首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Decoding human speech requires both perception and integration of brief, successive auditory stimuli that enter the central nervous system as well as the allocation of attention to language-relevant signals. This study assesses the role of attention on processing rapid transient stimuli in adults and children. Cortical responses (EEG/ERPs), specifically mismatch negativity (MMN) responses, to paired tones (standard 100–100Hz; deviant 100–300Hz) separated by a 300, 70 or 10ms silent gap (ISI) were recorded under Ignore and Attend conditions in 21 adults and 23 children (6–11 years old). In adults, an attention-related enhancement was found for all rate conditions and laterality effects (L>R) were observed. In children, 2 auditory discrimination-related peaks were identified from the difference wave (deviant-standard): an early peak (eMMN) at about 100–300ms indexing sensory processing, and a later peak (LDN), at about 400–600ms, thought to reflect reorientation to the deviant stimuli or “second-look” processing. Results revealed differing patterns of activation and attention modulation for the eMMN in children as compared to the MMN in adults: The eMMN had a more frontal topography as compared to adults and attention played a significantly greater role in childrens’ rate processing. The pattern of findings for the LDN was consistent with hypothesized mechanisms related to further processing of complex stimuli. The differences between eMMN and LDN observed here support the premise that separate cognitive processes and mechanisms underlie these ERP peaks. These findings are the first to show that the eMMN and LDN differ under different temporal and attentional conditions, and that a more complete understanding of children’s responses to rapid successive auditory stimulation requires an examination of both peaks.  相似文献   

2.

Background

A paradoxical enhancement of the magnitude of the N1 wave of the auditory event-related potential (ERP) has been described when auditory stimuli are presented at very short (<400 ms) inter-stimulus intervals (ISI). Here, we examined whether this enhancement is specific for the auditory system, or whether it also affects ERPs elicited by stimuli belonging to other sensory modalities.

Methodology and Principal Findings

We recorded ERPs elicited by auditory and somatosensory stimuli in 13 healthy subjects. For each sensory modality, 4800 stimuli were presented. Auditory stimuli consisted in brief tones presented binaurally, and somatosensory stimuli consisted in constant-current electrical pulses applied to the right median nerve. Stimuli were delivered continuously, and the ISI was varied randomly between 100 and 1000 ms. We found that the ISI had a similar effect on both auditory and somatosensory ERPs. In both sensory modalities, ISI had an opposite effect on the magnitude of the N1 and P2 waves: the magnitude of the auditory and the somatosensory N1 was significantly increased at ISI≤200 ms, while the magnitude of the auditory and the somatosensory P2 was significantly decreased at ISI≤200 ms.

Conclusion and Significance

The observation that both the auditory and the somatosensory N1 are enhanced at short ISIs indicates that this phenomenon reflects a physiological property that is common across sensory systems, rather than, as previously suggested, unique for the auditory system. Two of the hypotheses most frequently put forward to explain this observation, namely (i) the decreased contribution of inhibitory postsynaptic potentials to the recorded scalp ERPs and (ii) the decreased contribution of ‘latent inhibition’, are discussed. Because neither of these two hypotheses can satisfactorily account for the concomitant reduction of the auditory and the somatosensory P2, we propose a third, novel hypothesis, consisting in the modulation of a single neural component contributing to both the N1 and the P2 waves.  相似文献   

3.
This study illuminates processes underlying change detection for different features (detection of pitch versus loudness changes) and different amounts of attentional allocation (automatic versus attentive change detection). For this reason, the influence of important stimulus characteristics (intensity and inter-stimulus interval (ISI)) on these different types of change detection was determined. By varying intensity, it should be clarified whether these processes are mainly sensitive to the informational content of the change or to the total amount of stimulus energy. By varying ISI, it should be determined whether they are differentially sensitive to manipulations of encoding time and/or state of sensory refractoriness. Automatic change detection was indexed by the mismatch negativity (MMN), which is a component of the event-related brain potential (ERP). Attentive change detection was indexed by the N2b and P3 components of the ERP and by behavioral performance. Human subjects were presented with a high-probability standard tone and a low-probability deviant-tone, which differed from the standard tone in frequency (Experiment I) or intensity (Experiment II). In separate blocks, the intensities of the standard stimuli were of 55 and 70 dB SPL and ISIs were of 350 and 950 ms. During the first part of the experiments, subjects were engaged in silent reading, whereas they tried to discriminate deviants from standards in the second part. The MMN elicited by a frequency change was invariant to variations in intensity and ISI, whereas the MMN elicited by an intensity change was significantly modulated by both intensity and ISI. This implies functional differences between the neural traces underlying the frequency-MMN and the intensity-MMN. In addition, there were larger effects of the ISI on the N2b and P3 amplitudes as compared with the effects on the MMN amplitudes, suggesting stronger capacity limitations for attentive change detection than for automatic change detection.  相似文献   

4.
The effect of stimulus duration on auditory event-related potentials and performance of oddball task was studied in normal children and those with attention-deficit symptoms. Mismatch negativity was absent on presentation of short-term (11 ms) stimuli and present with longer stimuli (50 ms). The adolescents with deficit of attention performed much worse (errors of omission) with the short stimuli. The RT was significantly larger in subjects with attention-deficit with all types of tested stimulus duration. They also manifested a smaller P3b amplitude in response to task-relevant deviant stimuli and larger N2b peaks in response to the standard stimuli. It was possible to differentiate between the MMN and the N2b components owing to the fact that the MMN was absent with shorter stimuli. The findings suggest that there is a deficit in processing of sensory information at the cortical level in subjects with the attention-deficit symptoms.  相似文献   

5.
Mismatch negativity of ERP in cross-modal attention   总被引:1,自引:0,他引:1  
Event-related potentials were measured in 12 healthy youth subjects aged 19-22 using the paradigm "cross-modal and delayed response" which is able to improve unattended purity and to avoid the effect of task target on the deviant components of ERP. The experiment included two conditions: (i) Attend visual modality, ignore auditory modality; (ii) attend auditory modality, ignore visual modality. The stimuli under the two conditions were the same. The difference wave was obtained by subtracting ERPs of the standard stimuli from that of the deviant stim-uli. The present results showed that mismatch negativity (MMN), N2b and P3 components can be produced in the auditory and visual modalities under attention condition. However, only MMN was observed in the two modalities un-der inattention condition. Auditory and visual MMN have some features in common: their largest MMN wave peaks were distributed respectively over their primary sensory projection areas of the scalp under attention condition, but over front  相似文献   

6.
Auditory event-related potentials (ERP) were registered to the dichotically presented white noise stimuli (duration 1500 ms, band 150-1200 Hz). Abrupt or gradual change ofinteraural time difference in the middle of stimuli (750 ms after sound offset) was perceived as an apparent auditory image (AI) instant relocation or motion from the midline to one of the ears. In responses these stimuli two ERPs were observed: one to the sound onset, and second--to the onset of motion or AI relocation. ERPs to AI relocation differed from those to sound onset in longer components latencies (123 ms versus 105 ms for N 1,227 ms versus 190 ms for P2). In responses to AI motion component latencies were even longer (N1: 137 ms, P2: 240 ms); N1 amplitude was greater at sites contralateral to the AI motion direction.  相似文献   

7.

Background  

Compared to the waveform or spectrum analysis of event-related potentials (ERPs), time-frequency representation (TFR) has the advantage of revealing the ERPs time and frequency domain information simultaneously. As the human brain could be modeled as a complicated nonlinear system, it is interesting from the view of psychological knowledge to study the performance of the nonlinear and linear time-frequency representation methods for ERP research. In this study Hilbert-Huang transformation (HHT) and Morlet wavelet transformation (MWT) were performed on mismatch negativity (MMN) of children. Participants were 102 children aged 8–16 years. MMN was elicited in a passive oddball paradigm with duration deviants. The stimuli consisted of an uninterrupted sound including two alternating 100 ms tones (600 and 800 Hz) with infrequent 50 ms or 30 ms 600 Hz deviant tones. In theory larger deviant should elicit larger MMN. This theoretical expectation is used as a criterion to test two TFR methods in this study. For statistical analysis MMN support to absence ratio (SAR) could be utilized to qualify TFR of MMN.  相似文献   

8.
Schizophrenia is a severe mental disorder associated with disturbances in perception and cognition. Event-related potentials (ERP) provide a mechanism for evaluating potential mechanisms underlying neurophysiological dysfunction in schizophrenia. Mismatch negativity (MMN) is a short-duration auditory cognitive ERP component that indexes operation of the auditory sensory (`echoic') memory system. Prior studies have demonstrated impaired MMN generation in schizophrenia along with deficits in auditory sensory memory performance. MMN is elicited in an auditory oddball paradigm in which a sequence of repetitive standard tones is interrupted infrequently by a physically deviant (`oddball') stimulus. The present study evaluates MMN generation as a function of deviant stimulus probability, interstimulus interval, interdeviant interval and the degree of pitch separation between the standard and deviant stimuli. The major findings of the present study are first, that MMN amplitude is decreased in schizophrenia across a broad range of stimulus conditions, and second, that the degree of deficit in schizophrenia is largest under conditions when MMN is normally largest. The pattern of deficit observed in schizophrenia differs from the pattern observed in other conditions associated with MMN dysfunction, including Alzheimer's disease, stroke, and alcohol intoxication.  相似文献   

9.
Previous studies have shown that a frequency change in a continuous tone elicits an NI type of ERP (event-related potential) component. It remained unclear, however, whether this response is a “genuine” N1 (onset detector response) or the mismatch negativity (MMN), a change-detector type of ERP response, elicited in previous studies by an infrequent change in a sequence of homogeneous stimuli. A further possibility is a nearly perfect overlap of the two types of ERP components. The advent of modern, high-resolution magnetometers has opened a new, powerful way to tackle such component-overlap problems.Subjects were presented with a continuous tone of 988 Hz which was occasionally increased to 1108 Hz for a period of 100 msec. The magnetic responses to this change consisted of two partially overlapping components with peaks separated by 30 msec. The earlier component was probably generated by neuronal populations of the auditory cortex corresponding to the supratemporal N1, whereas the later one, generated anteriorly and inferiorly to the first, probably reflects a mismatch process causing the magnetic equivalent of the electrical MMN.  相似文献   

10.
ERPs to sequences of standard and deviant sinusoidal 100 msec tone pips, high-contrast sinusoidal gratings and to their simultaneously presented combinations were recorded. Mismatch negativity (MMN), an ERP component elicited by deviant stimuli, was estimated for the different stimulus sequences in order to find out whether it reflects modality-specific processes or non-specific attentive phenomena. In addition to the auditory modality, we studied whether the mismatch response could be evoked by a deviant visual stimulus in a visual sequence or by a deviant stimulus in either modality. The results show that only auditory stimuli produced the mismatch response, suggesting that MMN is not a manifestation of a general attentional mechanism but is probably specific to the auditory modality.  相似文献   

11.
对刺激朝向改变的自动加工:事件相关电位的证据   总被引:1,自引:0,他引:1  
利用事件相关电位(ERP)技术,探讨非注意状态的刺激朝向改变是否引起自动加工。刺激为具有一定朝向(垂直和水平各50%)和一定空间频率(低频90%,高频10%)的光栅。要求被试忽略光栅朝向,对高频光栅作反应。刺激呈现时间为50ms,刺激间隔在250至450ms之间随机变化。低频光栅刺激被分为两类,“匹配”(与前一刺激朝向相同)和“失匹配”(与前一刺激朝向不同)。结果发现,失匹配刺激比匹配刺激诱发出更大的枕区P1、更大的前额-中央区N1以及更大的前部与顶区P2,但前部与顶区的N2却更小。这些ERPs变化提示,视觉对非注意的刺激朝向变化进行了一定程度的自动加工;视觉通道可能存在类似听觉失匹配负波(MMN)的、然而机制不同的自动加工成分  相似文献   

12.
Dog cognition research tends to rely on behavioural response, which can be confounded by obedience or motivation, as the primary means of indexing dog cognitive abilities. A physiological method of measuring dog cognitive processing would be instructive and could complement behavioural response. Electroencephalogram (EEG) has been used in humans to study stimulus processing, which results in waveforms called event-related potentials (ERPs). One ERP component, mismatch negativity (MMN), is a negative deflection approximately 160-200 ms after stimulus onset, which may be related to change detection from echoic sensory memory. We adapted a minimally invasive technique to record MMN in dogs. Dogs were exposed to an auditory oddball paradigm in which deviant tones (10% probability) were pseudo-randomly interspersed throughout an 8 min sequence of standard tones (90% probability). A significant difference in MMN ERP amplitude was observed after the deviant tone in comparison to the standard tone, t5 = −2.98, p = 0.03. This difference, attributed to discrimination of an unexpected stimulus in a series of expected stimuli, was not observed when both tones occurred 50% of the time, t1 = −0.82, p > 0.05. Dogs showed no evidence of pain or distress at any point. We believe this is the first illustration of MMN in a group of dogs and anticipate that this technique may provide valuable insights in cognitive tasks such as object discrimination.  相似文献   

13.
Previous studies showed that the amplitude and latency of the auditory offset cortical response depended on the history of the sound, which implicated the involvement of echoic memory in shaping a response. When a brief sound was repeated, the latency of the offset response depended precisely on the frequency of the repeat, indicating that the brain recognized the timing of the offset by using information on the repeat frequency stored in memory. In the present study, we investigated the temporal resolution of sensory storage by measuring auditory offset responses with magnetoencephalography (MEG). The offset of a train of clicks for 1 s elicited a clear magnetic response at approximately 60 ms (Off-P50m). The latency of Off-P50m depended on the inter-stimulus interval (ISI) of the click train, which was the longest at 40 ms (25 Hz) and became shorter with shorter ISIs (2.5∼20 ms). The correlation coefficient r2 for the peak latency and ISI was as high as 0.99, which suggested that sensory storage for the stimulation frequency accurately determined the Off-P50m latency. Statistical analysis revealed that the latency of all pairs, except for that between 200 and 400 Hz, was significantly different, indicating the very high temporal resolution of sensory storage at approximately 5 ms.  相似文献   

14.
Any occasional changes in the acoustic environment are of potential importance for survival. In humans, the preattentive detection of such changes generates the mismatch negativity (MMN) component of event-related brain potentials. MMN is elicited to rare changes ('deviants') in a series of otherwise regularly repeating stimuli ('standards'). Deviant stimuli are detected on the basis of a neural comparison process between the input from the current stimulus and the sensory memory trace of the standard stimuli. It is, however, unclear to what extent animals show a similar comparison process in response to auditory changes. To resolve this issue, epidural potentials were recorded above the primary auditory cortex of urethane-anesthetized rats. In an oddball condition, tone frequency was used to differentiate deviants interspersed randomly among a standard tone. Mismatch responses were observed at 60-100 ms after stimulus onset for frequency increases of 5% and 12.5% but not for similarly descending deviants. The response diminished when the silent inter-stimulus interval was increased from 375 ms to 600 ms for +5% deviants and from 600 ms to 1000 ms for +12.5% deviants. In comparison to the oddball condition the response also diminished in a control condition in which no repetitive standards were presented (equiprobable condition). These findings suggest that the rat mismatch response is similar to the human MMN and indicate that anesthetized rats provide a valuable model for studies of central auditory processing.  相似文献   

15.
Mismatch negativity (MMN) and N2b were elicited during a selective dichotic-listening task in 16 young (Y), 16 middle-aged (M) and 19 elderly (E) subjects to evaluate automatic and effortful memory comparison of auditory stimuli. Sequences of standard (80%) and deviant (20%) tones were dichotically presented to subjects in two runs. In each run, subjects were instructed to give a button-press response to the deviant (target) tones in the ear designated as attended and to ignore the input to the other ear.Peak latencies, peak amplitudes and mean amplitudes were calculated for MMN and N2b components in each subject. MMN latency and amplitude were quite stable regardless of age, while N2b latency was significantly longer in M and E subjects than in Y subjects. These results are interpreted as reflecting that automatic processes of comparison in auditory memory of stimuli presented at short interstimulus intervals remain quite stable from 23 to 77 years of age; however, those requiring attentional effort decline with age.  相似文献   

16.
Event-related potentials (ERPs) as part of the EEG are applied to assess auditory processing in children. Mismatch negativity (MMN) is a change-specific component of ERPs that indicates a pre-cognitive discrimination process. MMN responses were recorded in 10 healthy preschool children to four different types of signal changes. The signals investigated were processed using a discrete wavelet transform (DWT) to analyze the characteristics of the ERP components. All children showed distinct MMN that was significant in all tasks. The MMN amplitudes varied between subjects and depended on the different tasks. The wavelet transform allowed simplified analysis and quantification of the MMN component, as well as the double-peak structure of the P1 component. The variation in MMN amplitudes suggests the possibility of determining individual auditory profiles. Owing to the shorter time required, the MMN paradigm suggested combined with the DWT proposed offers a new objective investigation method for children.  相似文献   

17.
规律短音中极短间隔短音诱发的失匹配负电位   总被引:10,自引:0,他引:10  
姜德鸣 Paavi.  P 《生理学报》1994,46(6):561-567
失匹配负电位是听觉事件相关电位的一个成分,它由一系列重复的,同性质的“标准刺激”的物理性质稍有偏离的“偏差刺激”所诱发,在规律性的标准刺激中,偶然的物理性质稍有偏离的刺激,如频率,强度,久度等的些微变化均可诱发MMN。偶然地给于时间上“过早出现”的同样刺激,即频率,强度,久度完全相同,只是在规律性的标准刺激中过早地出现的刺激,作为偏差刺激,也可以诱发出NNM。本研究在恒定刺激间隔ISI=600ms  相似文献   

18.
The human sequential grouping that organizes parts of tones into a group was examined by the mismatch negativity (MMN), a component of event-related potentials that reveals the sensory memory process. The sequential grouping is accomplished by the combinations of some factors, e.g., temporal and frequency proximity principles. In this study, auditory oddball stimuli in which each of the stimuli consisted of series of tone bursts, were applied to the subjects, and the MMN elicited by the deviation of the frequency of the last tone in the stimulus was investigated. The relationship between the expected phenomena of sequential grouping of tones and observed magnitudes of MMN was evaluated. It was shown that the magnitudes of MMN changed according to the configuration (number of tones, frequency) of tone sequence to be stored. This result suggested that the sequential grouping of presented tones was achieved on the preattentive auditory sensory memory process. It was also shown that the relative change of MMN magnitudes corresponded to the conditions of sequential grouping, which had been proposed by the auditory psychophysical studies. The investigation of MMN properties could reveal the nature of auditory sequential grouping.This study was approved by the Ethics Committee on Clinical Investigation, Graduate School of Engineering, Tohoku University and was carried out in accordance with the policy of the Declaration of Helsinki.  相似文献   

19.

Objectives

To compare the event-related potentials (ERPs) and brain topographic maps characteristic and change in normal controls and subjective tinnitus patients before and after repetitive transcranial magnetic stimulation (rTMS) treatment.

Methods and Participants

The ERPs and brain topographic maps elicited by target stimulus were compared before and after 1-week treatment with rTMS in 20 subjective tinnitus patients and 16 healthy controls.

Results

Before rTMS, target stimulus elicited a larger N1 component than the standard stimuli (repeating sounds)in control group but not in tinnitus patients. Instead, the tinnitus group pre-treatment exhibited larger amplitude of N1 in response to standard stimuli than to deviant stimuli. Furthermore tinnitus patients had smaller mismatch negativity (MMN) and late discriminative negativity (LDN)component at Fz compared with the control group. After rTMS treatment, tinnitus patients showed increased N1 response to deviant stimuli and larger MMN and LDN compared with pre-treatment. The topographic maps for the tinnitus group before rTMS -treatment demonstrated global asymmetry between the left and right cerebral hemispheres with more negative activities in left side and more positive activities in right side. In contrast, the brain topographic maps for patients after rTMS-treatment and controls seem roughly symmetrical. The ERP amplitudes and brain topographic maps in post-treatment patient group showed no significant difference with those in controls.

Conclusions

The characterical changes in ERP and brain topographic maps in tinnitus patients maybe related with the electrophysiological mechanism of tinnitus induction and development. It can be used as an objective biomarker for the evaluation of auditory central in subjective tinnitus patients. These findings support the notion that rTMS treatment in tinnitus patients may exert a beneficial effect.  相似文献   

20.
The effect of stimulus duration on the mismatch negativity of the auditory event-related potentials was studied in healthy children and those with attention-deficit symptoms. The minimum stimulus duration with which a MMN was elicited by frequency deviant was 50 ms in healthy children. The MMN was absent with shorter stimuli (11 ms and 30 ms). These parametres are close to those in adults. As to children with attention-deficit symptoms the MMN was insignificant with all tested stimulus durations (11 ms, 30 ms, 50 ms).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号