首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using a yeast two-hybrid screen, the neuronal membrane glycoprotein M6a, a member of the proteolipid protein family, was identified to be associated with the mu-opioid receptor (MOPr). Bioluminescence resonance energy transfer and co-immunoprecipitation experiments confirmed that M6a interacts agonist-independently with MOPr in human embryonic kidney 293 cells co-expressing MOPr and M6a. Co-expression of MOPr with M6a, but not with M6b or DM20, exists in many brain regions, further supporting a specific interaction between MOPr and M6a. After opioid treatment M6a co-internalizes and then co-recycles with MOPr to cell surface in transfected human embryonic kidney 293 cells. Moreover, the interaction of M6a and MOPr augments constitutive and agonist-dependent internalization as well as the recycling rate of mu-opioid receptors. On the other hand, overexpression of a M6a-negative mutant prevents mu-opioid receptor endocytosis, demonstrating an essential role of M6a in receptor internalization. In addition, we demonstrated the interaction of M6a with a number of other G protein-coupled receptors (GPCRs) such as the delta-opioid receptor, cannabinoid receptor CB1, and somatostatin receptor sst2A, suggesting that M6a might play a general role in the regulation of certain GPCRs. Taken together, these data provide evidence that M6a may act as a scaffolding molecule in the regulation of GPCR endocytosis and intracellular trafficking.  相似文献   

2.
A series of constrained piperidine analogues were synthesized as novel muscarinic M(3) receptor antagonists. Evaluation of these compounds in binding assays revealed that they not only have high affinity for the M(3) receptor but also have high selectivity over the M(2) receptor.  相似文献   

3.
The expression balance of M2 and M3 muscarinic receptor subtypes on the pathogenesis of airway hyperresponsiveness was investigated by using two congenitally related strains of guinea pigs, bronchial-hypersensitive (BHS) and bronchial-hyposensitive (BHR). CCh-induced airway responses in vivo and in vitro were investigated by comparing the effects of muscarinic receptor subtype antagonists, and the relative amounts of M2 and M3 muscarinic receptor mRNA in tracheal smooth muscle and lung tissue were investigated. After treatment with muscarinic receptor subtype antagonists, the ventilatory mechanics (VT, Raw, and Cdyn) of response to CCh aerosol inhalation were measured by the bodyplethysmograph method. The effects of these antagonists on CCh-induced tracheal smooth muscle contraction were also investigated. The effects of M2 muscarinic receptor blockade were less but the effects of M3 muscarinic receptors blockade on the airway contractile responses were greater in BHS than in BHR. In M3 muscarinic receptor blockades, CCh-induced tracheal contractions in BHS were significantly greater than those in BHR. In tracheal smooth muscle from BHS, the relative amount of M2 muscarinic receptors mRNA was less but that of M3 muscarinic receptor mRNA was more than those in BHR. These results suggest that the high ACh level as a consequence of dysfunction of M2 muscarinic autoreceptors and the excessive effect of M3 muscarinic receptors on the airway smooth muscle may play an important role in the pathogenesis of airway hyperresponsiveness.  相似文献   

4.
Ehlert FJ 《Life sciences》2003,74(2-3):355-366
Both M(2) and M(3) muscarinic receptors are expressed in smooth muscle and influence contraction through distinct signaling pathways. M(3) receptors interact with G(q) to trigger phosphoinositide hydrolysis, Ca(2+) mobilization and a direct contractile response. In contrast, M(2) receptors interact with G(i) and G(o) to inhibit adenylyl cyclase and Ca(2+)-activated K(+) channels and to potentiate a Ca(2+)-dependent, nonselective cation conductance. Ultimately, these mechanisms lead to the prediction that the influence of the M(2) receptor on contraction should be conditional upon mobilization of Ca(2+) by another receptor such as the M(3). Mathematical modeling studies of these mechanisms show that the competitive antagonism of a muscarinic response mediated through activation of both M(2) and M(3) receptors should resemble the profile of the directly acting receptor (i.e., the M(3)) and not that of the conditionally acting receptor (i.e., the M(2)). Using a combination of pharmacological and genetic approaches, we have identified two mechanisms for the M(2) receptor in contraction: 1) a high potency inhibition of the relaxation elicited by agents that increase cytosolic cAMP and 2) a low potency potentiation of contractions elicited by the M(3) receptor. The latter mechanism may be involved in muscarinic agonist-mediated heterologous desensitization of smooth muscle, which requires activation of both M(2) and M(3) receptors.  相似文献   

5.
A genomic clone encoding the gene for the mouse M1 muscarinic acetylcholine receptor has been isolated, placed under the control of the zinc-inducible mouse metallothionein promoter, and transfected into mouse Y1 adrenal cells. The receptor concentration was about 300 fmol/mg membrane protein in the absence of zinc and could be increased to 4000 fmol/mg membrane protein in the presence of increasing concentrations of zinc. The receptor expressed in zinc-induced cells exhibits the high affinity binding for quinuclidinyl benzilate, atropine, and pirenzepine expected of the M1 muscarinic receptor. The M1 receptor when expressed in Y1 or L cells is physiologically active, as measured by agonist-dependent stimulation of phosphatidylinositol metabolism, but does not inhibit forskolin stimulation of cAMP accumulation. In contrast, a cloned M2 muscarinic receptor when expressed in Y1 cells is able to inhibit forskolin stimulation of cAMP accumulation, but is unable to stimulate phosphatidylinositol metabolism. The stimulation of phosphatidylinositol metabolism mediated by the M1 receptor was not altered by prior treatment of Y1 cells with concentrations of islet-activating protein sufficient to eliminate M2 receptor-mediated inhibition of adenylate cyclase. The cloned M1 receptor gene thus exhibits both the pharmacological and physiological properties expected of the M1 muscarinic acetylcholine receptor. In addition, these results indicate that different subtypes of the muscarinic receptor are coupled to different physiological responses.  相似文献   

6.
7.
Eglen RM 《Life sciences》2001,68(22-23):2573-2578
Over the last decade, several lines of evidence have shown that both muscarinic M2 and M3 receptors are postjunctionally expressed in many smooth muscles, including the gastrointestinal tract. Although in vitro data suggests that both receptors are functional in that they inhibit adenylate cyclase activity and activate non-selective cation channels, few studies support a role in vivo. Thus, data from procedures that ablate the signaling pathway of the muscarinic M2 receptor, including receptor antagonism, pertussis toxin pretreatment reveal little effect on gastrointestinal smooth muscle responsiveness to muscarinic agonists. Recently, information from knockout mice, lacking either M2 or M3 receptor, indicate reveal a role for both subtypes. However, the contribution of the M2 receptor appears greater in the ileum than in the urinary bladder. Therapeutically, non-selective, as well as selective M3 receptor antagonists are being clinically studied, although it remains to be shown which is the optimal approach to disorders of smooth muscle motility.  相似文献   

8.
Xanomeline is thought to be a M1/M4 functionally selective agonist at muscarinic receptors. We have previously demonstrated that it binds in a unique manner at the M1 receptor. In the current study, we examined the ability of xanomeline to bind to the M3 receptor and determined the long-term consequences of this mode of binding in Chinese hamster ovary cells expressing M3 receptors. Xanomeline binds in a reversible and wash-resistant manner at the M3 receptor and elicits a functional response under both conditions. Long-term exposure to xanomeline resulted in changes in the binding profile of [3H]NMS and a decrease in cell-surface receptor density. Additionally, pretreatment with xanomeline was associated with antagonism of the functional response to subsequent stimulation by conventional agonists. Our results indicate that xanomeline binds to and activates the M3 muscarinic receptor in a wash-resistant manner, and that this type of binding results in time-dependent receptor regulation.  相似文献   

9.
Effect of some selective muscarinic receptor agonists and antagonists was investigated on learning acquisition in an active-avoidance paradigm in rats which records an anticipatory conditioned avoidance apart from the classical conditioned avoidance response. The muscarinic M1 agonists, arecholine, pilocarpine and McN-A-343, facilitated learning acquisition, which was attenuated by the selective M1 antagonist, pirenzepine. On the other hand, M2 receptor agonist, carbachol, and physostigmine, induced a dose-related dual response, with lower doses retarding and higher doses facilitating the learning acquisition. The former effect was attenuated by gallamine, a muscarinic M2 antagonist, while the latter response was inhibited by pirenzepine, indicating that these putative M2 receptor agonist lose their receptor specificity on dose increment. The selective M2 receptor antagonists, gallamine and AF-DX 116, facilitated learning acquisition, which was inhibited by pirenzepine and the acetylcholine synthesis inhibitor hemicholinium. The results support the cholinergic hypothesis of learning and memory and indicate that M1 receptor agonists and M2 receptor antagonists are likely to prove beneficial in memory deficits. The data also indicates that the clinical dose of some drugs, like physostigmine, needs to be carefully established for optimum therapeutic benefit.  相似文献   

10.
Receptor binding to human poliovirus type 1 (PV1/M) and the major group of human rhinoviruses (HRV) was studied comparatively to uncover the evolution of receptor recognition in picornaviruses. Surface plas- mon resonance showed receptor binding to PV1/M with faster association and dissociation rates than to HRV3 and HRV16, two serotypes that have similar binding kinetics. The faster rate for receptor association to PV1/M suggested a relatively more accessible binding site. Thermodynamics for receptor binding to the viruses and assays for receptor-mediated virus uncoating showed a more disruptive receptor interaction with PV1/M than with HRV3 or HRV16. Cryo-electron microscopy and image reconstruction of receptor-PV1/M complexes revealed receptor binding to the 'wall' of surface protrusions surrounding the 'canyon', a depressive surface in the capsid where the rhinovirus receptor binds. These data reveal more exposed receptor-binding sites in poliovirus than rhinoviruses, which are less protected from immune surveillance but more suited for receptor-mediated virus uncoating and entry at the cell surface.  相似文献   

11.
The present study was undertaken to examine the effects of different muscarinic receptor agonists on glutamate and GABA concentrations in the medial prefrontal cortex of the rat. In vivo perfusions were made in the conscious rat using a concentric push-pull cannulae system. Amino acid concentrations in samples were determined by HPLC with fluorometric detection. The intracortical perfusion of arecoline, a M1-M2 muscarinic receptor agonist, produced a significant increase in extracellular [GLU] and [GABA]. McN-A-343, a M1 muscarinic receptor agonist, but not the M2 muscarinic receptor agonist, oxotremorine, produced a significant increase in extracellular [GLU] and [GABA]. The effects of McN-A-343 on extracellular [GLU] and [GABA] were blocked by pirenzepine, a M1 muscarinic receptor antagonist. These results suggest that M1 muscarinic receptor stimulation increases the extracellular concentrations of GLU and GABA in the medial prefrontal cortex of the rat.  相似文献   

12.
The Cys-loop receptor family consists of nicotinic acetylcholine receptors (nAChR), glycine receptor, GABA-A and some other receptors. They fulfill a plethora of functions, whereas their malfunctioning is associated with many diseases. All three domains - extracellular ligand-binding, membrane and cytoplasmic - of these ligand-gated ion channels play important roles in the receptor assembly, delivery to the membrane surface and functional activity. In this study, we discuss the role of these domains in the assembly of the Cys-loop receptors, most comprehensively for the nAChRs. Heterologous expression and mutations of large N-terminal fragments of various subunits demonstrated their leading role in the assembly, although getting an isolated well-structured pentameric ligand-binding domain is still a problem. The long intracellular loop between transmembrane fragments M3 and M4 participates in modulating the receptor function and in clusterization of the receptor complexes because of interactions with the intracellular proteins. The transmembrane fragments play different functional roles: M2 fragments outline the channel, M4 fragments, the most remote from the channel, modulate the channel function and contact the lipid environment. The interactions of aromatic residues in the M1 and M3 fragments with those of M4 are important for the correct assembly of glycine receptor α1 subunit and for the formation of functional pentaoligomer. The role of the three receptor domains is discussed in the light of electron microscopy structure of the Torpedo nAChR, X-ray structures of agonist and antagonist complexes with the acetylcholine-binding proteins and the X-ray structures of the prokaryotic Cys-loop receptors.  相似文献   

13.
14.
The M3 muscarinic receptor is a prototypical member of the class I family of G protein-coupled receptors (GPCRs). To facilitate studies on the structural mechanisms governing M3 receptor activation, we generated an M3 receptor-expressing yeast strain (Saccharomyces cerevisiae) that requires agonist-dependent M3 receptor activation for cell growth. By using receptor random mutagenesis followed by a genetic screen in yeast, we initially identified a point mutation at the cytoplasmic end of transmembrane domain (TM) VI (Q490L) that led to robust agonist-independent M3 receptor signaling in both yeast and mammalian cells. To explore further the molecular mechanisms by which point mutations can render GPCRs constitutively active, we subjected a region of the Q490L mutant M3 receptor that included TM V-VII to random mutagenesis. We then applied a yeast genetic screen to identify second-site mutations that could suppress the activating effects of the Q490L mutation and restore wild-type receptor-like function to the Q490L mutant receptor. This analysis led to the identification of 12 point mutations that allowed the Q490L mutant receptor to function in a fashion similar to the wild-type receptor. These amino acid substitutions mapped to two distinct regions of the M3 receptor, the exofacial segments of TM V and VI and the cytoplasmic ends of TM V-VII. Strikingly, in the absence of the activating Q490L mutation, all recovered point mutations severely reduced the efficiency of receptor/G protein coupling, indicating that the targeted residues play important roles in receptor activation and/or receptor/G protein coupling. This strategy should be generally applicable to identify sites in GPCRs that are critically involved in receptor function.  相似文献   

15.
Receptor internalization from the cell surface occurs through several mechanisms. Some of these mechanisms, such as clathrin coated pits, are well understood. The M(2) muscarinic acetylcholine receptor undergoes internalization via a poorly-defined clathrin-independent mechanism. We used isotope coded affinity tagging and mass spectrometry to identify the scaffolding protein, receptor for activated C kinase (RACK1) as a protein enriched in M(2)-immunoprecipitates from M(2)-expressing cells over those of non-M(2) expressing cells. Treatment of cells with the agonist carbachol disrupted the interaction of RACK1 with M(2). We further found that RACK1 overexpression inhibits the internalization and subsequent down regulation of the M(2) receptor in a receptor subtype-specific manner. Decreased RACK1 expression increases the rate of agonist internalization of the M(2) receptor, but decreases the extent of subsequent down-regulation. These results suggest that RACK1 may both interfere with agonist-induced sequestration and be required for subsequent targeting of internalized M(2) receptors to the degradative pathway.  相似文献   

16.
The rat hepatic glucocorticoid, dioxin and oxysterol receptors were subjected to high performance liquid chromatography on size-exclusion and anion-exchange columns. Both the glucocorticoid receptor and the dioxin receptor had a Stokes radius Rs approximately 7.5 nm, expected value for heteromeric complexes containing a dimer of the Mr approximately 90,000 heat shock protein, hsp90 (Rs approximately 7.0 nm). The oxysterol receptor represented a much smaller entity (Rs approximately 6.0 nm). When analyzed on a Mono Q anion-exchange column, the molybdate-stabilized glucocorticoid receptor and dioxin receptor eluted as single peaks at approximately 0.30 M and 0.26-0.28 M NaCl, respectively, whereas the oxysterol receptor represented a less negatively charged species (0.11-0.14 M NaCl). Following washing of the Mono Q column with molybdate-free buffer, the activated monomeric glucocorticoid receptor was detected (0.10-0.12 M NaCl). In contrast, no modification in the elution pattern of the dioxin receptor and the oxysterol receptor was observed. These data demonstrate differences in the physico-chemical properties of the glucocorticoid, dioxin and oxysterol receptors, respectively, which might reflect structural differences.  相似文献   

17.
Mucus glycoproteins (MGP) are high-molecular-weight glycoconjugates that are released from submucosal glands and epithelial goblet cells in the respiratory tract. Muscarinic receptors have an important role in the regulation of human nasal glandular secretion and mucus production, but it is not known which of the five muscarinic receptor subtypes are involved. The effect of nonselective and M1-, M2-, and M3-selective muscarinic antagonists on methacholine (MCh)-induced MGP secretion from human nasal mucosal explants was tested in vitro. MGP was assayed by enzyme-linked immunosorbent assay using a specific anti-MGP monoclonal antibody (7F10). MCh (100 microM) induced MGP secretion up to 127% compared with controls. MCh-induced MGP release was significantly inhibited by atropine (100 microM), the M, receptor antagonist pirenzepine (10-100 microM), and the M3 receptor antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP; 1-100 microM). 4-DAMP significantly inhibited MCh-induced MGP release at a lower concentration (1 microM) than pirenzepine (10 microM). The M2 receptor antagonists AF-DX 116 and gallamine (both at 100 microM) had no effect. No antagonist alone had a significant effect on MGP release. These results indicate that the M1 and M3 muscarinic receptor subtypes regulate MGP secretion from human nasal mucosa and suggest that the M3 receptor has the predominant effect.  相似文献   

18.
The receptor protein for phage T5 was isolated from the outer membrane of Escherichia coli B and found to be also a receptor for colicin M. The receptor protein from a phage-resistant mutant inactivates neither the phage nor the colicin. Binding of colicin M to the receptor prevents binding of phage T5. It is concluded that phage T5 and colicin M bind to the same active area of this receptor protein. The receptor protein seems to consist of one polypeptide chain with a molecular weight of 85000.  相似文献   

19.
Many different G protein-coupled receptors modulate the activity of Ca2+ and K+ channels in a variety of neuronal types. There are five known subtypes (M1-M5) of muscarinic acetylcholine receptors. Knockout mice lacking the M1, M2, or M4 subtypes are studied to determine which receptors mediate modulation of voltage-gated Ca2+ channels in mouse sympathetic neurons. In these cells, muscarinic agonists modulate N- and L-type Ca2+ channels and the M-type K+ channel through two distinct, G-protein mediated pathways. The fast and voltage-dependent pathway is lacking in the M2 receptor knockout mice. The slow and voltage-independent pathway is absent in the M1 receptor knockout mice. Neither pathway is affected in the M4 receptor knockout mice. Muscarinic modulation of the M current is absent in the M1 receptor knockout mice, and can be reconstituted in a heterologous expression system using cloned channels and M1 receptors. Our results using knockout mice are compared with pharmacological data in the rat.  相似文献   

20.
We have discovered highly potent, selective sulfide M(2) receptor antagonists with low molecular weight and different structural features compared with our phase I clinical candidate Sch 211803. Analogue 30 showed superior M(2) receptor selectivity profile over Sch 211803. More importantly, this study provided new leads for the discovery of M(2) receptor antagonists as potential drug candidates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号