首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The geometry of the midshaft cross-sections of the femur and humerus of five indriid species was analysed. Internal (marrow cavity) and external diameters were measured on X-rays in the anteroposterior (a-p) and mediolateral (m-l) planes; cross-sectional areas, second moments of area, and section moduli were calculated using formulae for a hollow ellipse. Cortical thickness, robusticity indices (relating external diameters to the length of the bones), and a-p/m-l shape variables were also calculated. Model II regression was supplemented by analyses of correlation between size and shape. Indriids are saltatory, i.e., their locomotion is dominated by the hind limbs. Accordingly, the femur is more rigid than the humerus, and it shows a consistent difference between the a-p and m-l planes in measures related to bending strength. Cortical thickness varies considerably both within and across species. The type specimen of the new species Propithecus tattersalli is virtually indistinguishable from P. verreauxi on the basis of its long bone cross-sectional geometry. Femoral robusticity is uncorrelated with size, but humeral robusticity decreases significantly with increasing size. Femoral shape variables (a-p/m-l) are all negatively correlated with body size, indicating that m-l dimensions of the femur increase at a faster rate than do a-p dimensions. The highly loaded plane of movement seems to be more reinforced in the smaller species. Contrary to static biomechanical scaling predictions of positive allometry, all cross-sectional parameters scale relatively close to isometry. It is concluded that either changes in locomotor performance must compensate for the weight-related increase in forces and moments or that the larger-bodied animals operate appreciably closer to the limits of their safety margins.  相似文献   

2.
Allometric analysis was employed to compare linear dimensions of forelimb and hindlimb bones (humeri, radii, third and fifth metacarpals, third and fifth manual phalanges, femora, and tibiae) of 227 species of bats and 105 species of nonvolant mammals of varying degrees of phylogenetic affinity to bats. After accounting for body size, all forelimb bones are longer in bats than in nonvolant species, with the exception of humeri and radii of a few highly arboreal primates. Hindlimb bones are generally, but not uniformly, shorter in bats than in other mammals. For the humerus, radius, and metacarpals, midshaft diameters are greater in bats than in their comparably sized relatives. Proximal phalangeal midshaft diameters are statistically indistinguishable from those of other mammals, and distal phalanges show significantly reduced outer diameters. The pattern of relative reduction in wing bone diameters along the wing's proximodistal axis parallels the reduction in bone mineralization along the same axis, and a similar pattern of change in cortical thickness from the smallest wall thicknesses among mammals in the humerus and radius to the greatest wall thicknesses among mammals in the phalanges. The combination of altered cross-sectional geometry and mineralization appears significantly to reduce the mass moment of inertia of the bat wing relative to a theoretical condition in which elongated bones preserve primitive mammalian mineralization levels and patterns of scaling of long bone diameters. This intercorrelated suite of skeletal specializations may significantly reduce the inertial power of flight, contributing significant energetic savings to the total energy budgets of the only flying mammals. J. Morphol. 234: 277–294, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
The cross-sectional properties of mammalian limb bones provide an important source of information about their loading history and locomotor adaptations. It has been suggested, for instance, that the cross-sectional strength of primate limb bones differs from that of other mammals as a consequence of living in a complex arboreal environment (Kimura, 1991, 1995). In order to test this hypothesis more rigorously, we have investigated cross-sectional properties in samples of humeri and femora of 71 primate species, 30 carnivorans and 59 rodents. Primates differ from carnivorans and rodents in having limb bones with greater cross-sectional strength than mammals of similar mass. This might imply that primates have stronger bones than carnivorans and rodents. However, primates also have longer proximal limb bones than other mammals. When cross-sectional dimensions are regressed against bone length, primates appear to have more gracile bones than other mammals. These two seemingly contradictory findings can be reconciled by recognizing that most limb bones experience bending as a predominant loading regime. After regressing cross-sectional strength against the product of body mass and bone length, a product which should be proportional to the bending moments applied to the limb, primates are found to overlap considerably with carnivorans and rodents. Consequently, primate humeri and femora are similar to those of nonprimates in their resistance to bending. Comparisons between arboreal and terrestrial species within the orders show that the bones of arboreal carnivorans have greater cross-sectional properties than those of terrestrial carnivorans, thus supporting Kimura's general notion. However, no differences were found between arboreal and terrestrial rodents. Among primates, the only significant difference was in humeral bending rigidity, which is higher in the terrestrial species. In summary, arboreal and terrestrial species do not show consistent differences in long bone reinforcement, and Kimura's conclusions must be modified to take into account the interaction of bone length and cross-sectional geometry.  相似文献   

4.
Morphological parallelism between South American cavioid rodents and small artiodactyls from the Old World has been postulated for a long time. Our study deals with this question from the point of view of biomechanical characteristics of the long bones. For this, cross-sectional area, second moment of the area, polar moment, athletic ability indicators and strength were calculated for the long bones (i.e. humerus, radius, femur and tibia) of five species of cavioids and two species of artiodactyls. Regressions of all these variables to body mass were established. Regarding the cross-sectional area, the confidence intervals show that the exponents calculated are not significantly different from the geometrical predicted value. The exponents obtained for the second moment of area and the polar moment are not significantly different from the geometrical prediction, except for the humerus. The two indicators of athletic ability scaled as expected, but the bending indicator of athletic ability of the femur was not correlated to body mass. The exponent calculated for femur strength is not different from zero, while the strength of the humerus decreases slightly with the body mass. Additional statistical tests (ANCOVAs) showed no difference between the values of these variables calculated for the samples studied of artiodactyls and rodents. The present results are consistent with the hypothesis that there is significant evolutionary parallelism between cavioid rodents and small artiodactyls.  相似文献   

5.
The incidence of pneumatization in avian long bones was studied, by direct observation, in a large sample of species. Only proximal bones (humerus and femur) presented pneumatization in the sample studied. The incidence obtained was related to the variation of the maximum cortical thickness and mechanical properties, such as bending strength and flexural Young's modulus. Cortical thickness, bending strength and flexural Young's modulus were significantly lower in pneumatized bones than in marrow-filled bones. Furthermore, some congruence was found between pneumatization and systematic groups when compared. In this sense, Charadriformes was the only order studied with total absence of long bone pneumatization. Results on cortical thickness appear to be in agreement with modelling predictions previously made and with results obtained on other groups of flying vertebrates. The possible selective advantage of reduction in cortical thickness in relation to flying is suggested.  相似文献   

6.
中国不同地理区域鸟兽物种丰富度的相关性   总被引:9,自引:0,他引:9  
生物类群之间物种丰富度的相关性研究是当前物种多样性研究中的热点问题之一,目前,中国尚无相关的研究报道。我们收集了中国三种区域类型:动物地理亚区、行政区和保护区的鸟兽名录,分析了行政区与保护区、动物地理区和经纬度带中鸟兽物种数比值及其相关性。 结果表明:不同区域、动物地理区和经纬度带中鸟兽物种数都显著相关。保护区尺度鸟兽物种 数的相关系数为0.818和动物地理区中的华北区为0.768,其他所有区域和地理区域的鸟兽物 种数的相关系数都高于0.850。因此,鸟兽物种数的相关关系在一定程度上具有预测价值。我们发现不同区域鸟兽物种数比值无显著性差异;但是,不同区域间鸟兽物种数 比值差异显著。该比值在中国呈中间低四周高的分布趋势,其中东北地区最高。我们还利用历史累积调查数据与非历史累积调查数据进行了鸟兽物种数比值及其相关性分析,发现利用累积数据计算的相关性低于非累积数据计算的相关性,但利用累积数据计算的鸟兽物 种数比值高于非累积数据计算的比值。最后,探讨了为什么鸟类与兽类的物种数目会相关。我们根据物种-面积公式,S=CAZ,导出了两个生物类群物种丰富度的相关关 系式。利用全国不同区域数据拟合,得到Z1/Z2=0.913,Z1/Z2接近于1。于是 ,C1/C2可视为近似等于Ram。本研究可推广到其他不同生物类群物种。物种数量的相关关系为快速评估区域的物种多样性提供了一条途径。  相似文献   

7.
The maximum sagittal curvature of the long bones (humeras, radius, ulna, femur, tibiotarsus and tarsometatarsus) of 45 specimens of birds, belonging to 36 species, was measured and regressed to the corresponding body mass. Mathematical results show a tendency of curvature to scale with strong positive allometry. Within the species studied, those with more characteristic flapping flight tend to show relatively low values of curvature in the wing bones. To check the agreement of the present results with current hypotheses on the origin of long bone curvature, previous results on scaling of myological and cross-sectional parameters in birds are considered. Indirect evidence suggests that curvature tends to increase bone stresses. Hypotheses that consider curvature as a consequence of the mechanical action of muscle allocation and optimization of functional strains are discussed at length. The possible double genetic-epigenetic determinism of the curvature character is evoked.  相似文献   

8.
The influences of heterogeneity, anisotropy and geometric irregularity on the unrestrained, linearly elastic torsional response of long bones are assessed. Longitudinal geometric variations contribute insignificantly to the torsional response for typical long bone geometries. Anisotropy, heterogeneity and transverse geometric irregularity significantly influence the torsional response. A procedure is discussed which uses an approximate means to characterize both heterogeneity and anisotropy in predicting the torsional response. The accuracy of circular and elliptical annulus models of the bone cross-sectional geometry are assessed by comparing the stress predictions of these simple models to those of finite element models of the bone geometry.  相似文献   

9.
Functional differentiation of long bones in lorises   总被引:2,自引:0,他引:2  
The external dimensions of the limb bones and the geometry of their midshaft cross-sections were determined for Loris tardigradus and Nycticebus coucang. Relative cortical thickness, cortical area, and second moment of area were calculated and contrasted with locomotor stresses. The difference in shape-related strength of the bones between the smaller- and the larger-bodied species is more pronounced than can be expected from stresses acting during normal locomotion. The Nycticebus skeleton has a much higher safety margin overall and seems to be dimensioned for infrequent but critical stresses of high magnitude. Lorisine gaits in general are characterized by low ground reaction forces, great mobility in all joints, and a nearly equal share in propulsion and weight-bearing by the fore- and hindlimb. Accordingly, the long bones of lorises (especially those of L. tardigradus) tend to be less rigid than those of other mammalian species (including other primates), they lack a preferential plane of higher bending strength, and femur and humerus do not differ markedly in their capacity to withstand mechanical stresses. External dimensions of the humerus and femur of the two African lorisine species parallel and corroborate these results. Some more general implications for the relationships between bone shape and locomotor stresses are also discussed.  相似文献   

10.
Systematic excavations at the site of the Sima de los Huesos (SH) in the Sierra de Atapuerca (Burgos, Spain) have allowed us to reconstruct 27 complete long bones of the human species Homo heidelbergensis. The SH sample is used here, together with a sample of 39 complete Homo neanderthalensis long bones and 17 complete early Homo sapiens (Skhul/Qafzeh) long bones, to compare the stature of these three different human species. Stature is estimated for each bone using race- and sex-independent regression formulae, yielding an average stature for each bone within each taxon. The mean length of each long bone from SH is significantly greater (p < 0.05) than the corresponding mean values in the Neandertal sample. The stature has been calculated for male and female specimens separately, averaging both means to calculate a general mean. This general mean stature for the entire sample of long bones is 163.6 cm for the SH hominins, 160.6 cm for Neandertals and 177.4 cm for early modern humans. Despite some overlap in the ranges of variation, all mean values in the SH sample (whether considering isolated bones, the upper or lower limb, males or females or more complete individuals) are larger than those of Neandertals. Given the strong relationship between long bone length and stature, we conclude that SH hominins represent a slightly taller population or species than the Neandertals. However, compared with living European Mediterranean populations, neither the Sima de los Huesos hominins nor the Neandertals should be considered ‘short’ people. In fact, the average stature within the genus Homo seems to have changed little over the course of the last two million years, since the appearance of Homo ergaster in East Africa. It is only with the emergence of H. sapiens, whose earliest representatives were ‘very tall’, that a significant increase in stature can be documented.  相似文献   

11.
Postcranial limb bones were compared among primates of different locomotor types. Seventy-one primate species, in which all families of primates were included, were grouped into nine locomotor types. Osteometrical data on long bones and data on the cross-sectional geometry of the humerus and the femur were studied by means of allometric analysis and principal component analysis. Relatively robust forelimb bones were observed in the primate group which adopted the relatively terrestrial locomotor type compared with the group that adopted the arboreal locomotor type. The difference resembled the previously reported comparison between terrestrial and arboreal groups among all quadrupedal mammals. The degree of arboreality in daily life is connected with the degree of hindlimb dominance, or the ratio of force applied to the fore- and hindlimb in positional behaviour and also with the shape, size and robusticity of limb bones.  相似文献   

12.
Bone microstructure reflects physiological characteristics and has been shown to contain phylogenetic and ecological signals. Although mammalian long bone histology is receiving increasing attention, systematic examination of the main clades has not yet been performed. Here we describe the long bone microstructure of Xenarthra based on thin sections representing twenty-two species. Additionally, patterns in bone compactness of humeri and femora are investigated. The primary bone tissue of xenarthran long bones is composed of a mixture of woven, parallel-fibered and lamellar bone. The vascular canals have a longitudinal, reticular or radial orientation and are mostly arranged in an irregular manner. Concentric rows of vascular canals and laminar organization of the tissue are only found in anteater bones. The long bones of adult specimens are marked by dense Haversian bone, a feature that has been noted for most groups of mammals. In the long bones of armadillos, secondary osteons have an oblique orientation within the three-dimensional bone tissue, thus resulting in their irregular shape when the bones are sectioned transversely. Secondary remodeling is generally more extensive in large taxa than in small taxa, and this could be caused by increased loading. Lines of arrested growth are assumed to be present in all specimens, but they are restricted to the outermost layer in bones of armadillos and are often masked by secondary remodeling in large taxa. Parameters of bone compactness show a pattern in the femur that separates Cingulata and Pilosa (Folivora and Vermilingua), with cingulates having a lower compactness than pilosans. In addition, cingulates show an allometric relationship between humeral and femoral bone compactness.  相似文献   

13.
The prevalence of macroscopic bone anomalies in the appendicular skeleton of wild rodents and, particularly, fossorial species is not well known. We examined 8,257 bones corresponding to 564 collection specimens (249 males and 315 females) of a fossorial form of water vole (Arvicola terrestris monticola). Animals were obtained monthly from July 1983 to December 1984 in the Aran Valley (Pyrenees). Most macroscopic anomalies were healed fractures or exostoses. The prevalence of anomalies was not significantly different between males and females but was clearly higher in adults than in juveniles and subadults. The frequency of alterations in the thoracic limb long bones was significantly higher than that in the pelvic counterparts. Aggressive intraspecific interactions and biomechanical factors related to burrowing may be associated with these differences. In females, remodeling of the innominate shape because of pregnancy and parturition could enhance fractures and exostoses in this structure.  相似文献   

14.
We measured the lengths and diameters of four long bones from 118 terrestrial carnivoran species using museum specimens. Though intrafamilial regressions scaled linearly, nearly all intraordinal regressions scaled non-linearly. The observed non-linear scaling of bone dimensions within this order results from a systematic decrease in intrafamilial allometric slope with increasing body size. A change in limb posture (more upright in larger species) to maintain similar peak bone stresses may allow the nearly isometric scaling of skeletal dimensions observed in smaller sized mammals (below about 100 kg). However, strong positive allometry is consistently observed in a number of large terrestrial mammals (the largest Carnivora, the large Bovidae, and the Ceratomorpha). This suggests that the capacity to compensate for size increases through alteration of limb posture is limited in extremely large-sized mammals, such that radical changes in bone shape are required to maintain similar levels of peak bone stress.  相似文献   

15.
The Red-tailed Hawk and Great Horned Owl are two species of raptor that are similar in body size, diet, and habitat. Both species use their hindlimbs during hunting, but differ in foot morphology, how they approach and immobilize prey, and the average size of prey captured. They also differ in primary flight style: the Red-tailed Hawk uses static soaring and the Great Horned Owl uses flap-gliding. The objectives of this study were to characterize the microstructure and cross-sectional shape of limb bones of these species and examine the relationship with flight and hunting behaviors. The mid-shaft of six limb bones from six individuals of each species was sampled. The degree of bone laminarity (proportion of circular primary vascular canals) and cross-sectional geometric parameters were calculated. In both species, the humerus and femur exhibited features that suggest high resistance to torsional loading, whereas the tibiotarsus and phalanges had a shape more likely to resist compression and bending in a specific plane. The femur of the Red-tailed Hawk exhibited higher laminarity and larger polar moment of area than that of the Great Horned Owl. The tibiotarsus was more elliptical than that of the Great Horned Owl. The hawk approaches prey from a more horizontal axis, takes prey of greater mass, and is more likely to pursue prey on the ground, which could potentially be causing more torsional loads on the femur and bending loads on the tibiotarsus. In addition, differences in polar moment of area of the phalanges between the species could relate to differences in foot morphology or digit length. The humerus and ulna of the flap-gliding Great Horned Owl are more elliptical than the static soaring Red-tailed Hawk, a shape that may better resist the bending loads associated with a larger amount of flapping.  相似文献   

16.
The strain environment of the tibial midshaft of two female macaques was evaluated through in vivo bone strain experiments using three rosette gauges around the circumference of the bones. Strains were collected for a total of 123 walking and galloping steps as well as several climbing cycles. Principal strains and the angle of the maximum (tensile) principal strain with the long axis of the bone were calculated for each gauge site. In addition, the normal strain distribution throughout the cross section was determined from the longitudinal normal strains (strains in the direction of the long axis of the bone) at each of the three gauge sites, and at the corresponding cross-sectional geometry of the bone. This strain distribution was compared with the cross-sectional properties (area moments) of the midshaft. For both animals, the predominant loading regime was found to be bending about an oblique axis running from anterolateral to posteromedial. The anterior and part of the medial cortex are in tension; the posterior and part of the lateral cortex are in compression. The axis of bending does not coincide with the maximum principal axis of the cross section, which runs mediolaterally. The bones are not especially buttressed in the plane of bending, but offer the greatest strength anteroposteriorly. The cross-sectional geometry therefore does not minimize strain or bone tissue. Peak tibial strains are slightly higher than the peak ulnar strains reported earlier for the same animals (Demes et al. [1998] Am J Phys Anthropol 106:87-100). Peak strains for both the tibia and the ulna are moderate in comparison to strains recorded during walking and galloping activities in nonprimate mammals.  相似文献   

17.
One reason to measure cross-sectional structural properties of primate long bones is to define mechanically relevant complexes of traits that describe the adaptation of bone to different biomechanical environments. This can be effectively accomplished when congeneric species having different postural and locomotor behaviors are compared. This paper compares the cross-sectional geometry of the femur and humerus in three behaviorally different macaque species as a basis for defining such patterns. Cross-sectional moments of inertia in the standard anatomical planes were calculated at five locations along the diaphyses of the femur and humerus in Macaca fascicularis, M. nemestrina, and M. mulatta. The data suggest that the "barrel-shaped" femur is associated with behaviors for which long limbs and small body size are an asset. This may be associated with, but is not restricted to, leaping behaviors. The data also suggest that structural rigidity of the femur and humerus is greater per unit body weight in primates that spend significant amounts of time in terrestrial environments than in those that are more restricted to climbing in arboreal environments.  相似文献   

18.
The sagittal and transverse diameters of the foramen magnum were examined in 100 human skulls (74 male, 26 female). The results were statistically analyzed and compared with those obtained by other authors. Our findings show that the sagittal and transverse diameters are clearly different, as well as the total area of the foramen magnum, these parameters being larger in male skulls than in female.  相似文献   

19.
The long bones of 72 individuals of extant platyrrhines, belonging to 17 species (11 genera) were studied by regressions of length, diameters and curvature. Cross-sectional shapes at midshaft and axial and bending strength indicators were also calculated. Results show that forelimb bones scale faster than hindlimb bones, for both length and diameters. Curvature scales faster in the femur than in other bones. Strength indicators showed a high variability in the relative importance of axial and bending loadings. Results are consistent with field observations of locomotor behaviour, mainly as regards quadrupedalism versus suspensory locomotion.  相似文献   

20.
A developmental constraint on the fledging time of birds   总被引:1,自引:0,他引:1  
We examined the hypothesis that the rate of bone growth limits the minimum fledging time of birds. Previous observations in California gulls indicate that linear growth of wing bones may be the rate limiting factor in wing development. If bone growth is rate limiting, then birds with relatively long bones for their size could be expected to have longer fledging periods than birds with relatively short bones. We tested this by comparing the length of wing bones, relative to body mass, to the relative length of fledging periods among 25 families. The results support the hypothesis. A strong correlation exists between relative fledging period and relative bone length. Species which have relatively long bones for their body size tend to take longer to fly. In contrast, parameters that influence flight style and performance, such as size of the pectoralis muscle and wing loading, show little or no correlation with fledging time. The analysis also indicates that, when altricial and precocial species are considered together, bone length is more highly correlated with fledging time than is body mass or rate of increase in body mass during growth. These observations suggest that linear growth of bones does limit the growth of avian wings and that it is one of the factors that influences the fledging time of birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号