首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
MEK kinases are regulated by EGF and selectively interact with Rac/Cdc42.   总被引:17,自引:3,他引:14  
G R Fanger  N L Johnson    G L Johnson 《The EMBO journal》1997,16(16):4961-4972
MEK kinases (MEKKs) 1, 2, 3 and 4 are members of sequential kinase pathways that regulate MAP kinases including c-Jun NH2-terminal kinases (JNKs) and extracellular regulated kinases (ERKs). Confocal immunofluorescence microscopy of COS cells demonstrated differential MEKK subcellular localization: MEKK1 was nuclear and in post-Golgi vesicular-like structures; MEKK2 and 4 were localized to distinct Golgi-associated vesicles that were dispersed by brefeldin A. MEKK1 and 2 were activated by EGF, and kinase-inactive mutants of each MEKK partially inhibited EGF-stimulated JNK activity. Kinase-inactive MEKK1, but not MEKK2, 3 or 4, strongly inhibited EGF-stimulated ERK activity. In contrast to MEKK2 and 3, MEKK1 and 4 specifically associated with Rac and Cdc42 and kinase-inactive mutants blocked Rac/Cdc42 stimulation of JNK activity. Inhibitory mutants of MEKK1-4 did not affect p21-activated kinase (PAK) activation of JNK, indicating that the PAK-regulated JNK pathway is independent of MEKKs. Thus, in different cellular locations, specific MEKKs are required for the regulation of MAPK family members, and MEKK1 and 4 are involved in the regulation of JNK activation by Rac/Cdc42 independent of PAK. Differential MEKK subcellular distribution and interaction with small GTP-binding proteins provides a mechanism to regulate MAP kinase responses in localized regions of the cell and to different upstream stimuli.  相似文献   

4.
The mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase (JNK) is a critical regulator of collagenase-1 production in rheumatoid arthritis (RA). The MAPKs are regulated by upstream kinases, including MAPK kinases (MAPKKs) and MAPK kinase kinases (MAP3Ks). The present study was designed to evaluate the expression and regulation of the JNK pathway by MAP3K in arthritis. RT-PCR studies of MAP3K gene expression in RA and osteoarthritis synovial tissue demonstrated mitogen-activated protein kinase/ERK kinase kinase (MEKK) 1, MEKK2, apoptosis-signal regulating kinase-1, TGF-beta activated kinase 1 (TAK1) gene expression while only trace amounts of MEKK3, MEKK4, and MLK3 mRNA were detected. Western blot analysis demonstrated immunoreactive MEKK2, TAK1, and trace amounts of MEKK3 but not MEKK1 or apoptosis-signal regulating kinase-1. Analysis of MAP3K mRNA in cultured fibroblast-like synoviocytes (FLS) showed that all of the MAP3Ks examined were expressed. Western blot analysis of FLS demonstrated that MEKK1, MEKK2, and TAK1 were readily detectable and were subsequently the focus of functional studies. In vitro kinase assays using MEKK2 immunoprecipitates demonstrated that IL-1 increased MEKK2-mediated phosphorylation of the key MAPKKs that activate JNK (MAPK kinase (MKK)4 and MKK7). Furthermore, MEKK2 immunoprecipitates activated c-Jun in an IL-1 dependent manner and this activity was inhibited by the selective JNK inhibitor SP600125. Of interest, MEKK1 immunoprecipitates from IL-1-stimulated FLS appeared to activate c-Jun through the JNK pathway and TAK1 activation of c-Jun was dependent on JNK, ERK, and p38. These data indicate that MEKK2 is a potent activator of the JNK pathway in FLS and that signal complexes including MEKK2, MKK4, MKK7, and/or JNK are potential therapeutic targets in RA.  相似文献   

5.
Mitogen-activated protein kinase (MAPK) pathways are activated by a plethora of stimuli. The literature is filled with papers describing the activation of different MAPKs by almost any stimulus or insult imaginable to cells. In this review, we use signal transduction wiring diagrams to illustrate putative upstream regulators for the MAPK kinase kinases, MEKK1, 2, and 3. Targeted gene disruption of MEKK1, 2, or 3 defined phenotypes for each MEKK associated with loss of specific MAPK regulation. Genetic analysis of MEKK function clearly defines specific components of the wiring diagram that require MEKK1, 2, or 3 for physiological responses. We propose that signal transduction network wiring diagrams are valuable tools for hypothesis building and filtering physiologically relevant phenotypic responses from less connected protein relations in the regulation of MAPK pathways.  相似文献   

6.
Axin is a multidomain protein that plays a critical role in Wnt signaling, serving as a scaffold for down-regulation of beta-catenin. It also activates the JNK mitogen-activated protein kinase by binding to MEKK1. However, it is intriguing that Axin requires several additional elements for JNK activation, including a requirement for homodimerization, sumoylation at the extreme C-terminal sites, and a region in the protein phosphatase 2A-binding domain. In our present study, we have shown that another MEKK family member, MEKK4, also binds to Axin in vivo and mediates Axin-induced JNK activation. Surprisingly MEKK4 binds to a region distinct from the MEKK1-binding site. Dominant negative mutant of MEKK4 attenuates the JNK activation by Axin. Activation of JNK by Axin in MEKK1-/- mouse embryonic fibroblast cells supports the idea that another MEKK can mediate Axin-induced JNK activation. Expression of specific small interfering RNA against MEKK4 effectively attenuates JNK activation by the MEKK1 binding-defective Axin mutant in 293T cells and inhibits JNK activation by wild-type Axin in MEKK1-/- cells, confirming that MEKK4 is indeed another mitogen-activated protein kinase kinase kinase that is specifically involved in Axin-mediated JNK activation independently of MEKK1. We have also identified an additional domain between MEKK1- and MEKK4-binding sites as being required for JNK activation by Axin. MEKK1 and MEKK4 compete for Axin binding even though they bind to sites far apart, suggesting that Axin may selectively bind to MEKK1 or MEKK4 depending on distinct signals or cellular context. Our findings will provide new insights into how scaffold proteins mediate ultimate activation of different mitogen-activated protein kinase kinase kinases.  相似文献   

7.
8.
Regulation of Stat3 activation by MEK kinase 1   总被引:6,自引:0,他引:6  
  相似文献   

9.
To investigate the roles of various hematopoietic cell-specific adapter proteins in T cell receptor (TCR)-signaling leading to nuclear factor of activated T cell (NF-AT) and nuclear factor of kappaB (NF-kappaB) activation, we reconstituted TCR-signaling with CD8/zeta, various protein tyrosine kinases (PTKs), and adapter proteins in a non-lymphoid cell line, 293T. We show that SLP-76 and BLNK, but not LAT, effectively co-operated with Syk and Tec family PTKs to activate NF-AT and NF-kappaB. We also show that Tec family PTKs enhanced endogenous phospholipase C (PLC)-gamma1 phosphorylation induced by CD8/zeta and Syk in 293T cells. These results imply that PLC-gamma1 may play a critical role in a hematopoietic cell-specific adapter protein-mediated NF-AT and NF-kappaB activation in a non-lymphoid cell.  相似文献   

10.
The biological actions of retinoids are mediated by nuclear retinoic acid receptors (RARs) and retinoid X receptors (RXRs). We have recently reported that decreased expression of RARα and RXRα has an important role in high glucose (HG)-induced cardiomyocyte apoptosis. However, the regulatory mechanisms of HG effects on RARα and RXRα remain unclear. Using neonatal cardiomyocytes, we found that ligand-induced promoter activity of RAR and RXR was significantly suppressed by HG. HG promoted protein destabilization and serine-phosphorylation of RARα and RXRα. Proteasome inhibitor MG132 blocked the inhibitory effect of HG on RARα and RXRα. Inhibition of intracellular reactive oxidative species (ROS) abolished the HG effect. In contrast, H(2)O(2) stimulation suppressed the expression and ligand-induced promoter activity of RARα and RXRα. HG promoted phosphorylation of ERK1/2, JNK and p38 MAP kinases, which was abrogated by an ROS inhibitor. Inhibition of JNK, but not ERK and p38 activity, reversed HG effects on RARα and RXRα. Activation of JNK by over expressing MKK7 and MEKK1, resulted in significant downregulation of RARα and RXRα. Ligand-induced promoter activity of RARα and RXRα was also suppressed by overexpression of MEKK1. HG-induced cardiomyocyte apoptosis was potentiated by activation of JNK, and prevented by all-trans retinoic acid and inhibition of JNK. Silencing the expression of RARα and RXRα activated the JNK pathway. In conclusion, HG-induced oxidative stress and activation of the JNK pathway negatively regulated expression/activation of RAR and RXR. The impaired RAR/RXR signaling and oxidative stress/JNK pathway forms a vicious circle, which significantly contributes to hyperglycemia induced cardiomyocyte apoptosis.  相似文献   

11.
It has been reported that a human chloride intracellular channel (CLIC) protein, CLIC4, translocates to the nucleus in response to cellular stress, facilitated by a putative CLIC4 nuclear localization signal (NLS). The CLIC4 NLS adopts an α-helical structure in the native CLIC4 fold. It is proposed that CLIC4 is transported to the nucleus via the classical nuclear import pathway after binding the import receptor, importin-α. In this study, we have determined the X-ray crystal structure of a truncated form of importin-α lacking the importin-β binding domain, bound to a CLIC4 NLS peptide. The NLS peptide binds to the major binding site in an extended conformation similar to that observed for the classical simian virus?40 large T-antigen NLS. A Tyr residue within the CLIC4 NLS makes surprisingly favourable interactions by forming side-chain hydrogen bonds to the importin-α backbone. This structural evidence supports the hypothesis that CLIC4 translocation to the nucleus is governed by the importin-α nuclear import pathway, provided that CLIC4 can undergo a conformational rearrangement that exposes the NLS in an extended conformation.  相似文献   

12.
LIM kinases (LIMKs) regulate actin dynamics through cofilin phosphorylation and also have a function in the nucleus. Recently we have shown that LIMK2 shuttles between cytoplasm and nucleus in endothelial cells and that nuclear import is inhibited by protein kinase C-mediated phosphorylation of Ser-283. Here we aimed to identify the structural features of LIMK2 responsible for nuclear import. We found that the kinase domain of LIMK2 is localized exclusively in the nucleus and, in contrast to the kinase domain of LIMK1, it accumulated in the nucleolus. Through site-directed mutagenesis, we identified the basic amino acid-rich motif KKRTLRKNDRKKR (amino acids 491-503) as the functional nuclear and nucleolar localization signal of LIMK2. After fusing this motif to enhanced green fluorescent protein, the fusion protein localized exclusively in the nucleus and nucleolus. Mutagenesis studies showed that phosphorylation of Thr-494, a putative protein kinase C phosphorylation site identified within the nuclear localization signal, inhibits nuclear import of the enhanced green fluorescent protein-PDZ kinase domain of LIMK2. After inhibiting nuclear export with leptomycin B, phosphorylation of either Ser-283 or Thr-494 reduced the nuclear import of LIMK2. Phosphorylation of both Ser-283 and Thr-494 sites inhibited nuclear import completely. Our findings identify a unique basic amino acid-rich motif (amino acids 491-503) in LIMK2 which is not present in LIMK1 that serves to target the protein not only to the nucleus but also to the nucleolus. Phosphorylation of Thr-494 within this motif negatively regulates nuclear import of LIMK2.  相似文献   

13.
MEKK2 and MEKK3 are mitogen-activated protein kinase kinase kinases (MAP3 kinases) of 70 and 71 kDa respectively that are markedly homologous (94%) in their kinase domains. Both MEKK2 and MEKK3 are able to activate the Jun kinase pathway in vivo. However, following routine immunoprecipitation in Triton X-100, MEKK2 but not MEKK3 is able to effectively phosphorylate both SEK-1 and MEK-1 and to undergo autophosphorylation. Unexpectedly, both MEKK2 and MEKK3 are functional in an in vitro kinase assay when cells are solubilized with the closely related detergent, NP-40. Given the high homology between these kinases, we set out to relate this differential sensitivity to Triton X-100 to differences in primary structure. A set of chimeric molecules were generated and the loss of activity in Triton X-100 mapped to kinase domain II/III and specifically to serine 390 of MEKK3 and valine 384 of MEKK2, residues immediately N-terminal to the active site lysine. Mutation of serine 390 of MEKK3 to a valine (as is found in MEKK2) conferred catalytic activity to MEKK3 in Triton X-100 whereas the reciprocal alteration of valine 384 of MEKK2 to a serine conferred lack of activity in Triton X-100 to MEKK2. Search of the protein database identified only three kinases, MEKK3, Pbs2p and Dd-PKI, with a serine or threonine at this site. The presence of a serine or threonine adjacent to the active site lysine in protein kinases is rare and, in MEKK3, results in detergent instability.  相似文献   

14.
c-Jun N-terminal kinase (JNK) contributes to metalloproteinase (MMP) gene expression and joint destruction in inflammatory arthritis. It is phosphorylated by at least two upstream kinases, the mitogen-activated protein kinase kinases (MEK) MKK4 and MKK7, which are, in turn, phosphorylated by MEK kinases (MEKKs). However, the MEKKs that are most relevant to JNK activation in synoviocytes have not been determined. These studies were designed to assess the hierarchy of upstream MEKKs, MEKK1, MEKK2, MEKK3, and transforming growth factor-β activated kinase (TAK)1, in rheumatoid arthritis (RA). Using either small interfering RNA (siRNA) knockdown or knockout fibroblast-like synoviocytes (FLSs), MEKK1, MEKK2, or MEKK3 deficiency (either alone or in combination) had no effect on IL-1β-stimulated phospho-JNK (P-JNK) induction or MMP expression. However, TAK1 deficiency significantly decreased P-JNK, P-MKK4 and P-MKK7 induction compared with scrambled control. TAK1 knockdown did not affect p38 activation. Kinase assays showed that TAK1 siRNA significantly suppressed JNK kinase function. In addition, MKK4 and MKK7 kinase activity were significantly decreased in TAK1 deficient FLSs. Electrophoretic mobility shift assays demonstrated a significant decrease in IL-1β induced AP-1 activation due to TAK1 knockdown. Quantitative PCR showed that TAK1 deficiency significantly decreased IL-1β-induced MMP3 gene expression and IL-6 protein expression. These results show that TAK1 is a critical pathway for IL-1β-induced activation of JNK and JNK-regulated gene expression in FLSs. In contrast to other cell lineages, MEKK1, MEKK2, and MEKK3 did not contribute to JNK phosphorylation in FLSs. The data identify TAK1 as a pivotal upstream kinase and potential therapeutic target to modulate synoviocyte activation in RA.  相似文献   

15.
MAPK/ERK kinase kinase 2 (MEKK2) is a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family of protein kinases. MAP3Ks are components of a three-tiered protein kinase pathway in which a MAP3K phosphorylates and activates a mitogen-activated protein kinase kinase (MAP2K), which in turn activates a mitogen-activated protein kinase (MAPK). We have previously identified residues within protein kinase subdomain X in the MAP3K, MEKK1, that are critical for its interaction with the MAP2K, MKK4, and MEKK1-induced MKK4 activation. We report here that kinase subdomain X also plays a critical role in MEKK2 activity. Select point mutations in subdomain X impair MEKK2 phosphorylation of the MAP2Ks, MKK7 and MEK5, abolish MEKK2-induced activation of the MAPKs, JNK1 and ERK5, and diminish MEKK2-dependent activation of an AP-1 reporter gene. Interestingly, the spectrum of mutations in subdomain X of MEKK2 that affects its activity is overlapping with but not identical to those that have effects on MEKK1. Thus, mutations in subdomain X differentially affect MEKK2 and MEKK1.  相似文献   

16.
Binding of JNK/SAPK to MEKK1 is regulated by phosphorylation   总被引:2,自引:0,他引:2  
We sought to characterize the role of upstream kinases in the regulation of the MAP3 kinase MEKK1 and the potential impact on signaling to MAP kinase cascades. We find that the MAP4 kinase PAK1 phosphorylates the amino terminus of MEKK1 on serine 67. We show that serine 67 lies in a D domain, which binds to the c-Jun-NH(2)-terminal kinase/stress-activated protein kinases (JNK/SAPK). Serine 67 is constitutively phosphorylated in resting 293 cells, but is dephosphorylated following exposure to stress stimuli such as anisomycin and UV irradiation. Phosphorylation of this site inhibits binding of JNK/SAPK to MEKK1. Thus, we propose a mechanism by which the MEKK1-dependent JNK/SAPK pathway is negatively regulated by PAK through phosphorylation of serine 67.  相似文献   

17.
Serpentine receptors coupled to the heterotrimeric G protein, Gi2, are capable of stimulating DNA synthesis in a variety of cell types. A common feature of the Gi2-coupled stimulation of DNA synthesis is the activation of the mitogen-activated protein kinases (MAPKs). The regulation of MAPK activation by the Gi2-coupled thrombin and acetylcholine muscarinic M2 receptors occurs by a sequential activation of a network of protein kinases. The MAPK kinase (MEK) which phosphorylates and activates MAPK is also activated by phosphorylation. MEK is phosphorylated and activated by either Raf or MEK kinase (MEKK). Thus, Raf and MEKK converge at MEK to regulate MAPK. Gi2-coupled receptors are capable of activating MEK and MAPK by Raf-dependent and Raf-independent mechanisms. Pertussis toxin catalyzed ADP-ribosylation of αi2 inhibits both the Raf-dependent and-independent pathways activated by Gi2-coupled receptors. The Raf-dependent pathway involves Ras activation, while the Raf-independent activation of MEK and MAPK does not involve Ras. The Raf-independent activation of MEK and MAPK most likely involves the activation of MEKK. The vertebrate MEKK is homologous to the Ste11 and Byr2 protein kinases in the yeast Saccharomyces cerevisiae and Schizosaccharomyces pombe, respectively. The yeast Ste11 and Byr2 protein kinases are involved in signal transduction cascades initiated by pheromone receptors having a 7 membrane spanning serpentine structure coupled to G proteins. MEKK appears to be conserved in the regulation of G protein-coupled signal pathways in yeast and vertebrates. Raf represents a divergence in vertebrates from the yeast pheromone-responsive protein kinase system. Defining MEKK and Raf as a divergence in the MAPK regulatory network provides a mechanism for differential regulation of this system by Gi2-coupled receptors as well as other receptor systems, including the tyrosine kinases.  相似文献   

18.
Axin negatively regulates the Wnt pathway during axis formation and plays a central role in cell growth control and tumorigenesis. We found that Axin also serves as a scaffold protein for mitogen-activated protein kinase activation and further determined the structural requirement for this activation. Overexpression of Axin in 293T cells leads to differential activation of mitogen-activated protein kinases, with robust induction for c-Jun NH(2)-terminal kinase (JNK)/stress-activated protein kinase, moderate induction for p38, and negligible induction for extracellular signal-regulated kinase. Axin forms a complex with MEKK1 through a novel domain that we term MEKK1-interacting domain. MKK4 and MKK7, which act downstream of MEKK1, are also involved in Axin-mediated JNK activation. Domains essential in Wnt signaling, i. e. binding sites for adenomatous polyposis coli, glycogen synthase kinase-3beta, and beta-catenin, are not required for JNK activation, suggesting distinct domain utilization between the Wnt pathway and JNK signal transduction. Dimerization/oligomerization of Axin through its C terminus is required for JNK activation, although MEKK1 is capable of binding C terminus-deleted monomeric Axin. Furthermore, Axin without the MEKK1-interacting domain has a dominant-negative effect on JNK activation by wild-type Axin. Our results suggest that Axin, in addition to its function in the Wnt pathway, may play a dual role in cells through its activation of JNK/stress-activated protein kinase signaling cascade.  相似文献   

19.
MAPK/ERK kinase kinase 3 (MEKK3) is a mitogen-activated protein kinase kinase kinase (MAP3K) that functions upstream of the MAP kinases and IkappaB kinase. Phosphorylation is believed to be a critical component for MEKK3-dependent signal transduction, but little is known about the phosphorylation sites of this MAP3K. To address this question, point mutations were introduced in the activation loop (T-loop), substituting alanine for serine or threonine, and the mutants were transfected into HEK293 Epstein-Barr virus nuclear antigen cells. MEKK3-dependent activation of an NF-kappaB reporter gene as well as ERK, JNK, and p38 MAP kinases correlated with a requirement for serine at position 526. Constitutively active mutants of MEKK3, consisting of S526D and S526E, were capable of activating a NF-kappaB luciferase reporter gene as well as ERK and MEK, suggesting that a negative charge at Ser526 was necessary for MEKK3 activity and implicating Ser526 as a phosphorylation site. An antibody was developed that specifically recognized phospho-Ser526 of MEKK3 but did not recognize the S526A point mutant. The catalytically inactive (K391M) mutant of MEKK3 was not phosphorylated at Ser526, indicating that phosphorylation of Ser526 occurs via autophosphorylation. Endogenous MEKK3 was phosphorylated on Ser526 in response to osmotic stress. In addition, phosphorylation of Ser526 was required for MKK6 phosphorylation in vitro, whereas dephosphorylation of Ser526 was mediated by protein phosphatase 2A and sensitive to okadaic acid and sodium fluoride. Finally, the association between MEKK3 and 14-3-3 was dependent on Ser526 and prevented dephosphorylation of Ser526. In summary, Ser526 of MEKK3 is an autophosphorylation site within the T-loop that is regulated by PP2A and 14-3-3 proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号