首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The short-term replicability of the mismatch negativity (MMN) between two recording sessions spaced 2 h apart was evaluated at individual and group levels in a sample of 11 healthy adults. Subjects were presented with a random sequence of 1000 Hz standard (92%) and 1100 Hz deviant (8%) tones while they were reading a book. The N1 and P2 exogenous components to standard tones showed a fairly good individual and group replicability. There were no significant differences in the MMN amplitude and latency between the two sessions in the group of subjects as a whole. The individual replicability of the MMN was not as good as for the N1 to standards, reaching significance in only some of the electrodes. This result was, however, similar to that obtained for the N1 after deviant tones. The results indicate that the MMN has good replicability at the group level, and further that at the individual level, MMN replicability is similar to that of the N1 to deviants. This suggests that the number of summations should be increased in order to improve the clinical usefulness of the MMN.  相似文献   

2.

Background

The Mismatch Negativity (MMN) is an event-related potential (ERP) sensitive to early auditory deviance detection and has been shown to be reduced in schizophrenia patients. Moreover, MMN amplitude reduction to duration deviant tones was found to be related to functional outcomes particularly, to neuropsychological (working memory and verbal domains) and psychosocial measures. While MMN amplitude is thought to be correlated with deficits of early sensory processing, the functional significance of MMN latency remains unclear so far. The present study focused on the investigation of MMN in relation to neuropsychological function in schizophrenia.

Method

Forty schizophrenia patients and 16 healthy controls underwent a passive oddball paradigm (2400 binaural tones; 88% standards [1 kHz, 80 db, 80 ms], 11% frequency deviants [1.2 kHz], 11% duration deviants [40 ms]) and a neuropsychological test-battery. Patients were assessed with regard to clinical symptoms.

Results

Compared to healthy controls schizophrenia patients showed diminished MMN amplitude and shorter MMN latency to both deviants as well as an impaired neuropsychological test performance. Severity of positive symptoms was related to decreased MMN amplitude to duration deviants. Furthermore, enhanced verbal memory performance was associated with prolonged MMN latency to frequency deviants in patients.

Conclusion

The present study corroborates previous results of a diminished MMN amplitude and its association with positive symptoms in schizophrenia patients. Both, the findings of a shorter latency to duration and frequency deviants and the relationship of the latter with verbal memory in patients, emphasize the relevance of the temporal aspect of early auditory discrimination processing in schizophrenia.  相似文献   

3.
Twelve subjects were tested using a 3-tone auditory oddball paradigm consisting of a standard 1000 Hz tone (P = 80%) and two deviants, namely, a 1200 Hz tone and a 2000 Hz tone (both P = 10%). Testing took place in 3 conditions: (1) attend, in which the subject had to count one of the deviant tones; (2) ignore, in which the subject read a book; and (3) sleep, in which the subject was encouraged to go to sleep during presentation of the tones.In the awake conditions stimulus deviance elicited mismatch negativity (MMN) and P3. During drowsiness, no separate mismatch negativity (MMN) could be detected, but the 2000 Hz tone evoked a broad fronto-central early negative deflection, suggesting an overlap of N1 and MMN. In the same condition, P210, N330 and P430 appeared, all being sensitive to magnitude of deviance. During stage 2, the P210, N330 and P430 amplitudes increased, most notably to the large deviant.These data indicate that differential processing of auditory inputs is maintained during drowsiness and stage 2 sleep, but do not support the notion that MMN or P3 activity comparable to the waking state occurs to oddball stimuli during this stage. It is hypothesised that during light sleep, scanning of the environment is performed by a different system than in the awake state and that during drowsiness a gradual switch between these two systems takes place.  相似文献   

4.
The mismatch field (MMF) to minor pitch changes in two experimental conditions was studied. Standard tones of 1000 Hz and deviant tones of 1050 Hz both of 50 ms duration were delivered in single tone condition. Paired tones of the same duration were used in the paired tone condition. The standard tone pair consisted of two 1000 Hz tones, whereas the deviant tone pair was composed of a 1000 Hz tone in the first position and a 1050 Hz tone in the second position with a silent interval of 15 ms between the two. Standards of 90% and deviants of 10% probability were presented in random order and with a randomized interstimulus interval between 600 and 900 ms. The source analysis showed a more lateral location for the MMF obtained in the paired tone condition (MMF.P) compared to the MMF elicited by the single deviants (MMF.S). The source location of both the MMF.P and MMF.S turned out to be significantly anterior relative to the sources of the M100. The increased stimulus repetition in the paired tone condition (two times more stimuli than in the single tone condition) lead to a strong suppression of the field amplitude and of the dipole moment of the M100, while this effect could not be seen for the MMF. The data demonstrate a fundamental difference between the processes reflected by the M100 and the MMF: while the M100 represents the processing of every individual tone, the MMF reflects the change detection of the paired stimuli as unitary events, forming a perceptual group. The different sources of the MMF.P and MMF.S also support an integrated processing of the paired stimuli.  相似文献   

5.

Background  

Compared to the waveform or spectrum analysis of event-related potentials (ERPs), time-frequency representation (TFR) has the advantage of revealing the ERPs time and frequency domain information simultaneously. As the human brain could be modeled as a complicated nonlinear system, it is interesting from the view of psychological knowledge to study the performance of the nonlinear and linear time-frequency representation methods for ERP research. In this study Hilbert-Huang transformation (HHT) and Morlet wavelet transformation (MWT) were performed on mismatch negativity (MMN) of children. Participants were 102 children aged 8–16 years. MMN was elicited in a passive oddball paradigm with duration deviants. The stimuli consisted of an uninterrupted sound including two alternating 100 ms tones (600 and 800 Hz) with infrequent 50 ms or 30 ms 600 Hz deviant tones. In theory larger deviant should elicit larger MMN. This theoretical expectation is used as a criterion to test two TFR methods in this study. For statistical analysis MMN support to absence ratio (SAR) could be utilized to qualify TFR of MMN.  相似文献   

6.
Mismatch negativity (MMN) and N2b were elicited during a selective dichotic-listening task in 16 young (Y), 16 middle-aged (M) and 19 elderly (E) subjects to evaluate automatic and effortful memory comparison of auditory stimuli. Sequences of standard (80%) and deviant (20%) tones were dichotically presented to subjects in two runs. In each run, subjects were instructed to give a button-press response to the deviant (target) tones in the ear designated as attended and to ignore the input to the other ear.Peak latencies, peak amplitudes and mean amplitudes were calculated for MMN and N2b components in each subject. MMN latency and amplitude were quite stable regardless of age, while N2b latency was significantly longer in M and E subjects than in Y subjects. These results are interpreted as reflecting that automatic processes of comparison in auditory memory of stimuli presented at short interstimulus intervals remain quite stable from 23 to 77 years of age; however, those requiring attentional effort decline with age.  相似文献   

7.
Boh B  Herholz SC  Lappe C  Pantev C 《PloS one》2011,6(7):e21458
In the present study we investigated the capacity of the memory store underlying the mismatch negativity (MMN) response in musicians and nonmusicians for complex tone patterns. While previous studies have focused either on the kind of information that can be encoded or on the decay of the memory trace over time, we studied capacity in terms of the length of tone sequences, i.e., the number of individual tones that can be fully encoded and maintained. By means of magnetoencephalography (MEG) we recorded MMN responses to deviant tones that could occur at any position of standard tone patterns composed of four, six or eight tones during passive, distracted listening. Whereas there was a reliable MMN response to deviant tones in the four-tone pattern in both musicians and nonmusicians, only some individuals showed MMN responses to the longer patterns. This finding of a reliable capacity of the short-term auditory store underlying the MMN response is in line with estimates of a three to five item capacity of the short-term memory trace from behavioural studies, although pitch and contour complexity covaried with sequence length, which might have led to an understatement of the reported capacity. Whereas there was a tendency for an enhancement of the pattern MMN in musicians compared to nonmusicians, a strong advantage for musicians could be shown in an accompanying behavioural task of detecting the deviants while attending to the stimuli for all pattern lengths, indicating that long-term musical training differentially affects the memory capacity of auditory short-term memory for complex tone patterns with and without attention. Also, a left-hemispheric lateralization of MMN responses in the six-tone pattern suggests that additional networks that help structuring the patterns in the temporal domain might be recruited for demanding auditory processing in the pitch domain.  相似文献   

8.
Althen H  Grimm S  Escera C 《PloS one》2011,6(12):e28522
The detection of deviant sounds is a crucial function of the auditory system and is reflected by the automatically elicited mismatch negativity (MMN), an auditory evoked potential at 100 to 250 ms from stimulus onset. It has recently been shown that rarely occurring frequency and location deviants in an oddball paradigm trigger a more negative response than standard sounds at very early latencies in the middle latency response of the human auditory evoked potential. This fast and early ability of the auditory system is corroborated by the finding of neurons in the animal auditory cortex and subcortical structures, which restore their adapted responsiveness to standard sounds, when a rare change in a sound feature occurs. In this study, we investigated whether the detection of intensity deviants is also reflected at shorter latencies than those of the MMN. Auditory evoked potentials in response to click sounds were analyzed regarding the auditory brain stem response, the middle latency response (MLR) and the MMN. Rare stimuli with a lower intensity level than standard stimuli elicited (in addition to an MMN) a more negative potential in the MLR at the transition from the Na to the Pa component at circa 24 ms from stimulus onset. This finding, together with the studies about frequency and location changes, suggests that the early automatic detection of deviant sounds in an oddball paradigm is a general property of the auditory system.  相似文献   

9.
M Cornella  S Leung  S Grimm  C Escera 《PloS one》2012,7(8):e43604
Auditory deviance detection in humans is indexed by the mismatch negativity (MMN), a component of the auditory evoked potential (AEP) of the electroencephalogram (EEG) occurring at a latency of 100-250 ms after stimulus onset. However, by using classic oddball paradigms, differential responses to regularity violations of simple auditory features have been found at the level of the middle latency response (MLR) of the AEP occurring within the first 50 ms after stimulus (deviation) onset. These findings suggest the existence of fast deviance detection mechanisms for simple feature changes, but it is not clear whether deviance detection among more complex acoustic regularities could be observed at such early latencies. To test this, we examined the pre-attentive processing of rare stimulus repetitions in a sequence of tones alternating in frequency in both long and middle latency ranges. Additionally, we introduced occasional changes in the interaural time difference (ITD), so that a simple-feature regularity could be examined in the same paradigm. MMN was obtained for both repetition and ITD deviants, occurring at 150 ms and 100 ms after stimulus onset respectively. At the level of the MLR, a difference was observed between standards and ITD deviants at the Na component (20-30 ms after stimulus onset), for 800 Hz tones, but not for repetition deviants. These findings suggest that detection mechanisms for deviants to simple regularities, but not to more complex regularities, are already activated in the MLR range, supporting the view that the auditory deviance detection system is organized in a hierarchical manner.  相似文献   

10.
Dog cognition research tends to rely on behavioural response, which can be confounded by obedience or motivation, as the primary means of indexing dog cognitive abilities. A physiological method of measuring dog cognitive processing would be instructive and could complement behavioural response. Electroencephalogram (EEG) has been used in humans to study stimulus processing, which results in waveforms called event-related potentials (ERPs). One ERP component, mismatch negativity (MMN), is a negative deflection approximately 160-200 ms after stimulus onset, which may be related to change detection from echoic sensory memory. We adapted a minimally invasive technique to record MMN in dogs. Dogs were exposed to an auditory oddball paradigm in which deviant tones (10% probability) were pseudo-randomly interspersed throughout an 8 min sequence of standard tones (90% probability). A significant difference in MMN ERP amplitude was observed after the deviant tone in comparison to the standard tone, t5 = −2.98, p = 0.03. This difference, attributed to discrimination of an unexpected stimulus in a series of expected stimuli, was not observed when both tones occurred 50% of the time, t1 = −0.82, p > 0.05. Dogs showed no evidence of pain or distress at any point. We believe this is the first illustration of MMN in a group of dogs and anticipate that this technique may provide valuable insights in cognitive tasks such as object discrimination.  相似文献   

11.
Characteristics of the mismatch negativity (MMN) were studied by presenting the subjects with four blocks of stimuli containing standard series of clicks (90%) simulating a stationery sound image located in the head midline, and one of three different deviant series of clicks (10%) simulating either a stationary sound image located near the left ear or a moving sound image which shifted from the head midline to the left ear or in the opposite direction. All the deviant stimuli elicited the MMN with the minimal peak amplitude and the greatest latency evoked by the deviant series of clicks simulating the sound image moving from the head midline to the left ear. These findings suggest that the MMN may be considered as a pre-perceptual physiological measure of the discrimination accuracy for the sound signals with various spatial locations.  相似文献   

12.
The interindividual variation and test-retest stability of the mismatch negativity (MMN) and N1 components of the event-related potential (ERP) were investigated by presenting standard (85%) and deviant tones (15%) to 10 young subjects in 2 sessions separated by 1 month. Deviant tones in different blocks were either frequency or duration changes with interstimulus intervals (ISIS) of 0.5 and 1.5 sec. The results showed a fairly good test-retest stability of the MMN amplitude for both types of changes with each IS[ at the group level. The amplitude of the duration MMN showed significant individual test-retest stability. The N1 amplitude showed high stability at both the group and individual levels. Both the MMN and N1 showed considerable interindividual variation. The results suggest that MMN and N1 can be used in follow-up studies not only at the group level but possibly at the individual level also.  相似文献   

13.
Any occasional changes in the acoustic environment are of potential importance for survival. In humans, the preattentive detection of such changes generates the mismatch negativity (MMN) component of event-related brain potentials. MMN is elicited to rare changes ('deviants') in a series of otherwise regularly repeating stimuli ('standards'). Deviant stimuli are detected on the basis of a neural comparison process between the input from the current stimulus and the sensory memory trace of the standard stimuli. It is, however, unclear to what extent animals show a similar comparison process in response to auditory changes. To resolve this issue, epidural potentials were recorded above the primary auditory cortex of urethane-anesthetized rats. In an oddball condition, tone frequency was used to differentiate deviants interspersed randomly among a standard tone. Mismatch responses were observed at 60-100 ms after stimulus onset for frequency increases of 5% and 12.5% but not for similarly descending deviants. The response diminished when the silent inter-stimulus interval was increased from 375 ms to 600 ms for +5% deviants and from 600 ms to 1000 ms for +12.5% deviants. In comparison to the oddball condition the response also diminished in a control condition in which no repetitive standards were presented (equiprobable condition). These findings suggest that the rat mismatch response is similar to the human MMN and indicate that anesthetized rats provide a valuable model for studies of central auditory processing.  相似文献   

14.
规律短音中极短间隔短音诱发的失匹配负电位   总被引:10,自引:0,他引:10  
姜德鸣 Paavi.  P 《生理学报》1994,46(6):561-567
失匹配负电位是听觉事件相关电位的一个成分,它由一系列重复的,同性质的“标准刺激”的物理性质稍有偏离的“偏差刺激”所诱发,在规律性的标准刺激中,偶然的物理性质稍有偏离的刺激,如频率,强度,久度等的些微变化均可诱发MMN。偶然地给于时间上“过早出现”的同样刺激,即频率,强度,久度完全相同,只是在规律性的标准刺激中过早地出现的刺激,作为偏差刺激,也可以诱发出NNM。本研究在恒定刺激间隔ISI=600ms  相似文献   

15.
Taaseh N  Yaron A  Nelken I 《PloS one》2011,6(8):e23369
Stimulus-specific adaptation (SSA) is the specific decrease in the response to a frequent ('standard') stimulus, which does not generalize, or generalizes only partially, to another, rare stimulus ('deviant'). Stimulus-specific adaptation could result simply from the depression of the responses to the standard. Alternatively, there may be an increase in the responses to the deviant stimulus due to the violation of expectations set by the standard, indicating the presence of true deviance detection. We studied SSA in the auditory cortex of halothane-anesthetized rats, recording local field potentials and multi-unit activity. We tested the responses to pure tones of one frequency when embedded in sequences that differed from each other in the frequency and probability of the tones composing them. The responses to tones of the same frequency were larger when deviant than when standard, even with inter-stimulus time intervals of almost 2 seconds. Thus, SSA is present and strong in rat auditory cortex. SSA was present even when the frequency difference between deviants and standards was as small as 10%, substantially smaller than the typical width of cortical tuning curves, revealing hyper-resolution in frequency. Strong responses were evoked also by a rare tone presented by itself, and by rare tones presented as part of a sequence of many widely spaced frequencies. On the other hand, when presented within a sequence of narrowly spaced frequencies, the responses to a tone, even when rare, were smaller. A model of SSA that included only adaptation of the responses in narrow frequency channels predicted responses to the deviants that were substantially smaller than the observed ones. Thus, the response to a deviant is at least partially due to the change it represents relative to the regularity set by the standard tone, indicating the presence of true deviance detection in rat auditory cortex.  相似文献   

16.
By using the mismatch negativity (MMN) component of the event-related potential, it was demonstrated that changes within a repetitively presented tone pattern can be automatically (i.e., involuntarily and attention-independently) detected by the human brain. Patterns consisting of 5 tones, immediately succeeding one another and differing in frequency, were delivered to subjects reading a self-selected book. There was a frequent , “standard” (P = 0.90) and an infrequent, “deviant” (P = 0.10) pattern presented in random order. The deviant pattern elicited the MMN even when the auditory stimulation was continuous, that is, no empty between-pattern interval indicated the beginning of a tone pattern. It may be concluded that the MMN mechanism is not necessarily timed by an “external” reference but is able to use “internal” units extracted from the repetitive structure inherent in the incessant flow of acoustic signals. The MMN paradigm seems to provide a tool to illuminate the organization of acoustic signals into auditory units.  相似文献   

17.
Reaction times (RTs) and event-related brain potentials (ERPs) were recorded in middle-aged (MA) and elderly (ELD) subjects performing an auditory selective attention task. Subjets attended to tone bursts of a specified pitch and ear of delivery and responded to occasional longer duration target tones (75 vs. 25 msec). Infrequent novel stimuli (computer synthesized sounds and digitized environmental noises) were also included in the stimulus sequence.No significant age-related differences were found in the speed or accuracy of target detection. However, in both groups, RTs were delayed (by more than 300 msec) to targets that followed novel sounds. The prolongation was greater following novel sounds in the attended ear, particularly in the ELD group.The effects of selective attention on ERPs to standard tones were isolated as negative difference waves (Nds) by subtracting ERPs to non-attended stimuli from ERPs to the same signals when attended. Nds had similar amplitudes, latencies of onset (60 msec), and distributions in ELD and MA groups. In both groups, Nd waves were more prominent following right ear stimulation, reflecting possible hemispheric asymmetries of generators in posterior temporal regions.The mismatch negativity (MMN) was isolated by subtracting ERPs to standard tones from ERPs to deviant stimuli. MMN amplitudes were reduced in the ELD group. There was also a significant change in MMN distribution with age: the MMN was larger over the right hemisphere for MA subjects but larger over the left for ELD subjects. Elderly subjects showed a trend toward smaller P3 amplitudes and delayed P3 latencies, but group differences did not reach statistical significance. ERPs to novel sounds were characterized by centrally distributed N2 and P3a components. Although the novel P3a was enhanced with attention, no novel Nd waves could be isolated. This suggests that novel sounds fell outside the focus of attention.  相似文献   

18.
Evoked potentials were recorded from the posterior dorsal thalamus of green treefrogs (Hyla cinerea) in response to single tones and combinations of two and three tones. 1. The responses to two tones were largest when one of the component tones was 500 Hz and when the second component was between 2000 and 4000 Hz (Fig.3). 2. The response to 500 + 3000 Hz showed nonlinear facilitation; i.e., the amplitude of the response was greater than the sum of the responses to the component tones alone (Figs. 4, 5). This result provides evidence that cells functioning as 'AND' gates will be found in this center. 3. When a third tone around 1200 Hz was added to a stimulus of 500 + 3000 Hz a 65% decrease in the evoked response amplitude occurred (Fig. 6). 4. The largest evoked response amplitude to a two-tone stimulus (500 + 3000 Hz) occurred when the rise-time was less than 50 ms (Fig. 7). 5. The two-tone tuning was found to be temperature dependent. The optimal lower frequency tone shifted downward with decreasing temperatures (Fig. 8). 6. When the temperatures of the neurophysiological and the behavioral experiments are matched, the optimal stimuli for evoking a large response are closely correlated to the parameters of the acoustic stimuli preferred by gravid H. cinerea females in discrimination tests. This center therefore appears to be very important for the processing of complex species-specific sounds.  相似文献   

19.
Detecting sudden environmental changes is crucial for the survival of humans and animals. In the human auditory system the mismatch negativity (MMN), a component of auditory evoked potentials (AEPs), reflects the violation of predictable stimulus regularities, established by the previous auditory sequence. Given the considerable potentiality of the MMN for clinical applications, establishing valid animal models that allow for detailed investigation of its neurophysiological mechanisms is important. Rodent studies, so far almost exclusively under anesthesia, have not provided decisive evidence whether an MMN analogue exists in rats. This may be due to several factors, including the effect of anesthesia. We therefore used epidural recordings in awake black hooded rats, from two auditory cortical areas in both hemispheres, and with bandpass filtered noise stimuli that were optimized in frequency and duration for eliciting MMN in rats. Using a classical oddball paradigm with frequency deviants, we detected mismatch responses at all four electrodes in primary and secondary auditory cortex, with morphological and functional properties similar to those known in humans, i.e., large amplitude biphasic differences that increased in amplitude with decreasing deviant probability. These mismatch responses significantly diminished in a control condition that removed the predictive context while controlling for presentation rate of the deviants. While our present study does not allow for disambiguating precisely the relative contribution of adaptation and prediction error processing to the observed mismatch responses, it demonstrates that MMN-like potentials can be obtained in awake and unrestrained rats.  相似文献   

20.
The effect of stimulus duration on auditory event-related potentials and performance of oddball task was studied in normal children and those with attention-deficit symptoms. Mismatch negativity was absent on presentation of short-term (11 ms) stimuli and present with longer stimuli (50 ms). The adolescents with deficit of attention performed much worse (errors of omission) with the short stimuli. The RT was significantly larger in subjects with attention-deficit with all types of tested stimulus duration. They also manifested a smaller P3b amplitude in response to task-relevant deviant stimuli and larger N2b peaks in response to the standard stimuli. It was possible to differentiate between the MMN and the N2b components owing to the fact that the MMN was absent with shorter stimuli. The findings suggest that there is a deficit in processing of sensory information at the cortical level in subjects with the attention-deficit symptoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号