首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although event-related potentials (ERPs) are widely used to study sensory, perceptual and cognitive processes, it remains unknown whether they are phase-locked signals superimposed upon the ongoing electroencephalogram (EEG) or result from phase-alignment of the EEG. Previous attempts to discriminate between these hypotheses have been unsuccessful but here a new test is presented based on the prediction that ERPs generated by phase-alignment will be associated with event-related changes in frequency whereas evoked-ERPs will not. Using empirical mode decomposition (EMD), which allows measurement of narrow-band changes in the EEG without predefining frequency bands, evidence was found for transient frequency slowing in recognition memory ERPs but not in simulated data derived from the evoked model. Furthermore, the timing of phase-alignment was frequency dependent with the earliest alignment occurring at high frequencies. Based on these findings, the Firefly model was developed, which proposes that both evoked and induced power changes derive from frequency-dependent phase-alignment of the ongoing EEG. Simulated data derived from the Firefly model provided a close match with empirical data and the model was able to account for i) the shape and timing of ERPs at different scalp sites, ii) the event-related desynchronization in alpha and synchronization in theta, and iii) changes in the power density spectrum from the pre-stimulus baseline to the post-stimulus period. The Firefly Model, therefore, provides not only a unifying account of event-related changes in the EEG but also a possible mechanism for cross-frequency information processing.  相似文献   

2.
Spatiotemporal dynamics of event-related potentials (ERP) evoked by non-target stimuli in a visual oddball experiment and the presence of coherent oscillations in beta 2 frequency band of decomposed EEG records from peristimulus period were investigated by means of intracranial electrodes in humans. Twenty-one patients with medically intractable epilepsy participated in the study. The EEG signal was recorded using platinum electrodes implanted in several cortical and subcortical sites. Averaged 2 s EEG records were analyzed. Task-specific EEG changes were found in each patient, ERPs were derived from 92 electrodes used (96 % of possible cases). In the majority of analysed cases, ERPs were composed of several distinct components, and their duration was mostly longer than 1 s. The mean onset of the first ERP component was 158+/-132 ms after the stimulus (median 112 ms, minimum value 42 ms, maximum value 755 ms), and large variability of these onset times was found in all the investigated structures. Possible coherence between neural activities of remote brain sites was investigated by calculating running correlations between pairs of decomposed EEG records (alpha, beta 1, beta 2 frequency bands were used, total number of correlated pairs was 662 in each frequency band). The record pairs exhibiting highly correlated time segments represented 23 % of all the investigated pairs in alpha band, 7 % in beta 1 band, and 59 % in beta 2 band. In investigated 2 s record windows, such segments were distributed evenly, i.e. they were also found before the stimulus onset. In conclusion, the results have implicated the idea that a lot of recorded ERPs was more or less by-products of chance in spreading a signal within the neuronal network, and that their functional relevance was somewhat linked with the phenomenon of activity synchronization.  相似文献   

3.
The objective of the present study was to investigate brain activity abnormalities in the early stage of Parkinson’s disease (PD). To achieve this goal, eyes-closed resting state electroencephalography (EEG) signals were recorded from 15 early-stage PD patients and 15 age-matched healthy controls. The AR Burg method and the wavelet packet entropy (WPE) method were used to characterize EEG signals in different frequency bands between the groups, respectively. In the case of the AR Burg method, an increase of relative powers in the δ- and θ-band, and a decrease of relative powers in the α- and β-band were observed for patients compared with controls. For the WPE method, EEG signals from patients showed significant higher entropy over the global frequency domain. Furthermore, WPE in the γ-band of patients was higher than that of controls, while WPE in the δ-, θ-, α- and β-band were all lower. All of these changes in EEG dynamics may represent early signs of cortical dysfunction, which have potential use as biomarkers of PD in the early stage. Our findings may be further used for early intervention and early diagnosis of PD.  相似文献   

4.
Components of evoked potentials to stimuli differing in size and warning about the necessity of subsequent recognition of an image at the global or local level were analyzed to identify the specific features of selective attention in adults and seven-year-old children. In both age groups, components were found that were related to selective attention aimed at processing a warning stimulus (the P1, N1, and P2 components) and producing a response to the subsequent test stimulus. Both age groups exhibited similar dependences of changes in the P1 component (40–110 and 110–220 ms in the adults and children, respectively) on the type of the warning stimulus. The children displayed a greater increase in the amplitude of the P1 component of the response to the global versus the local key than the adults did. The P1 component is suggested to reflect not only the sensory features of the stimulus but also the selective attention associated with its sensory processing. The amplitude of the P2 component of the response to the global key (190–240 and 330–410 ms in the adults and children, respectively) was higher in both age groups. This component is believed to indicate evaluation of the signal importance of the warning stimulus. In the adults, late components of event-related potentials (ERPs), i.e., P3-N3 (300–450 ms), were associated with the global or local level of recognition of a test hierarchical stimulus that was presented after the key, with the greatest differences in the central and posterior associative areas of the right hemisphere and in the frontocentral areas of the left hemisphere. In the children, the N3 component (530–600 ms) in the left parietal area, as well as the late ERP phases, i.e., Ps (680–950 ms) and Ns (1030–1130 ms), during which the frontal cortical areas are involved in preparing the subsequent response, was shown to depend on the type of the warning stimulus.  相似文献   

5.
In 18-to 19-year-old students, the content of a number of microelements, as well as of calcium, in biologically stable tissues (hair samples) was measured using X-ray fluorescent analysis. In the tested persons, we observed a certain deficit of main elements (calcium, copper, and zinc), while in some persons the levels of toxic lead and strontium were exceeded. Correlation analysis of the parameters of EEG potentials (current EEG and evoked and event-related potentials, EPs and ERPs, respectively) showed the existence of a few significant (or close to those) correlations of the spectral powers of some rhythms and derivatives of a few indices of the background EEG and more numerous cases of correlations of the parameters of EPs and ERPs (latencies and amplitudes) with the contents of the studied elements. The physiological importance of metals, according to the number of characteristics of EEG potentials that correlate with their contents, can be arranged in descending order as follows: As, Zn > Ca > Cd > Pb > Sr. None of the studied parameters of EEG phenomena correlated with the level of copper. The strength of correlations varied from weak to mild (0.29 < R < 0.50). The densest correlations were observed for the concentrations of toxic lead and cadmium. With respect to the characteristics of ERPs, some of the elements under study demonstrated synergism (e.g., lead and arsenic), while others were in an antagonistic relation (cadmium and calcium). Neirofiziologiya/Neurophysiology, Vol. 38, No. 2, pp. 167–174, March–April, 2006.  相似文献   

6.
《IRBM》2022,43(5):349-361
BackgroundAdolescence is a crucial chapter in life and the presence of stress, depression, and anxiety at this stage is a great concern. Prolonged stress is one of the risk factors that may induce suicidal thoughts, destructive ideation, abuse of alcohol, and drugs in adulthood. Based on a record from National Crime Records Bureau, In India over 2320 children were committed suicide per year because of failure in examinations. This raised number implies the severity of this issue and its major impact on society.ObjectivesThe main objective of this paper is to analyze the cognitive stress in students during examination period using EEG biomarkers.Methods and ResultsEEG signal was acquired in two different test conditions such as before examination with 12 minutes and after examination with 3 minutes from 14 subjects with eight electrodes located using wireless Enobio device (Neuro electrics) with 10-20 international lead system. The three brain waves such as theta, alpha, beta relative band energies were considered, and EEG band ratios such as heart rate, neural activity, arousal index, vigilance index and cognitive performance attentional resource index extracted between before and after examination condition using db4 wavelet family with 6 level decomposition. The statistical results suggest that after examination the relative sub-band energies α, β, and θ were decreased significantly (p < 0.05) as compared to before examination. Also, the EEG band ratio such as heart rate and vigilance index shows significant (p < 0.05) decrease after the examination as compared to before examination. It was found that there was a significant (p < 0.05) rise in the arousal index, Cognitive performance attentional resource index (CPARI), and neural activity after the examination as compared to before examination.ConclusionThe experimental results found that the memory and concentration were high before examination, which concludes that adolescence group examination stress was high before examination period as compared to after examination. In the case of gender group comparison, theta energy band for male students was found high compared to female students in before examination state such that it concludes that male students were highly stressed (before examination) than female students. Overall, our results suggest that after examination male students with lower heart rate index than female students which implies the male students control their stress levels as compared to females in the same stress situation.  相似文献   

7.
Different mental operations were expected in the late phase of intracerebral ERPs obtained in the visual oddball task with mental counting. Therefore we searched for late divergences of target and nontarget ERPs followed by components exceeding the temporal window of the P300 wave. Electrical activity from 152 brain regions of 14 epileptic patients was recorded by means of depth electrodes. Average target and nontarget records from 1800 ms long EEG periods free of epileptic activity were compared. Late divergence preceded by almost identical course of the target and nontarget ERPs was found in 16 brain regions of 6 patients. The mean latency of the divergence point was 570+/-93 ms after the stimulus onset. The target post-divergence section of the ERP differed from the nontarget one by opposite polarity, different latency of the components, or even different number of the components. Generators of post-divergence ERP components were found in the parahippocampal gyrus, superior, middle and inferior temporal gyri, amygdala, and fronto-orbital cortex. Finding of late divergence indicates that functional differences exist even not sooner than during the final phase of the task.  相似文献   

8.
The dynamical and physiological basis of alpha band activity and 1/fβ noise in the EEG are the subject of continued speculation. Here we conjecture, on the basis of empirical data analysis, that both of these features may be economically accounted for through a single process if the resting EEG is conceived of being the sum of multiple stochastically perturbed alpha band damped linear oscillators with a distribution of dampings (relaxation rates). The modulation of alpha-band and 1/fβ noise activity by changes in damping is explored in eyes closed (EC) and eyes open (EO) resting state EEG. We aim to estimate the distribution of dampings by solving an inverse problem applied to EEG power spectra. The characteristics of the damping distribution are examined across subjects, sensors and recording condition (EC/EO). We find that there are robust changes in the damping distribution between EC and EO recording conditions across participants. The estimated damping distributions are found to be predominantly bimodal, with the number and position of the modes related to the sharpness of the alpha resonance and the scaling (β) of the power spectrum (1/fβ). The results suggest that there exists an intimate relationship between resting state alpha activity and 1/fβ noise with changes in both governed by changes to the damping of the underlying alpha oscillatory processes. In particular, alpha-blocking is observed to be the result of the most weakly damped distribution mode becoming more heavily damped. The results suggest a novel way of characterizing resting EEG power spectra and provides new insight into the central role that damped alpha-band activity may play in characterising the spatio-temporal features of resting state EEG.  相似文献   

9.
The rest states with the eyes open (RSEO) and closed (RSEC) were subjected to quantitative EEG study as states similar in the pattern of mental activity and subjective assessments but different in the EEG pattern. The mean values of the spectral power and EEG coherence function were compared in 74 subjects for the following bands: Δ, ?, α1, α2, β1, β2, and γ. Upon the transition from the RSEC to the RSEO, the EEG local power significantly decreased over the whole cortex for the α, ?, and β bands. A simultaneous decrease in the EEG power in all the bands (including β and γ) was most pronounced (as judged by relative changes and tests of significance of difference) in the parietooccipital derivations immediately related to the cortical zones where an increase in the neuronal activity upon opening the eyes is most probable. A significant increase in the EEG power was observed only for the γ band in frontal derivations F 3 and F 4. Significant differences in the mean EEG coherence in the RSEO-RSEC comparison were present in many derivation pairs, especially in the α2, β1, β2, and γ bands. For each of these bands, the number of differences determined on the basis of Fisher test was more than 70% of the maximum possible number. In the overwhelming majority of cases, the coherence was lower in the RSEO; however, in the caudal cortical zones, a higher coherence in the α1, ?, and Δ bands in the RSEO was rather typical. The results confirmed that the two states under study differ in a number of averaged EEG parameters with high statistical significance and may be used as reference states during performance of tasks with the eyes open and closed, respectively. The differences between the RSEC and the RSEO may be caused by the fact that the RSEC is a functional state oriented predominantly to the analysis of internal information (internally oriented), and the RSEO, predominantly to the analysis of information coming from the outside (externally oriented). The pattern of the observed EEG differences points to a combination of effects both localized in the visual zone and reflecting changes in the network cortical activity, i.e., simultaneous, although nonuniform, changes over all the main zones of the cortex. Comparison of the results with published estimations of differences in the local cerebral blood flow (ICBF) between the RSEO and the RSEC shows that increase in the ICBF may be associated with a local decrease in the EEG spectral power in any frequency band, including the high-frequency β and γ bands, or several frequency bands simultaneously.  相似文献   

10.
We studied changes in the amplitudes of event-related EEG potentials (ERPs) and power spectra of background EEG in the course of a series of EEG-feedback sessions directed toward an increase in the ratio of powers of the α vs θ rhythms. The examined group included 70 volunteers divided into an experimental group (n = 37) and a control group (n = 33). The intensity of acoustic white noise overlapping the musical background served as a feedback signal; it became lower with increase in the above ratio, while in the control group it remained constant. The EEG potentials were recorded from C3 and C4 leads. The ERPs were recorded within a paradigm of measuring time intervals. Within a series of EEG-feedback sessions, the α/θ ratio decreased somewhat both in the control and experimental groups, but in subjects of the latter group this decrease was less significant, and the mean intragroup index became significantly greater than the respective value in the control group after the end of the third session. The EEG-feedback sessions also resulted in significant increases in the amplitudes of early components of the readiness potential in both hemispheres and in the amplitude of the contingent negative variation in the right hemisphere. We conclude that, in most healthy subjects, at least three sessions of α/θ training are necessary to form an effective series providing considerable changes in the pattern of EEG potentials. Neirofiziologiya/Neurophysiology, Vol. 39, No. 1, pp. 88–98, January–February, 2007.  相似文献   

11.
Background: IFN regulatory factor 4-binding protein (IBP) is a novel type of activator of Rho GTPases. It has been linked with differentiation and apoptosis of lymphocytes, but its function in oncogenesis remains unclear. Here we studied the expression of endogenous IBP in four human colorectal cancer cell lines, normal, adenoma and tumor colorectal tissues. Methods: Molecular (Western blot and RT-PCR), and confocal analyses were used to investigate IBP expression in human colorectal cancer cell lines. Matched normal and tumor tissue sections of 63 patients and 15 adenoma tissue sections were analyzed for IBP expression by immunohistochemistry (IHC). Results: IBP was ubiquitely expressed in human colorectal cancer cell lines. The expression of IBP can be detected at both the mRNA and protein level in SW480, SW620 and HT29 cells. Clinically, IBP were elevated in human colorectal cancer specimens in comparison to normal colorectal tissues. Substantial high expression of IBP was observed in colorectal cancer tissues (67%), whereas corresponding normal tissues and 15 adenoma tissues showed consistently absent immunoreactivity of IBP. Moreover, IBP expression is correlated with the differentiation level of colorectal cancer cells (p < 0.05) and clinical stage of patients (p < 0.01). Conclusions: Our data show, for the first time, a dysregulated expression of IBP in human colorectal cancer, offering new perspectives for its role in cancer development and progression. IBP may be a novel tumor marker and a therapeutic target for colorectal cancer.  相似文献   

12.
Absence seizures are caused by brief periods of abnormal synchronized oscillations in the thalamocortical loops, resulting in widespread spike-and-wave discharges (SWDs) in the electroencephalogram (EEG). SWDs are concomitant with a complete or partial impairment of consciousness, notably expressed by an interruption of ongoing behaviour together with a lack of conscious perception of external stimuli. It is largely considered that the paroxysmal synchronizations during the epileptic episode transiently render the thalamocortical system incapable of transmitting primary sensory information to the cortex. Here, we examined in young patients and in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS), a well-established genetic model of absence epilepsy, how sensory inputs are processed in the related cortical areas during SWDs. In epileptic patients, visual event-related potentials (ERPs) were still present in the occipital EEG when the stimuli were delivered during seizures, with a significant increase in amplitude compared to interictal periods and a decrease in latency compared to that measured from non-epileptic subjects. Using simultaneous in vivo EEG and intracellular recordings from the primary somatosensory cortex of GAERS and non-epileptic rats, we found that ERPs and firing responses of related pyramidal neurons to whisker deflection were not significantly modified during SWDs. However, the intracellular subthreshold synaptic responses in somatosensory cortical neurons during seizures had larger amplitude compared to quiescent situations. These convergent findings from human patients and a rodent genetic model show the persistence of cortical responses to sensory stimulations during SWDs, indicating that the brain can still process external stimuli during absence seizures. They also demonstrate that the disruption of conscious perception during absences is not due to an obliteration of information transfer in the thalamocortical system. The possible mechanisms rendering the cortical operation ineffective for conscious perception are discussed, but their definite elucidation will require further investigations.  相似文献   

13.
The perception of spatial and successive contexts of auditory information develops during child ontogeny. We compared event-related potentials (ERPs) recorded in 5- to 6-year-old children (N = 15) and adults (N = 15) in response to a digital series with omitted digits to explore age differences in the perception of successive auditory information. In addition, ERPs in response to the sound of a falling drop presented binaurally were obtained to examine the spatial content of auditory information. The ERPs obtained from the omitted digits significantly differed in the amplitude and latency of the N200 and P300 components between adults and children, which supports the hypothesis that the perception of a successive auditory structure is less automatic in children compared to adults. Although no significant differences were found in adults, the sound of a falling drop presented to the left ears of children elicited ERPs with earlier latencies and higher amplitudes of the P300 and N400 components in the right temporal area. Stimulation of the right ear caused an increasing amplitude of the N100 component in children. Thus, the observed differences in the auditory ERPs of children and adults reflect developmental changes in the perception of spatial and successive auditory information.  相似文献   

14.
Ionic channels and gap junctions are remodeled in cells from the 5-day epicardial border zone (EBZ) of the healing canine infarct. The main objective of the study was to determine the effect of gap junctional conductance (Gj) remodeling and Cx43 redistribution to the lateral membrane on conduction velocity (θ) and anisotropic ratio, and how gap junctional remodeling is modulated by the extracellular space. We first implemented subcellular monodomain and two-domain computer models of normal epicardium (NZ) to understand how extracellular space modulates the relationship between Gj and θ in NZ. We found that the extracellular space flattens the Gj-θ relationship, thus θ becomes less sensitive to changes in Gj. We then investigated the functional consequences of Gj remodeling and Cx43 distribution in subcellular computer models of cells of the outer pathway (IZo) and central pathway (IZc) of reentrant circuits. In IZo cells, side-to-side (transverse) Gj is 10% the value in NZ cells. Such Gj remodeling causes a 45% decrease in transverse θ (θT). Inclusion of an extracellular space reduces the decrease in θT to 31%. In IZc cells, Cx43 redistribution along the lateral membrane results in a 29% increase in θT. That increase in θT is a consequence of the decrease in access resistance to the Cx43 plaques that occur with the Cx43 redistribution. Extracellular space reduces the increase in θT to 10%. In conclusion: 1), The extracellular space included in normal epicardial simulations flattens the Gj-θ relationship with θ becoming less sensitive to changes in Gj. 2), The extracellular space attenuates the effects of gap junction epicardial border zone remodeling (i.e., Gj reduction and Cx43 lateralization) on θT.  相似文献   

15.
A Lolium perenne ice-binding protein (LpIBP) demonstrates superior ice recrystallization inhibition (IRI) activity and has proposed applications in cryopreservation, food texturing, as well as in being a “green” gas hydrate inhibitor. Recombinant production of LpIBP has been previously conducted in bacterial and yeast systems for studies of protein characterization, but large-scale applications have been hitherto limited due to high production costs. In this work, a codon-optimized LpIBP was recombinantly expressed and secreted in a novel one-step vector system from the nuclear genome of the green microalga Chlamydomonas reinhardtii. Both mixotrophic and photoautotrophic growth regimes supported LpIBP expression, indicating the feasibility of low-cost production using minimal medium, carbon dioxide, and light energy as input. In addition, multiple growth and bioproduct extraction cycles were performed by repetitive batch cultivation trials, demonstrating the potential for semi-continuous production and biomass harvesting. Concentrations of recombinant protein reached in this proof of concept approach were sufficient to demonstrate IRI activity in culture media without additional purification or concentration, with activity further verified by thermal hysteresis and morphology assays. The incorporation of the recombinant LpIBP into a model gas hydrate offers the promise that algal production may eventually find application as a “green” hydrate inhibitor.  相似文献   

16.
17.
Rapid auditory processing and acoustic change detection abilities play a critical role in allowing human infants to efficiently process the fine spectral and temporal changes that are characteristic of human language. These abilities lay the foundation for effective language acquisition; allowing infants to hone in on the sounds of their native language. Invasive procedures in animals and scalp-recorded potentials from human adults suggest that simultaneous, rhythmic activity (oscillations) between and within brain regions are fundamental to sensory development; determining the resolution with which incoming stimuli are parsed. At this time, little is known about oscillatory dynamics in human infant development. However, animal neurophysiology and adult EEG data provide the basis for a strong hypothesis that rapid auditory processing in infants is mediated by oscillatory synchrony in discrete frequency bands. In order to investigate this, 128-channel, high-density EEG responses of 4-month old infants to frequency change in tone pairs, presented in two rate conditions (Rapid: 70 msec ISI and Control: 300 msec ISI) were examined. To determine the frequency band and magnitude of activity, auditory evoked response averages were first co-registered with age-appropriate brain templates. Next, the principal components of the response were identified and localized using a two-dipole model of brain activity. Single-trial analysis of oscillatory power showed a robust index of frequency change processing in bursts of Theta band (3 - 8 Hz) activity in both right and left auditory cortices, with left activation more prominent in the Rapid condition. These methods have produced data that are not only some of the first reported evoked oscillations analyses in infants, but are also, importantly, the product of a well-established method of recording and analyzing clean, meticulously collected, infant EEG and ERPs. In this article, we describe our method for infant EEG net application, recording, dynamic brain response analysis, and representative results.  相似文献   

18.
《Biological Control》2008,47(3):304-311
Reports on nontarget attack by introduced biological control agents have caused debate over the safety of biological control of weeds. One outcome of this dialogue is the importance of monitoring for nontarget attack and its effects as part of post-release assessments. This is particularly vital in the case of the root-mining weevil Mogulones cruciger, which was approved and released in Canada, but not in the United States, to control Cynoglossum officinale. Mogulones cruciger was first released in British Columbia in 1997, following recommendations of the American Technical Advisory Group and the Canadian Biological Control Review Committee. During the same year, the US Fish and Wildlife Service raised concerns about potential nontarget effects by this insect to Boraginaceae species on the endangered species list. To assess the occurrence of nontarget attack, and its potential for nontarget effects, we identified and monitored confamilial species co-occurring with C. officinale at six M. cruciger release sites in Alberta and British Columbia over a two year period. All four co-occurring species were attacked by the weevil to varying degrees, although attack was inconsistent between years and sites. Nontarget species were attacked to a lesser degree than C. officinale, but differences were not consistent for species, sites, or years. There was a positive relationship between the probability of nontarget attack and C. officinale attack rate by M. cruciger. Our data suggest that the immigration of M. cruciger into the US may expose certain Boraginaceae to nontarget attack, but the transitory nature of that attack and consequently the risk to native species is unknown.  相似文献   

19.
A new method for estimation of human event-related potential (ERP) topography instability was developed. It was applied to the visual ERPs evoked in the experimental task of target letter discrimination. Periods of stable topography corresponding to the main ERP waves and those of unstable topography between them were revealed. Dependence of stability and instability characteristics on relevance of stimuli was disclosed: mean ERP magnitude (potential field power) of stable periods and duration of N1-P3a unstable interval were higher for target letters than for nontarget ones. Possible mechanisms of these effects are discussed.  相似文献   

20.
The investigation of weak (<500 microT), extremely low frequency (ELF, 0-300 Hz) magnetic field (MF) exposure upon human cognition and electrophysiology has yielded incomplete and contradictory evidence that MFs interact with human biology. This may be due to the small number of studies undertaken examining ELF MF effects upon the human electroencephalogram (EEG), and the associated analysis of evoked related potentials (ERPs). Relatively few studies have examined how MF exposure may affect cognitive and perceptual processing in human subjects. The introduction of this review considers some of the recent studies of ELF MF exposure upon the EEG, ERPs and cognitive and perceptual tasks. We also consider some of the confounding factors within current human MF studies and suggest some new strategies for further experimentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号