首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The reduction of the tetraheme cytochrome c3 (from Desulfovibrio vulgaris, strains Miyazaki F and Hildenbourough) by flavin semiquinone and reduced methyl viologen follows a monophasic kinetic profile, even though the four hemes do not have equivalent reduction potentials. Rate constants for reduction of the individual hemes are obtained subsequent to incrementally reducing the cytochrome by phototitration. The dependence of each rate constant on the reduction potential difference between the heme and the reductant can be described by outer sphere electron transfer theroy. Thus, the very low reduction potentials of the cytochrome c3 hemes compensate for the very large solvent accessibility of the hemes. The relative rate constants for electron transfer to the four hemes of cytochrome c3 are consistent with the assignments of reduction potential to hemes previously made by Park et al. (Park, J.-S., Kano, K., Niki, S. and Akutsu, H. (1991) FEBS Lett. 285, 149-151) using NMR techniques. The ionic strength dependence of the observed rate constant for reduction by the methyl viologen radical cation indicates that ionic strength substantially alters the structure and/or the heme reduction potentials of the cytochrome. This result is confirmed by reduction with a neutral flavin species (5-deazariboflavin semiquinone) in which the reactivity of the highest potential heme decreases and the reactivity of the lowest potential heme increases at high (500 mM) ionic strength, and by the sensitivity of heme methyl resonances to ionic strength as observed by 1H-NMR. These unusual ionic strength-dependent effects may be due to a combination of structural changes in the cytochrome and alterations of the electrostatic fields at elevated ionic strengths.  相似文献   

2.
The macroscopic and microscopic redox potentials of the four hemes of the small tetraheme cytochrome c from Shewanella oneidensis were determined. The microscopic redox potentials show that the order of reduction is from hemes in the C-terminal domain (hemes 3 and 4) to the N-terminal domain (heme 1), demonstrating the polarization of the tetraheme chain during reduction. This makes heme 4 the most efficient electron delivery site. Furthermore, multi-step reduction of other redox centers through either heme 4 or heme 3 is shown to be possible. This has provided new insights into the two-electron reduction of the flavin in the homologous flavocytochrome c-fumarate reductase.  相似文献   

3.
The study of the thermodynamic redox behavior of the hemes from two members of the A family of heme-copper oxygen reductases, Paracoccus denitrificans aa3 (A1 subfamily) and Rhodothermus marinus caa3 (A2 subfamily) enzymes, is presented. At different pH values, midpoint reduction potentials and interaction potentials were obtained in the framework of a pairwise model for two interacting redox centers. In both enzymes, the hemes have different reduction potentials. For the A1-type enzyme, it was shown that heme a has a pH-dependent midpoint reduction potential, whereas that of heme a3 is pH independent. For the A2-type enzyme the opposite was observed. The midpoint reduction potential of heme c from subunit II of the caa3 enzyme was determined by fitting the data with a single-electron Nernst curve, and it was shown to be pH dependent. The results presented here for these A-type enzymes are compared with those previously obtained for representative members of the B and C families.  相似文献   

4.
A comprehensive study of the thermodynamic redox behavior of the hemes of the ba3 enzyme from Thermus thermophilus, a B-type heme-copper oxygen reductase, is presented. This enzyme, in contrast to those having a single type of heme, allows the B- and A-type hemes to be monitored separately by visible spectroscopy and the reduction potential of each heme to be determined unequivocally. The relative order of the midpoint reduction potentials of each center changed in the pH range from 6 to 8.4, and both hemes present a significant redox-Bohr effect. For instance, at pH 7, the midpoint reduction potentials of the hemes B and A3 are 213 mV and 285 mV, respectively, whereas at pH 8.4, the order is reversed: 246 mV for heme B and 199 mV for heme A3. The existence of redox anticooperativity was established by introducing a redox interaction parameter in a model of pairwise interacting redox centers.  相似文献   

5.
Takayama Y  Harada E  Kobayashi R  Ozawa K  Akutsu H 《Biochemistry》2004,43(34):10859-10866
The roles of aromatic residues in redox regulation of cytochrome c(3) were investigated by site-directed mutagenesis at every aromatic residue except for axial ligands (Phe20, Tyr43, Tyr65, Tyr66, His67, and Phe76). The mutations at Phe20 induced large chemical shift changes in the NMR signals for hemes 1 and 3, and large changes in the microscopic redox potentials of hemes 1 and 3. The NMR signals of the axial ligands of hemes 1 and 3 were also affected. Analysis of the nature of the mutations revealed that a hydrophobic environment and aromaticity are important for the reduction of the redox potentials of hemes 1 and 3, respectively. There was also a global effect. The replacement of Tyr66 with leucine induced chemical shift changes for heme 4, and changes in the microscopic redox potentials of heme 4. The mutations of Tyr65 induced changes in the chemical shifts and microscopic redox potentials for every heme, suggesting that Tyr65 stabilizes the global conformation, thereby reducing the redox potentials. In contrast, although the mutations of His67 and Phe76 caused chemical shift changes for heme 2, they did not affect its redox potentials, showing these residues are not important. All noncoordinated aromatic residues conserved in the cytochrome c(3) subfamily with heme binding motifs CXXCH, CXXXXCH, CXXCH, and CXXXXCH (Phe20, Tyr43, and Tyr66) are involved in the pi-pi interaction, which causes a decrease in the redox potential of the interacting heme. The global effect can be attributed to either direct or indirect interactions among the four hemes in the cyclic architecture.  相似文献   

6.
 The pH dependence of the redox potentials in the tetrahemic cytochrome c 3 from Desulfovibrio vulgaris Hildenborough (redox-Bohr effect) is here investigated using continuum electrostatics methods. The redox-Bohr effect seems to be associated with changes in the protonation state of charged residues in the protein, but the exact residues had not been identified. The global pK a of this phenomenon is dependent on the redox state of the molecule, and the influence of the pH on the microscopic potential of each heme has been experimentally quantified. The availability of detailed experimental data provides us with important and unique guides to the performance of ab initio pK a calculations aiming at the identification of the groups involved. These calculations were performed in several redox states along the reduction pathway, with the double objective of finding groups with redox-linked pK a shifts, and absolute pK as compatible with the redox-Bohr effect. The group with the largest pK a shift along the reduction pathway is propionate D from heme I. Its effect on the redox potential of individual hemes, as calculated by electrostatic calculations, correlates very well with the experimental order of influence, making it a likely candidate. Abnormal titration of the same propionate has been experimentally observed on a homologous cytochrome c 3 from a different strain, thus strengthening the theoretical result. However, its absolute calculated pK a in the fully oxidised cytochrome is outside the zone where the phenomenon is known to occur, but the calculation shows a strong dependence on small conformational changes, suggesting large uncertainties in the calculated value. A group with a pK a value within the experimentally observed range is propionate D from heme IV. Its influence on the redox potential of the hemes does not correlate with the experimental order, indicating that, although it may be one of the possible players on the phenomenon, it cannot be solely responsible for it. Mutation of the Lys45 residue is suggested as an indirect way of probing the importance of the propionate D from heme I in the mechanism. Non-heme groups may also be involved in this process; our calculations indicate His67 and the N-terminal as groups that may play a role. Accuracy and applicability of current continuum electrostatic methods are discussed in the context of this system. Received: 27 March 1997 / Accepted: 19 August 1997  相似文献   

7.
 A comparative study of the pH-dependent redox mechanisms of several members of the cytochrome c 3 family has been carried out. In a previous work, the molecular determinants of this dependency (the so-called redox-Bohr effect) were investigated for one species using continuum electrostatic methods to find groups with a titrating range and strength of interaction compatible with a mediating role in the redox-Bohr effect. Here we clarify these aspects in the light of new and improved pK a calculations, our findings supporting the hypothesis of propionate D from heme I being the main effector in the pH-dependent modulation of the cytochrome c 3 redox potentials in all the c 3 molecules studied here. However, the weaker (but significant) role of other titrating groups cannot be excluded, their importance and identity changing with the particular molecule under study. We also calculate the relative redox potentials of the four heme centers among the selected members of the c 3 family, using a continuum electrostatic method that takes into account both solvation and interaction effects. Comparison of the calculated values with available data for the microscopic redox potentials was undertaken, the quality of the agreement being dependent upon the choice of the dielectric constant for the protein interior. We find that high dielectric constants give best correlations, while low values result in better magnitudes for the calculated potentials. The possibility that the crystallographic calcium ion in c 3 from Desulfovibrio gigas may be present in the solution structure was tested, and found to be likely. Received: 31 August 1998 / Accepted: 20 November 1998  相似文献   

8.
Kinetics of electron transfer from soluble cytochrome c2 to the tetraheme cytochrome c have been measured in isolated reaction centers and in membrane fragments of the photosynthetic purple bacterium Rhodopseudomonas viridis by time-resolved flash absorption spectroscopy. Absorbance changes kinetics in the region of cytochrome -bands (540–560 nm) were measured at 21 °C under redox conditions where the two high-potential hemes (c-559 and c-556) of the tetraheme cytochrome were chemically reduced. After flash excitation, the heme c-559 donates an electron to the special pair of bacteriochlorophylls and is then re-reduced by heme c-556. The data show that oxidized heme c-556 is subsequently re-reduced by electron transfer from reduced cytochrome c2 present in the solution. The rate of this reaction has a non-linear dependence on the concentration of cytochrome c2, suggesting a (minimal) two-step mechanism involving the f ormation of a complex between cytochrome c2 and the reaction center, followed by intracomplex electron transfer. To explain the monophasic character of the reaction kinetics, we propose a collisional mechanism where the lifetime of the temporary complex is short compared to electron transfer. The limit of the halftime of the bimolecular process when extrapolated to high concentrations of cytochrome c2 is 60 ± 20 s. There is a large ionic strength effect on the kinetics of electron transfer from cytochrome c2 to heme c-556. The pseudofirst-order rate constant decreases from 1.1 × 107 M-1 s-1 to 1.3 × 106 M-1 s-1 when the ionic strength is increased from 1 to 1000 mM. The maximum rate (1.1 × 107 M-1 s-1) was obtained at about 1 mM ionic strength. This dependence of the rate on ionic strength s uggests that attractive electrostatic interactions contribute to the binding of cytochrome c2 with the tetraheme cytochrome. On the basis of our data and of previous molecular modelling, it is proposed that cytochrome c2 docks close to the low-potential heme c-554 and reduces heme c-556 via c-554.  相似文献   

9.
Periplasmic extract from Desulfovibrio desulfuricans (NCIMB 8372) was found to contain two different c-type cytochromes. One is tetraheme cytochrome c3 and the other is monoheme cytochrome c553. Cytochrome c3 could be purified by a procedure involving only one chromatographic step, whereas cytochrome c553 required several such steps. Cytochrome c3 was found to have a relative molecular mass of 14300 and an isoionic point higher than 9. Analysis of the redox potentials indicated one heme at -260 mV and three hemes around -330 mV. Cytochrome c553 had a relative molecular mass of 7200, an isoionic point higher than 9 and a redox potential of 0 mV.  相似文献   

10.
Orientations of the active site chromophores of the mitochondrial redox carriers have been investigated in hydrated, oriented multilayers of mitochondrial membranes using optical and EPR spectroscopy. The hemes of cytochrome c oxidase, cytochrome c1, and cytochromes b were found to be oriented in a similar manner, with the normal to their heme planes lying approximately in the plane of the mitochondrial membrane. The heme of cytochrome c was either less oriented in general or was oriented at an angle closer to the plane of the mitochondrial membrane than were the hemes of the “tightly bound” mitochondrial cytochromes. EPR spectra of the azide, sulfide and formate complexes of cytochrome c oxidase in mitochondria in situ obtained as a function of the orientation of the applied magnetic field relative to the planes of the membrane multilayers showed that both hemes of the oxidase were oriented in such a way that the angle between the heme normal and the membrane normal was approx. 90°.  相似文献   

11.
《BBA》2006,1757(9-10):1133-1143
In cytochrome c oxidase, oxido-reductions of heme a/CuA and heme a3/CuB are cooperatively linked to proton transfer at acid/base groups in the enzyme. H+/e cooperative linkage at Fea3/CuB is envisaged to be involved in proton pump mechanisms confined to the binuclear center. Models have also been proposed which involve a role in proton pumping of cooperative H+/e linkage at heme a (and CuA). Observations will be presented on: (i) proton consumption in the reduction of molecular oxygen to H2O in soluble bovine heart cytochrome c oxidase; (ii) proton release/uptake associated with anaerobic oxidation/reduction of heme a/CuA and heme a3/CuB in the soluble oxidase; (iii) H+ release in the external phase (i.e. H+ pumping) associated with the oxidative (R  O transition), reductive (O  R transition) and a full catalytic cycle (R  O  R transition) of membrane-reconstituted cytochrome c oxidase. A model is presented in which cooperative H+/e linkage at heme a/CuA and heme a3/CuB with acid/base clusters, C1 and C2 respectively, and protonmotive steps of the reduction of O2 to water are involved in proton pumping.  相似文献   

12.
The redox potentials for cytochrome c-552 at different ionic strengths, pH 7, have been determined, together with the thermodynamic parameters of the redox reaction. The effects of the electrostatic media on the redox potential of cytochrome c-552 do not depend on the nature of the ions employed. At 25 °C and pH 7 the observed potentials depend on the ionic strength, I, according to the equation: Eobso = 0.280 + .525 (I12(I + I12)). The significance of the ionic strength dependence of the redox potentials and their derived thermodynamic parameters are discussed and compared to those of mammalian cytochrome c. It is concluded that the redox potentials for ionic strength approaching zero are not affected by the overall net charge of the proteins; at finite ionic strengths, the protein charges play a very important role in determining the observed redox potentials.  相似文献   

13.
Cytochromes c 7 are periplasmic triheme proteins that have been reported exclusively in δ-proteobacteria. The structures of five triheme cytochromes identified in Geobacter sulfurreducens and one in Desulfuromonas acetoxidans have been determined. In addition to the hemes and axial histidines, a single aromatic residue is conserved in all these proteins—phenylalanine 15 (F15). PpcA is a member of the G. sulfurreducens cytochrome c 7 family that performs electron/proton energy transduction in addition to electron transfer that leads to the reduction of extracellular electron acceptors. For the first time we probed the role of the F15 residue in the PpcA functional mechanism, by replacing this residue with the aliphatic leucine by site-directed mutagenesis. The analysis of NMR spectra of both oxidized and reduced forms showed that the heme core and the overall fold of the mutated protein were not affected. However, the analysis of 1H–15N heteronuclear single quantum coherence NMR spectra evidenced local rearrangements in the α-helix placed between hemes I and III that lead to structural readjustments in the orientation of heme axial ligands. The detailed thermodynamic characterization of F15L mutant revealed that the reduction potentials are more negative and the redox-Bohr effect is decreased. The redox potential of heme III is most affected. It is of interest that the mutation in F15, located between hemes I and III in PpcA, changes the characteristics of the two hemes differently. Altogether, these modifications disrupt the balance of the global network of cooperativities, preventing the F15L mutant protein from performing a concerted electron/proton transfer.  相似文献   

14.
Elisa Fadda 《BBA》2008,1777(3):277-284
As part of the mitochondrial respiratory chain, cytochrome c oxidase utilizes the energy produced by the reduction of O2 to water to fuel vectorial proton transport. The mechanism coupling proton pumping to redox chemistry is unknown. Recent advances have provided evidence that each of the four observable transitions in the complex catalytic cycle consists of a similar sequence of events. However, the physico-chemical basis underlying this recurring sequence has not been identified. We identify this recurring pattern based on a comprehensive model of the catalytic cycle derived from the analysis of oxygen chemistry and available experimental evidence. The catalytic cycle involves the periodic repetition of a sequence of three states differing in the spatial distribution of charge in the active site: [0|1], [1|0], and [1|1], where the total charge of heme a and the binuclear center appears on the left and on the right, respectively. This sequence recurs four times per turnover despite differences in the redox chemistry. This model leads to a simple, robust, and reproducible sequence of electron and proton transfer steps and rationalizes the pumping mechanism in terms of electrostatic coupling of proton translocation to redox chemistry. Continuum electrostatic calculations support the proposed mechanism and suggest an electrostatic origin for the decoupled and inactive phenotypes of ionic mutants in the principal proton-uptake pathway.  相似文献   

15.
《BBA》2020,1861(9):148237
Cytochrome a was suggested as the key redox center in the proton pumping process of bovine cytochrome c oxidase (CcO). Recent studies showed that both the structure of heme a and its immediate vicinity are sensitive to the ligation and the redox state of the distant catalytic center composed of iron of cytochrome a3 (Fea3) and copper (CuB). Here, the influence of the ligation at the oxidized Fea33+–CuB2+ center on the electron–proton coupling at heme a was examined in the wide pH range (6.5-11). The strength of the coupling was evaluated by the determination of pH dependence of the midpoint potential of heme a (Em(a)) for the cyanide (the low-spin Fea33+) and the formate-ligated CcO (the high-spin Fea33+). The measurements were performed under experimental conditions when other three redox centers of CcO are oxidized. Two slightly differing linear pH dependencies of Em(a) were found for the CN– and the formate–ligated CcO with slopes of −13 mV/pH unit and −23 mV/pH unit, respectively. These linear dependencies indicate only a weak and unspecific electron–proton coupling at cytochrome a in both forms of CcO. The lack of the strong electron–proton coupling at the physiological pH values is also substantiated by the UV–Vis absorption and electron–paramagnetic resonance spectroscopy investigations of the cyanide–ligated oxidized CcO. It is shown that the ligand exchange at Fea3+ between His–Fea3+–His and His–Fea3+–OH occurs only at pH above 9.5 with the estimated pK >11.0.  相似文献   

16.
A combined DFT/electrostatic approach is employed to study the coupling of proton and electron transfer reactions in cytochrome c oxidase (CcO) and its proton pumping mechanism. The coupling of the chemical proton to the internal electron transfer within the binuclear center is examined for the O  E transition. The novel features of the His291 pumping model are proposed, which involve timely well-synchronized sequence of the proton-coupled electron transfer reactions. The obtained pKas and Ems of the key ionizable and redox-active groups at the different stages of the O  E transition are consistent with available experimental data. The PT step from E242 to H291 is examined in detail for various redox states of the hemes and various conformations of E242 side-chain. Redox potential calculations of the successive steps in the reaction cycle during the O  E transition are able to explain a cascade of equilibria between the different intermediate states and electron redistribution between the metal centers during the course of the catalytic activity. All four electrometric phases are discussed in the light of the obtained results, providing a robust support for the His291 model of proton pumping in CcO. This article is part of a Special Issue entitled: Respiratory oxidases.  相似文献   

17.
Raul Covian  Bernard L. Trumpower 《BBA》2008,1777(7-8):1044-1052
Energy transduction in the cytochrome bc1 complex is achieved by catalyzing opposite oxido-reduction reactions at two different quinone binding sites. We have determined the pre-steady state kinetics of cytochrome b and c1 reduction at varying quinol/quinone ratios in the isolated yeast bc1 complex to investigate the mechanisms that minimize inhibition of quinol oxidation at center P by reduction of the bH heme through center N. The faster rate of initial cytochrome b reduction as well as its lower sensitivity to quinone concentrations with respect to cytochrome c1 reduction indicated that the bH hemes equilibrated with the quinone pool through center N before significant catalysis at center P occurred. The extent of this initial cytochrome b reduction corresponded to a level of bH heme reduction of 33%–55% depending on the quinol/quinone ratio. The extent of initial cytochrome c1 reduction remained constant as long as the fast electron equilibration through center N reduced no more than 50% of the bH hemes. Using kinetic modeling, the resilience of center P catalysis to inhibition caused by partial pre-reduction of the bH hemes was explained using kinetics in terms of the dimeric structure of the bc1 complex which allows electrons to equilibrate between monomers.  相似文献   

18.
In cytochromes c3 which contain four hemes per molecule, the redox properties of each heme may depend upon the redox state of the others. This effect can be described in terms of interaction redox potentials between the hemes and must be taken into account in the characterization of the redox properties of the molecule. We present here a method of measurement of these interactions based on the EPR study of the redox equilibria of the protein. The microscopic and macroscopic midpoint potentials and the interaction potentials are deduced from the analysis of the redox titration curves of the intensity and the amplitude of the EPR spectrum. This analysis includes a precise simulation of the spectrum of the protein in the oxidized state in order to determine the relative contribution of each heme to the spectral amplitude. Using our method on cytochrome c3 from D. desulfuricans Norway, we found evidence for the existence of weak interaction potentials between the hemes. The three interaction potentials which have been measured are characterized by absolute values lower than 20 mV in contrast with the values larger than 40-50 mV which have been reported for cytochrome c3 from D. gigas. Simulations of the spectra of samples poised at different potentials indicate a structural modification of the heme with the most negative potential during the first step of reduction. The correspondence between the redox sites as characterized by the EPR potentiometric titration and the hemes in the tridimensional structure is discussed.  相似文献   

19.
(1) Using the pulse-radiolysis and stopped-flow techniques, the reactions of iron-free (porphyrin) cytochrome c and native cytochrome c with cytochrome aa3 were investigated. The porphyrin cytochrome c anion radical (generated by reduction of porphyrin cytochrome c by the hydrated electron) can transfer its electron to cytochrome aa3. The bimolecular rate constant for this reaction is 2·107 M?1·s?1 (5 mM potassium phosphate, 0.5% Tween 20, pH 7.0, 20°C). (2) The ionic strength dependence of the cytochrome c-cytochromeaa3 interaction was measured in the ionic strength range between 40 and 120 mM. At ionic strengths below 30 mM, a cytochrome c-cytochrome aa3 complex is formed in which cytochrome c is no longer reducible by the hydrated electron. A method is described by which the contributions of electrostatic forces to the reaction rate can be determined. (3) Using the stopped-flow technique, the effect of the dielectric constant (?) of the reaction medium on the reaction of cytochrome c with cytochrome aa3 was investigated. With increasing ? the second-order rate constant decreased.  相似文献   

20.
We have measured the rates of superoxide anion generation by cytochrome bc1 complexes isolated from bovine heart and yeast mitochondria and by cytochrome bc1 complexes from yeast mutants in which the midpoint potentials of the cytochrome b hemes and the Rieske iron-sulfur cluster were altered by mutations in those proteins. With all of the bc1 complexes the rate of superoxide anion production was greatest in the absence of bc1 inhibitor and ranged from 3% to 5% of the rate of cytochrome c reduction. Stigmatellin, an inhibitor that binds to the ubiquinol oxidation site in the bc1 complex, eliminated superoxide anion formation, while myxothiazol, another inhibitor of ubiquinol oxidation, allowed superoxide anion formation at a low rate. Antimycin, an inhibitor that binds to the ubiquinone reduction site in the bc1 complex, also allowed superoxide anion formation and at a slightly greater rate than myxothiazol. Changes in the midpoint potentials of the cytochrome b hemes had no significant effect on the rate of cytochrome c reduction and only a small effect on the rate of superoxide anion formation. A mutation in the Rieske iron-sulfur protein that lowers its midpoint potential from +285 to +220 mV caused the rate of superoxide anion to decline in parallel with a decline in cytochrome c reductase activity. These results indicate that superoxide anion is formed by similar mechanisms in mammalian and yeast bc1 complexes. The results also show that changes in the midpoint potentials of the redox components that accept electrons during ubiquinol oxidation have only small effects on the formation of superoxide anion, except to the extent that they affect the activity of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号