首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paired, spindle-shaped ovaries of the second instar of the Polish cochineal, Porphyrophora polonica (L.) (Hemiptera: Coccinea) are filled with cystocytes that are arranged into rosettes. In the centre of each rosette, there is a polyfusome. During the third instar, cystocytes differentiate into oocytes and trophocytes (nurse cells) and ovarioles are formed. Ovaries of adult females are composed of about 300 ovarioles of the telotrophic type. Each of them is subdivided into a tropharium (trophic chamber) and vitellarium. The tropharium consists of trophocytes and arrested oocytes that may develop. The number of germ cells in the trophic chambers varies from 11 to 18 even between the ovarioles of the same ovary. The obtained results seem to confirm the concept of a monophyletic origin of the primitive scale insects (Archaeococcoidea).  相似文献   

2.
The tropharium of the telotrophic ovarioles of Rhodnius is syncytial with the nurse cell nuclei located in tortuous finger-like projections arborizing from a common cytoplasmic area, the trophic core. The nurse cell nuclei exhibit prominent nucleoli. Located adjacent to the nuclear envelope are masses of granular material both within the nucleus and adjoining cytoplasm. The cytoplasm consists primarily of ribosomes and mitochondria. The trophic core and the trophic cords that connect the core to individual oocytes characteristically possess parallel arrays of microtubules with ribosomes and mitochondria interspersed between. Surrounding the nurse tissue (germarium) is a thin layer of squamous cells comprising the inner sheath. The inner sheath is encompassed by the non-cellular tunica propria superficial to which are two external cellular sheaths. The syncytial nature of the tropharium appears to arise as a result of the fusion of many entangled nurse cell-oocyte complexes during the late fifth instar. The structural similarities, and possible homologies with the polytrophic type of ovariole is discussed.  相似文献   

3.
Cryptostemma eocenica sp. nov., the first fossil representative of the family Dipsocoridae (Heteroptera: Dipsocoromorpha), is described from Eocene amber of France on the basis of a single macropterous female. The specimen is very ‘modern’ in appearance, demonstrating the remarkable morphological stability of this family since 53 Ma. Its generic affinities are difficult to estimate because the modern genera are mostly separated by male genitalia or female internal structures.  相似文献   

4.
Summary Each ovarian follicle of Triops cancriformis is four-celled; these cells (one oocyte and three nurse cells) are interconnected by cytoplasmic bridges. In the course of differentiation, the nurse cells are early recognizable; they increase in size more than the oocyte and their nuclei contain many nucleoli. For the first time in Arthropoda, yolk globules are reported to be present in nurse cell cytoplasm; these globules arise from the smooth endoplasmic reticulum. The functional significance of the intercellular bridges and the trophic role of the nurse cells are discussed.The authors are grateful to Dr. Bruno Sabelli for his support and to Mr. Francesco Monte for his technical assistance  相似文献   

5.
The ovaries of Orthezia urticae and Newsteadia floccosa are paired and composed of numerous short ovarioles. Each ovariole consists of an anterior trophic chamber and a posterior vitellarium that contains one developing oocyte. The trophic chamber contains large nurse cells (trophocytes) and arrested oocytes. The total number of germ cells per ovariole (i.e., cluster) is variable, but it is always higher than 32 and less than 64. This suggests that five successive mitotic cycles of a cystoblast plus additional divisions of individual cells are responsible for the generation of the cluster. Cells of the trophic chamber maintain contact with the oocyte via a relatively broad nutritive cord. The trophic chamber and oocyte are surrounded by somatic cells that constitute the inner epithelial sheath around the former and the follicular epithelium around the latter. Anagenesis of hemipteran ovarioles is discussed in relation to the findings presented. © 1995 Wiley-Liss, Inc.  相似文献   

6.
Establishment of the Drosophila dorsal-ventral axis depends upon the correct localization of gurken mRNA and protein within the oocyte. gurken mRNA becomes localized to the presumptive dorsal anterior region of the oocyte, but is synthesized in the adjoining nurse cells. Normal gurken localization requires the heterogeneous nuclear ribonucleoprotein Squid, which binds to the gurken 3′ untranslated region. However, whether Squid functions in the nurse cells or the oocyte is unknown. To address this question, we generated genetic mosaics in which half of the nurse cells attached to a given oocyte are unable to produce Squid. In these mosaics, gurken mRNA is localized normally but ectopically translated during the dorsal anterior localization process, even though the oocyte contains abundant Squid produced by the wild type nurse cells. These data indicate that translational repression of gurken mRNA requires Squid function in the nurse cells. We propose that Squid interacts with gurken mRNA in the nurse cell nuclei and, together with other factors, maintains gurken in a translationally silent state during its transport to the dorsal anterior region of the oocyte. This translational repression is not required for gurken mRNA localization, indicating that the information repressing translation is separable from that regulating localization.  相似文献   

7.
Developing ovaries of scale insects (Hemiptera : Coccinea) Nipaecoccus nipae (Pseudococcidae) and Cryptococcus fagisuga (Cryptococcidae) contain clusters of interconnected cells (cystocytes) that are arranged into rosettes; polyfusomes occur in the centres of the rosettes. Ovaries of the investigated adult scale insects are composed of numerous short telotrophic ovarioles. Tropharia (trophic chambers) of Dysmicoccus newsteadi (Pseudococcidae), Eriococcus buxi (Eriococcidae), Cryptococcus fagisuga and Pseudochermes fraxini (Cryptococcidae) comprise only trophocytes (nurse cells), whereas those of Kermes quercus (Kermesidae) and Gossyparia spuria (Eriococcidae) also contain arrested oocytes. The latter probably degenerate. It is suggested that during evolution of scale insects a gradual reduction of germ cells to 4 per cluster (3 trophocytes and 1 oocyte) took place. In light of the obtained results, anagenesis of scale insects ovarioles is discussed.  相似文献   

8.
In each ovariole of Gerris remigis, nurse cells arise by mitotic divisions at the anterior end of the germarium. These cells enlarge as they move posteriorly. This size increase is possibly caused by fusion of cells, but probably by endopolyploidy as well. The nurse cells then establish connections with a central trophic core, which receives the products of subsequent nurse cell degradation. Two possible pathways of nuclear degradation are suggested: one involves the condensation of chromatin within the nucleus; the other, the release of DNA as fine granules into the cytoplasm. Cytoplasmic areas containing such DNA are also rich in proteinaceous granules, but have a meager content of RNA. The remainder of the cytoplasm of the mature nurse cells contains a high concentration of RNA, as do the nucleoli. Posteriorly the trophic core connects via nutritive cords with each developing oocyte in the prefollicular region and in the anterior vitellarium. RNA is apparently contributed to the ooplasm via the trophic stream. Patches of cytoplasmic DNA are present in the young oocytes; the origin and fate of this DNA is uncertain. During early oocyte maturation chromosomal stainability decreases, and the nucleolus enlarges. In previtellogenic stages, numerous proteinaceous bodies appear in association with the nucleolus-chromosome complex. These bodies, like the nucleolus, have only a low RNA content. They may pass to the cytoplasm, but cannot be traced with certainty. During the latter part of this period a complex population of small proteinaceous and lipid preyolk bodies accumulates peripherally in the oocyte. Definitive protein and lipid yolk are probably derived by the enlargement and inward migration of these bodies. The oocytes are each surrounded by a layer of follicle cells proliferated in the prefollicular region. These become binucleate and enlarge as the enclosed oocytes grow and elongate. RNA also increases in the nucleoli and cytoplasm of the follicle cells as they move posteriorly in the vitellarium. There is no evidence of transfer of nucleic acids or protein from the follicle cells to the oocyte. The nurse cells are therefore implicated as the major source of nucleic acids for the maturing oocyte.  相似文献   

9.
Spatial organization of a chromosome in a nucleus is very important in biology but many aspects of it are still generally unresolved. We focused on tissue-specific features of chromosome architecture in closely related malaria mosquitoes, which have essential inter-specific differences in polytene chromosome attachments in nurse cells. We showed that the region responsible for X-chromosome attachment interacts with nuclear lamina stronger in nurse cells, then in salivary glands cells in Anopheles messeae Fall. The inter-tissue differences were demonstrated more convincingly in an experiment of two distinct chromosomes interposition in the nucleus space of cells from four tissues. Microdissected DNA-probes from nurse cells X-chromosome (2BC) and 3R chromosomes (32D) attachment regions were hybridized with intact nuclei of nurse cells, salivary gland cells, follicle epithelium cells and imaginal disсs cells in 3D-FISH experiments. We showed that only salivary gland cells and follicle epithelium cells have no statistical differences in the interposition of 2BC and 32D. Generally, the X-chromosome and 3R chromosome are located closer to each other in cells of the somatic system in comparison with nurse cells on average. The imaginal disсs cell nuclei have an intermediate arrangement of chromosome interposition, similar to other somatic cells and nurse cells. In spite of species-specific chromosome attachments there are no differences in interposition of nurse cells chromosomes in An. messeae and An. atroparvus Thiel. Nurse cells have an unusual chromosome arrangement without a chromocenter, which could be due to the special mission of generative system cells in ontogenesis and evolution.  相似文献   

10.
Summary Each ovariole of the coccidian Aspidiotus hederae contains a single oocyte connected by means of a nutritive cord to the trophic chamber. The trophic chamber consists of three nurse cells characterized by an enlarged, ramified nucleus with a prominent nucleolus. The perinuclear cytoplasm contains nuage material, large amounts of free ribosomes, and scattered mitochondria. Occasional cisternae of the rough endoplasmic reticulum and bacteroids are found in trophocyte cytoplasm. The nutritive cord contains many microtubules in parallel array interspersed with numerous free ribosomes and a few mitochondria. The nutritive cord is strengthened by trophocyte projections which surround it. Microtubules in the projections are oriented perpendicular to the long axis of the cord.  相似文献   

11.
The tropharium of the common shorebug Saldula saltatoria consists of 2 zones: the apical mitotic region and the distal one comprising numerous mononucleate nurse cells. Each individual nurse cell is connected to the centrally located trophic core by a thin cytoplasmic projection referred to as a trophic process. The accumulations of a dense material interpreted as the remnants of intercellular bridge rim are observed associated with the trophic process membrane. In the light of these results the establishment of telotrophic ovarioles in hemipterans is discussed.  相似文献   

12.
The trophic ecology of epibenthic mesopredators is not well understood in terms of prey partitioning with sympatric elasmobranchs or their effects on prey communities, yet the importance of omnivores in community trophic dynamics is being increasingly realised. This study used stable isotope analysis of 15N and 13C to model diet composition of wild southern stingrays Dasyatis americana and compare trophic niche space to nurse sharks Ginglymostoma cirratum and Caribbean reef sharks Carcharhinus perezi on Glovers Reef Atoll, Belize. Bayesian stable isotope mixing models were used to investigate prey choice as well as viable Diet-Tissue Discrimination Factors for use with stingrays. Stingray δ15N values showed the greatest variation and a positive relationship with size, with an isotopic niche width approximately twice that of sympatric species. Shark species exhibited comparatively restricted δ15N values and greater δ13C variation, with very little overlap of stingray niche space. Mixing models suggest bivalves and annelids are proportionally more important prey in the stingray diet than crustaceans and teleosts at Glovers Reef, in contrast to all but one published diet study using stomach contents from other locations. Incorporating gut contents information from the literature, we suggest diet-tissue discrimination factors values of Δ15N ≊ 2.7‰ and Δ13C ≊ 0.9‰ for stingrays in the absence of validation experiments. The wide trophic niche and lower trophic level exhibited by stingrays compared to sympatric sharks supports their putative role as important base stabilisers in benthic systems, with the potential to absorb trophic perturbations through numerous opportunistic prey interactions.  相似文献   

13.
In the polytene nuclei of germ-line cells (ovarian pseudonurse cells) of Drosophila melanogaster females mutant for otu 11 (ovarian tumor), the pericentric heterochromatin is much more abundant than in somatic salivary gland cells. This is due to the degree of heterochromatin compaction (and consequently the level of underreplication) being lower in the nurse cells than in the salivary gland cells. The lower level of compaction probably results in a very low degree of position effect gene inactivation in the ovarian nurse cells.  相似文献   

14.
15.
16.
The structure of ovaries has been analysed in advanced aphids only. In this paper we report the results of ultrastructural studies on the ovarioles of Adelges laricis, a representative of the primitive aphid family, Adelgidae. The ovaries of the studied species are composed of five telotrophic‐meroistic ovarioles that are subdivided into a terminal filament, tropharium (= trophic chamber) and vitellarium. The tropharium houses trophocytes (= nurse cells) and arrested oocytes. The vitellarium consists of one or two ovarian follicles. The total number of germ cells (trophocytes + oocytes) in the ovarioles analysed varies from 50 to 92 and is substantially higher than in previously studied aphids. The centre of the tropharium is occupied by a cell‐free region, termed a trophic core, which is connected both with trophocytes and oocytes. Trophocytes are connected to the core by means of cytoplasmic strands, whereas oocytes by nutritive cords. Both trophic core and nutritive cords are filled with parallel arranged microtubules. In the light of obtained results the anagenesis of hemipteran ovaries is discussed.  相似文献   

17.
The ovary in Callosobruchus analis consists of telotrophic ovarioles with the so called nurse cells confined to one chamber at the anterior end of the ovariole. There are three types of lipids in the ovary: (1) L1 bodies that are present in the early oocytes, in the posterior prefollicular tissue and in the follicular epithelium and contain unsaturated phospholipids; (2) L2 bodies that have a complete or incomplete sheath of phospholipids and a triglyceride core; (3) L3 bodies that are formed of highly saturated triglycerides. Lipids are absent from the trophic tissue. In a mature oocyte the L1 and L2 bodies are cortical in distribution while the L3 bodies are centrally located. The mitochondria contain lipoproteins with RNA. The yolk spheres are acid mucopolysaccharides and protein in nature. The precursors of the yolk spheres appear first in the cortical coplasm and are absent from the follicular epithelium or the trophic tissue. The nucleolus of the oocyte shows evidence of extrusions that are believed to pass into the ooplasm. There are no nutritive cords connecting the trophic tissue to the oocytes; nor is there any evidence of any histochemically demonstrable nutritive material being contributed to the oocyte by the trophic tissue. The circumstantial evidence points towards a contribution of the raw materials to the oocyte by the haemolymph either through or in between the follicular epithelium in some soluble form or as submicroscopic particles.  相似文献   

18.
Ovaries of heteropterans consist of telotrophic meroistic ovarioles that are composed of apically located tropharium and basal vitellarium, containing developing oocytes. The tropharium (trophic chamber) houses trophocytes (nurse cells) that are connected with the centrally located trophic core. The organization of the heteropteran tropharia is highly variable and differs in representatives of primitive versus advanced families. The differences concern the mitotic activity of the apical nurse cells, organization of the trophocytes (individual cells or "syncytial lobes"), their connection with the trophic core and the development of F-actin meshwork around the trophic core. In members of primitive taxa of the Heteroptera, tropharia are composed of individual, usually mononucleate trophocytes. On the contrary, tropharia in advanced heteropterans are built of large "cytoplasmic lobes" that contain several trophocyte nuclei. Mitotic divisions of the trophocytes in the apical part of the trophic chamber are observed in most bugs (except Dipsocoridae, Miridae and Cimicidae). Tropharia of Miridae represent an entirely different organization (they are built of one type of highly polyploid trophocytes). Anagenesis of heteropteran trophic chamber is discussed in the context of presented data.  相似文献   

19.
Pneumocystis organisms are airborne opportunistic pathogens that cannot be continuously grown in culture. Consequently, the follow-up of Pneumocystis stage-to-stage differentiation, the sequence of their multiplication processes as well as formal identification of the transmitted form have remained elusive. The successful high-speed cell sorting of trophic and cystic forms is paving the way for the elucidation of the complex Pneumocystis life cycle. The growth of each sorted Pneumocystis stage population was followed up independently both in nude rats and in vitro. In addition, by setting up a novel nude rat model, we attempted to delineate which cystic and/or trophic forms can be naturally aerially transmitted from host to host. The results showed that in axenic culture, cystic forms can differentiate into trophic forms, whereas trophic forms are unable to evolve into cystic forms. In contrast, nude rats inoculated with pure trophic forms are able to produce cystic forms and vice versa. Transmission experiments indicated that 12 h of contact between seeder and recipient nude rats was sufficient for cystic forms to be aerially transmitted. In conclusion, trophic- to cystic-form transition is a key step in the proliferation of Pneumocystis microfungi because the cystic forms (but not the trophic forms) can be transmitted by aerial route from host to host.  相似文献   

20.
Summary The trophic tissue of ovarioles of 32 species of polyphage Coleoptera was investigated by light and electron microscopy. Ovaries were compared according to the number of ovarioles, length, width, and volume of the terminal chambers, to the number, diameter, and volume of nurse cell nuclei, as well as to the structure of nurse cell cytoplasm and to the structure of interstitial cells. Mitosis of nurse cells or interstitial cells in fully developed ovarioles was never observed, but there is strong evidence for endomitosis in nurse cells. According to the different extent of reduction of nurse cell membranes in ovarioles of diverse species, three basic types of nurse cell organization could be established, representing tissues of a primary stage, transition stage, or secondary stage, respectively. These different forms of nurse cell organization are family-specific and correspond to ontogenetic stages of ovariole development ofBruchidius, which is a highly developed polyphage beetle. The distribution among the investigated families is consistent with the phylogenetic relationships among polyphage Coleoptera as far as they are known today. There is evidence that more highly organized nurse cell tissues have evolved independently from primary stage tissues in at least two cases. This investigation was supported in part by the Stiftung Volkswagenwerk  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号