presence of a functional respiratory chain nor mitochondrial protein synthesis are prerequisite for the proper assemblage of the translocation systems in the mitochondrial membrane and for determining its permeability characteristics.  相似文献   


10.
11.
The mitochondrial adenine nucleotide carrier, or Ancp, plays a key role in the maintenance of the energetic fluxes in eukaryotic cells. Human disorders have been found associated to unusual human ANC gene (HANC) expression but also to direct inactivation of the protein, either by autoantibody binding or by mutation. However, the individual biochemical properties of the three HAncp isoforms have not yet been deciphered. To do so, the three HANC ORF were expressed in yeast under the control of the regulatory sequences of ScANC2. Each of the three HANC was able to restore growth on a nonfermentable carbon source of a yeast mutant strain lacking its three endogenous ANC. Their ADP/ATP exchange properties could then be measured for the first time in isolated mitochondria. HANC3 was the most efficient to restore yeast growth, and HAnc3p presented the highest V(M) (80 nmol ADP min(-1) mg protein(-1)) and K(ADP)(M)(8.4 microM). HAnc1p and HAnc2p presented similar kinetic constants (V(M) approximately 30-40 nmol ADP min(-(1) mg protein(-1) and K(ADP)(M) approximately 2.5-3.7 microM), whose values were consistent with HANC1's and HANC2's lower capacity to restore yeast growth. However, the HANC genes restored growth at a lower level than ScANC2, indicating that HAncp amount may be limiting in vivo. To optimize the HAncp production, we investigated their biogenesis into mitochondria by mutagenesis of two charged amino acids in the N-terminus of HAnc1p. Severe effects were observed with the D3A and D3K mutations that precluded yeast growth. On the contrary, the K10A mutation increased yeast growth complementation and nucleotide exchange rate as compared to the wild type. These results point to the importance of the N-terminal region of HAnc1p for its biogenesis and transport activity in yeast mitochondria.  相似文献   

12.
The permeability of the outer mitochondrial membrane to most metabolites is believed to be based in an outer membrane, channel-forming protein known as VDAC (voltage-dependent anion channel). Although multiple isoforms of VDAC have been identified in multicellular organisms, the yeast Saccharomyces cerevisiae has been thought to contain a single VDAC gene, designated POR1. However, cells missing the POR1 gene (delta por1) were able to grow on yeast media containing a nonfermentable carbon source (glycerol) but not on such media at elevated temperature (37 degrees C). If VDAC normally provides the pathway for metabolites to pass through the outer membrane, some other protein(s) must be able to partially substitute for that function. To identify proteins that could functionally substitute for POR1, we have screened a yeast genomic library for genes which, when overexpressed, can correct the growth defect of delta por1 yeast grown on glycerol at 37 degrees C. This screen identified a second yeast VDAC gene, POR2, encoding a protein (YVDAC2) with 49% amino acid sequence identity to the previously identified yeast VDAC protein (YVDAC1). YVDAC2 can functionally complement defects present in delta por1 strains only when it is overexpressed. Deletion of the POR2 gene alone had no detectable phenotype, while yeasts with deletions of both the POR1 and POR2 genes were viable and able to grow on glycerol at 30 degrees C, albeit more slowly than delta por1 single mutants. Like delta por1 single mutants, they could not grow on glycerol at 37 degrees C. Subcellular fractionation studies with antibodies which distinguish YVDAC1 and YVDAC2 indicate that YVDAC2 is normally present in the outer mitochondrial membrane. However, no YVDAC2 channels were detected electrophysiologically in reconstituted systems. Therefore, mitochondrial membranes made from wild-type cells, delta por1 cells, delta por1 delta por2 cells, and delta por1 cells overexpressing YVDAC2 were incorporated into liposomes and the permeability of resulting liposomes to nonelectrolytes of different sizes was determined. The results indicate that YVDAC2 does not confer any additional permeability to these liposomes, suggesting that it may not normally form a channel. In contrast, when the VDAC gene from Drosophila melanogaster was expressed in delta por1 yeast cells, VDAC-like channels could be detected in the mitochondria by both bilayer and liposome techniques, yet the cells failed to grow on glycerol at 37 degrees C. Thus, channel-forming activity does not seem to be either necessary or sufficient to restore growth on nonfermentable carbon sources, indicating that VDAC mediates cellular functions that do not depend on the ability to form channels.  相似文献   

13.
Saccharomyces cerevisiae strains expressing a single type of ADP/ATP carrier (AAC) protein were prepared from a mutant in which all AAC genes were disrupted, by transformation with plasmids containing a chosen AAC gene. As demonstrated by measurements of [14C]ADP specific binding and transport, all three translocator proteins, AAC1, AAC2 and AAC3 when present in the mitochondrial membrane, exhibited similar translocation properties. The disruption of some AAC genes, however, resulted in phenotypes indicating that the function of these proteins in whole cells can be quite different. Specifically, we found that the disruption of AAC1 gene, but not AAC2 and AAC3, resulted in a change in colony phenotype.  相似文献   

14.
We have previously shown that the yeast Cathepsin D (CatD) Pep4p translocates from the vacuole to the cytosol during acetic acid-induced apoptosis and is required for efficient mitochondrial degradation, though its specific role in this process is still elusive. Here, we show that the protective role of Pep4p in acetic acid-induced apoptosis depends on its catalytic activity and is independent of the yeast voltage-dependent anion channel Por1p (which has no role on mitochondrial degradation) but dependent on AAC proteins, the yeast adenine nucleotide translocator. Our results demonstrate a differential interplay between yeast vacuolar CatD and mitochondrial proteins involved in apoptosis regulation.  相似文献   

15.
A yeast nuclear pet mutant of Saccharomyces cerevisiae lacking any detectable mitochondrial F1-ATPase activity was genetically complemented upon transformation with a pool of wild type genomic DNA fragments carried in the yeast Escherchia coli shuttle vector YEp 13. Plasmid-dependent complementation restored both growth of the pet mutant on a nonfermentable carbon source as well as functional mitochondrial ATPase activity. Characterization of the complementing plasmid by plasmid deletion analysis indicated that the complementing gene was contained on adjoining BamH1 fragments with a combined length of 3.05 kilobases. Gel analysis of the product of this DNA by in vitro translation in a rabbit reticulocyte lysate programmed with yeast mRNA hybrid selected by the plasmid revealed a product which could be immunoprecipitated by antisera against the beta subunit of the yeast mitochondrial ATPase complex. A comparison of the protein sequence derived from partial DNA sequence analysis indicated that the beta subunit of the yeast mitochondrial ATPase complex exhibits greater than 70% conservation of protein sequence when compared to the same subunit from the ATPase of E. coli, beef heart, and chloroplast. The gene coding the beta subunit (subunit 2) of yeast mitochondrial adenosine triphosphatase is designated ATP2. The utilization of cloned nuclear structural genes of mitochondrial proteins for the analysis of the post-translational targeting and import events in organelle assembly is discussed.  相似文献   

16.
Eukaryotic cells require mitochondrial compartments for viability. However, the budding yeast Saccharomyces cerevisiae is able to survive when mitochondrial DNA suffers substantial deletions or is completely absent, so long as a sufficient mitochondrial inner membrane potential is generated. In the absence of functional mitochondrial DNA, and consequently a functional electron transport chain and F(1)F(o)-ATPase, the essential electrical potential is maintained by the electrogenic exchange of ATP(4-) for ADP(3-) through the adenine nucleotide translocator. An essential aspect of this electrogenic process is the conversion of ATP(4-) to ADP(3-) in the mitochondrial matrix, and the nuclear-encoded subunits of F(1)-ATPase are hypothesized to be required for this process in vivo. Deletion of ATP3, the structural gene for the gamma subunit of the F(1)-ATPase, causes yeast to quantitatively lose mitochondrial DNA and grow extremely slowly, presumably by interfering with the generation of an energized inner membrane. A spontaneous suppressor of this slow-growth phenotype was found to convert a conserved glycine to serine in the beta subunit of F(1)-ATPase (atp2-227). This mutation allowed substantial ATP hydrolysis by the F(1)-ATPase even in the absence of the gamma subunit, enabling yeast to generate a twofold greater inner membrane potential in response to ATP compared to mitochondria isolated from yeast lacking the gamma subunit and containing wild-type beta subunits. Analysis of the suppressing mutation by blue native polyacrylamide gel electrophoresis also revealed that the alpha(3)beta(3) heterohexamer can form in the absence of the gamma subunit.  相似文献   

17.
Saccharomyces cerevisiae strains with a disrupted RAS1 gene and with an intact RAS2 gene (ras1- RAS2 strains) grew well on both fermentable and nonfermentable carbon sources. By constructing isogenic mutants having a disrupted RAS1 locus and a randomly mutagenized chromosomal RAS2 gene, we obtained yeast strains with specific growth defects. The strain TS1 was unable to grow on nonfermentable carbon sources and galactose at 37 degrees C, while it could grow on glucose at the same temperature. The mutated RAS2 gene in TS1 cells encoded a protein with the glycines at positions 82 and 84 replaced by serine and arginine respectively. Both mutations were necessary for temperature sensitivity. We also isolated a mutant yeast that was unable to grow on nonfermentable carbon sources both at 30 and 37 degrees C, while growing on glucose at both temperatures. This phenotype was caused by a single chromosomal mutation, leading to the replacement of aspartic acid 40 of the RAS2 protein by asparagine. A ras1- yeast strain with a chromosomal RAS2 gene harbouring the three mutations together did not grow at any temperature using non-fermentable carbon sources, but it was able to grow on glucose at 30 degrees C, and not at 37 degrees C. The mutated proteins were much less effective than the wild-type RAS2 protein in the stimulation of adenylate cyclase, but were efficiently expressed in vivo. The possible roles of residues 40, 82 and 84 of the RAS2 protein in the regulation of adenylate cyclase are discussed.  相似文献   

18.
The mitochondrial network structure dynamically adapts to cellular metabolic challenges. Mitochondrial depolarisation, particularly, induces fragmentation of the network. This fragmentation may be a result of either a direct regulation of the mitochondrial fusion machinery by transmembrane potential or an indirect effect of metabolic remodelling. Activities of ATP synthase and adenine nucleotide translocator (ANT) link the mitochondrial transmembrane potential with the cytosolic NTP/NDP ratio. Given that mitochondrial fusion requires cytosolic GTP, a decrease in the NTP/NDP ratio might also account for protonophore-induced mitochondrial fragmentation. For evaluating the contributions of direct and indirect mechanisms to mitochondrial remodelling, we assessed the morphology of the mitochondrial network in yeast cells with inhibited ANT. We showed that the repression of AAC2 (PET9), a major ANT gene in yeast, increases mitochondrial transmembrane potential. However, the mitochondrial network in this strain was fragmented. Meanwhile, AAC2 repression did not prevent mitochondrial fusion in zygotes; nor did it inhibit mitochondrial hyperfusion induced by Dnm1p inhibitor mdivi-1. These results suggest that the inhibition of ANT, rather than preventing mitochondrial fusion, facilitates mitochondrial fission. The protonophores were not able to induce additional mitochondrial fragmentation in an AAC2-repressed strain and in yeast cells with inhibited ATP synthase. Importantly, treatment with the ATP synthase inhibitor oligomycin A also induced mitochondrial fragmentation and hyperpolarization. Taken together, our data suggest that ATP/ADP translocation plays a crucial role in shaping of the mitochondrial network and exemplify that an increase in mitochondrial membrane potential does not necessarily oppose mitochondrial fragmentation.  相似文献   

19.
An intrinsic ATPase inhibitor and 9-kDa protein are regulatory factors of mitochondrial ATP synthase in Saccharomyces cerevisiae. A gene encoding the ATPase inhibitor was isolated from a yeast genomic library with synthetic oligonucleotides as hybridization probes and was sequenced. The deduced amino acid sequence showed that the precursor protein contains an amino-terminal presequence of 22 amino acid residues. Mutant strains that did not contain the inhibitor and/or the 9-kDa protein were constructed by transformation of cells with their in vitro disrupted genes. The disruption of the chromosomal copy in recombinant cells was verified by Southern blot analysis, and the absence of the proteins in the mutant cells was confirmed by Western blot analysis. All the mutants could grow on a nonfermentable carbon source and the oxidative phosphorylation activities of their isolated mitochondria were the same as that of normal mitochondria. However, an uncoupler, carbonylcyanide-m-chlorophenylhydrazone, induced marked ATP hydrolysis in the inhibitor-deficient mitochondria, but not in normal mitochondria. These observations suggest that the ATPase inhibitor inhibits ATP hydrolysis by F1F0-ATPase only when the membrane potential is lost.  相似文献   

20.
MTM1 基因对于维持锰超氧化物歧化酶的活性和线粒体正常功能十分重要,MTM1 基因的缺失会严重影响酵母锰超氧化物歧化酶活性,并损伤线粒体功能,因此在非发酵培养基上不能生长.利用MTM1 基因缺失的突变体在非发酵培养基上的生长缺陷,转入酵母基因组文库筛选MTM1 抑制基因,发现MTM1基因缺失造成的损伤一旦形成不可逆转,重新引入MTM1 基因也无法挽救,直接筛选无法得到抑制基因.为了避免MTM1缺失造成的不可逆损伤,在野生型酵母中先转入带有MTM1 基因的质粒,再敲除染色体上的MTM1 基因,随后转入基因组文库,再利用药物5-氟乳清酸(5-FOA)迫使细胞丢失表达MTM1基因的外源质粒,再筛选能在非发酵培养基上生长的转化子,通过这种方法筛选发现,POR2等5个基因的过表达可以挽救MTM1 基因缺失造成的非发酵培养基上的生长缺陷,为深入了解MTM1基因的功能提供了线索,对筛选其他造成不可逆损伤的突变基因的抑制基因提供了一条可行的研究思路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号