首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This investigation was the first cladistic analysis using morphological data of first instar larvae of Strepsiptera. The analysis of representatives of nearly all known families of Strepsiptera supports the division of Strepsiptera into Mengenillidia and Stylopidia. Corioxenidae and Elenchidae are placed at the base of Stylopidia. Halictophagidae is the sister group to Xeninae + Myrmecolacidae + Stylopinae. Xeninae is placed as the sister group to Myrmecolacidae + Stylopinae. Stylopidae are paraphyletic. Thus, Xenidae stat. n. is re-established. A sister-group relationship between Myrmecolacidae and Elenchidae is not supported on characters of first instar larvae.  相似文献   

2.
The phylogeny of Strepsiptera (Hexapoda)   总被引:1,自引:0,他引:1  
Previous phylogenetic analyses of Strepsiptera have been limited to characters from only males or first instar larvae, and by poor taxonomic sampling. This investigation is the first cladistic analysis to use more than fourfold as many characters as any prior study, and a broader sampling of taxa. The analysis of 189 morphological characters of all stages of representatives of all extant strepsipteran families and characters of adult males of amber fossils results in the following branching pattern: (?Protoxenos+ (?Cretostylops + (?Mengea + (Mengenillidae + (Corioxenidae + (Bohartillidae + (Halictophagidae + (Elenchidae + (?Protelencholax + (Myrmecolacidae + (Callipharixenidae + (Xenidae + Stylopidae)))))))))))). The basal placement of the Baltic amber fossil ?Protoxenos and the Burmese amber fossil ?Cretostylops is well founded. Even though ?Cretostylops is older than ?Protoxenos it is almost certainly not the most basal strepsipteran group but the sister group of a clade comprising the Baltic amber fossil ?Mengea + Strepsiptera s. str. (excl. stemlineage). Monophyly of Mengenillidae, Stylopidia, Stylopiformia s.l., Corioxenidae, Xenidae, and Stylopidae is confirmed. Mengenillidia is paraphyletic (with respect to ?Mengea (Mengeidae)), Elenchidae (with respect to ?Protelencholax) and the genus Stichotrema (with respect to the Baltic amber fossils). Thus Protelencholacidae fam. n. is described, and S. weitschati and S. triangulum are transferred to Palaeomyrmecolax. A ground plan of adult male Strepsiptera is provided and evolutionary interpretations are presented based on the obtained cladograms. © The Willi Hennig Society 2005.  相似文献   

3.
4.
External features of the embryonic development of Stylops ovinae (Strepsiptera) were examined. Eighteen distinct embryological stages are suggested. Many embryological traits are closely correlated to the parasitic life style of the first instar larvae or to vivipary. The high number of eggs, their small size, the characteristic egg membrane, and the lack of micropyles are derived groundplan features of Strepsiptera. The development with a semi-long germ embryo is shared with several other groups of Holometabola. The reduction of the labrum and antennae are autapomorphies of Strepsiptera. The cephalic ventral plate of the first instar larva of S. ovinae is formed by parts of the head capsule and the anlagen of the maxillae and labium. It is involved in the formation of the specific entognathous condition, and the entire character complex is autapomorphic for Stylopidae. The trochanter is recognizable in the anlagen of all three legs. Its fusion with the femur in the later stages is an autapomorphy of Stylopidia. The extreme spiralization and compression of the abdomen during blastokinesis is a derived feature, like the reduction of the anlagen of the anterior abdominal appendages. The caudal bristles on segment XI are possibly re-activated cerci. The same is likely in the case of segment XI.  相似文献   

5.
Summary. We present the first record of parasitism of Dolichoderus bispinosus nests by Strepsiptera belonging to the family Myrmecolacidae. This becomes only the fourteenth species of ant and the fifth subfamily to be identified as a host to Strepsiptera. Of the three colonies examined all were parasitized. Prevalence of parasitism among adult ants was less than 2% in each case. However, among alate males of one colony, nearly 24% were parasitized. In conjunction with a reanalysis of previously published data we discuss the possibility that ant castes are differentially parasitized by Strepsiptera. We review the natural history of strepsipteran parasitism in ants, effects on host behaviour and incidences of parasitism in the hope of enabling detection of this parasite by myrmecologists.  相似文献   

6.
7.
A well-preserved specimen of amber Strepsiptera was erroneously described as Stylops neotropicallis Kogan and Poinar, 2010. The taxonomic position of the species was based on a count of six antennomeres (typical of the Stylopidae); however, further observations showed that there are actually seven antennomeres, which places the fossil in the family Myrmecolacidae, and it is herein redescribed in the genus Palaeomyrmecolax Kulicka, 2001. Furthermore, nuclear magnetic resonance spectroscopy analysis of a sample of the amber piece containing the fossil revealed that it was Baltic rather than Dominican amber as originally thought. The fossil was compared with another specimen from Baltic amber in the Poinar collection, which shows close affinity to Palaeomyrmecolax succineus Kulicka, 2001, the type species of the genus. Palaeomyrmecolax neotropicallis (n.comb.) differs from that specimen and seems to differ also from the other four species in the genus Palaeomyrmecolax.  相似文献   

8.
Investigating complex parasitic life cycles is important for understanding the major fitness components that drive the evolution of host–parasite systems. The rare condition of heterotrophic heteronomy, in which the sexes utilize disparate host taxa, is a poorly understood complex parasitic lifestyle. One of only two known examples occurs in the Myrmecolacidae, an unusual family of the parasitoid order Strepsiptera (Insecta), in which males parasitize ants while females parasitize grasshoppers, crickets, and praying mantids. Here, we reconstruct the evolutionary pattern and timescale of host‐use in a set of morphologically cryptic myrmecolacid taxa currently identified as Caenocholax fenyesi. We find that (i) C. fenyesi contains at least ten cryptic lineages consistent with separate species; (ii) Fossil evidence suggests a very low molecular clock rate and an ancient origin for cryptic lineages; (iii) Diversity among Caenocholax species is partitioned by geography and host association of the female; and (iv) Switches in host usage are uncoupled between the sexes, with changes in female host preference accompanying diversification. This study represents the first phylogeographical analysis of any strepsipteran, and the first molecular examination of host‐use for a heterotrophic heteronomous taxon. Our results have implications for the understanding of evolution, host usage and estimated species richness in parasitic taxa.  相似文献   

9.
Thoracic structures of the extremely small first instar larva of the strepsipteran species Mengenilla chobauti (ca. 200 μm) were examined, described and reconstructed 3-dimensionally. The focus is on the skeletomuscular system. The characters were compared to conditions found in other insect larvae of very small (Ptiliidae) or large (Dytiscus) size (both Coleoptera) and features of “triungulin” larvae, first instar larvae of Rhipiphoridae, Meloidae (both Coleoptera), and Mantispidae (Neuroptera).The specific lifestyle and the extreme degree of miniaturisation result in numerous thoracic modifications. Many sclerites of the exo- and endoskeleton are reduced. Cervical sclerites, pleural ridges, furcae and spinae are absent. Most of the longitudinal muscles are connected within the thorax, and a pair of ventral longitudinal muscles is present in the pleural region of the meso- and metathorax. This results in a high intersegmental flexibility. Due to the size reduction and the correlated shift of the brain to the thorax, with 94 identified muscles the thoracic musculature appears highly compact. Compared to larger larvae the number of both the individual muscles and the muscle bundles are distinctly reduced. The thorax of the first instar larvae displays many additional strepsipteran autapomorphies. At least partly due to the highly specialised condition, potential synapomorphies with other groups were not found.  相似文献   

10.
Molecular evidence of the monophyly of the Halteria (Strepsiptera + Diptera) is reviewed. The majority of morphological characters, which have classically been used to establish a Strepsiptera + Coleoptera sister group, are rejected, because they are based on erroneous interpretations of strepsipteran morphology. The scorings of 31 morphological characters, which directly relate to the phylogenetic position of Strepsiptera, are provided, and their distribution and optimization on the molecular + morphological tree is discussed. Of these, 13 characters specifically support the placement of Strepsiptera within the Mecopterida; seven of which are based on the optimization of inapplicable or missing data, and six of which are based on states that can be scored for Strepsiptera. Only a single character (posteromotorism) suggests a sister group relationship with the Coleoptera. The morphological and molecular data are largely congruent, and suggest that the Strepsiptera are sister group to the Diptera.  相似文献   

11.
Phylogenetic relationships among the holometabolous insect orders were inferred from cladistic analysis of nucleotide sequences of 18S ribosomal DNA (rDNA) (85 exemplars) and 28S rDNA (52 exemplars) and morphological characters. Exemplar outgroup taxa were Collembola (1 sequence), Archaeognatha (1), Ephemerida (1), Odonata (2), Plecoptera (2), Blattodea (1), Mantodea (1), Dermaptera (1), Orthoptera (1), Phasmatodea (1), Embioptera (1), Psocoptera (1), Phthiraptera (1), Hemiptera (4), and Thysanoptera (1). Exemplar ingroup taxa were Coleoptera: Archostemata (1), Adephaga (2), and Polyphaga (7); Megaloptera (1); Raphidioptera (1); Neuroptera (sensu stricto = Planipennia): Mantispoidea (2), Hemerobioidea (2), and Myrmeleontoidea (2); Hymenoptera: Symphyta (4) and Apocrita (19); Trichoptera: Hydropsychoidea (1) and Limnephiloidea (2); Lepidoptera: Ditrysia (3); Siphonaptera: Pulicoidea (1) and Ceratophylloidea (2); Mecoptera: Meropeidae (1), Boreidae (1), Panorpidae (1), and Bittacidae (2); Diptera: Nematocera (1), Brachycera (2), and Cyclorrhapha (1); and Strepsiptera: Corioxenidae (1), Myrmecolacidae (1), Elenchidae (1), and Stylopidae (3). We analyzed approximately 1 kilobase of 18S rDNA, starting 398 nucleotides downstream of the 5' end, and approximately 400 bp of 28S rDNA in expansion segment D3. Multiple alignment of the 18S and 28S sequences resulted in 1,116 nucleotide positions with 24 insert regions and 398 positions with 14 insert regions, respectively. All Strepsiptera and Neuroptera have large insert regions in 18S and 28S. The secondary structure of 18S insert 23 is composed of long stems that are GC rich in the basal Strepsiptera and AT rich in the more derived Strepsiptera. A matrix of 176 morphological characters was analyzed for holometabolous orders. Incongruence length difference tests indicate that the 28S + morphological data sets are incongruent but that 28S + 18S, 18S + morphology, and 28S + 18S + morphology fail to reject the hypothesis of congruence. Phylogenetic trees were generated by parsimony analysis, and clade robustness was evaluated by branch length, Bremer support, percentage of extra steps required to force paraphyly, and sensitivity analysis using the following parameters: gap weights, morphological character weights, methods of data set combination, removal of key taxa, and alignment region. The following are monophyletic under most or all combinations of parameter values: Holometabola, Polyphaga, Megaloptera + Raphidioptera, Neuroptera, Hymenoptera, Trichoptera, Lepidoptera, Amphiesmenoptera (Trichoptera + Lepidoptera), Siphonaptera, Siphonaptera + Mecoptera, Strepsiptera, Diptera, and Strepsiptera + Diptera (Halteria). Antliophora (Mecoptera + Diptera + Siphonaptera + Strepsiptera), Mecopterida (Antliophora + Amphiesmenoptera), and Hymenoptera + Mecopterida are supported in the majority of total evidence analyses. Mecoptera may be paraphyletic because Boreus is often placed as sister group to the fleas; hence, Siphonaptera may be subordinate within Mecoptera. The 18S sequences for Priacma (Coleoptera: Archostemata), Colpocaccus (Coleoptera: Adephaga), Agulla (Raphidioptera), and Corydalus (Megaloptera) are nearly identical, and Neuropterida are monophyletic only when those two beetle sequences are removed from the analysis. Coleoptera are therefore paraphyletic under almost all combinations of parameter values. Halteria and Amphiesmenoptera have high Bremer support values and long branch lengths. The data do not support placement of Strepsiptera outside of Holometabola nor as sister group to Coleoptera. We reject the notion that the monophyly of Halteria is due to long branch attraction because Strepsiptera and Diptera do not have the longest branches and there is phylogenetic congruence between molecules, across the entire parameter space, and between morphological and molecular data.  相似文献   

12.
The first detailed anatomical study of a primary larva of Meloidae is presented. Thereby techniques such as three-dimensional reconstructions, microtome sections, SEM (scanning electronic microscopy) and CLSM (confocal laser scanning microscopy) are applied. The structural features are discussed in the context of phylogeny, but also possible correlations with parasitism, phoresy and miniaturisation. The triungulin first instar larva is likely an apomorphy of Meloidae excl. Eleticinae and linked with a specialisation on acridoid eggs or larvae and provisions of bees. The campodeid body shape of Lytta and Meloinae is a groundplan feature of Meloidae, whereas a navicular body is an autapomorphy of the generally phoretic larvae of Nemognathinae. Head structures of Lytta and features of the postcephalic body are largely plesiomorphic. The musculature of the head is only moderately simplified while the one of the postcephalic body is well developed. Its thorax is largely characterised by plesiomorphies. The characteristics of the legs suggest phoretic habits, even though this does not apply to larvae of Lytta. It is conceivable that a phoretic behaviour is secondarily lost, together with some but not all morphological modifications related to it. Derived features of the abdomen of Meloidae are the complete loss of the fixed urogomphi (also missing in Rhipiphoridae and other related groups) and the presence of one or two conspicuous caudal bristles. Only few features of Lytta are shared with the parasitic larvae of Rhipiphoridae and Strepsiptera. These characteristics, which are possibly linked with specialised life habits, have obviously evolved independently. Miniaturisation effects are minimal in the larvae of Lytta.  相似文献   

13.
The strepsipteran host-parasitoid system is complex and unique, due to total dependence of the parasitoid on a living host for its survival. As a result of this, the eggs of stylopised Segestidea novaeguineae (Brancsik) (Orthoptera : Tettigoniidae) are severely deformed and have a bulbous protrusion. The structure of the chorion of the eggs in stylopised and unstylopised hosts was studied and is described. The moulting sequence in the endoparasitic, female Stichotrema dallatorreanum Hofeneder, the outer layers of the germ cells in the female strepsipteran, and the ultrastructure of the rickettsia-like microorganisms, found mainly in the female Strepsiptera, are discussed.  相似文献   

14.
The cryptic entomophagous parasitoids in the order Strepsiptera exhibit specific adaptations to each of the 34 families that they parasitize, offering rich opportunities for the study of male–female conflict. We address the compelling question as to how the diversity of Strepsiptera (where cryptic speciation is common) arose. Studying 13 strepsipteran families, including fossil taxa, we explore the genitalic structures of males, the free‐living females of the Mengenillidia (suborder), and the endoparasitic females of the Stylopidia (suborder). Inferring from similarity between aedeagi of males either between congeners, heterogeners, or between species within the same taxonomic family, the same of which is true of the cephalothoraces of females, we predict that male–female conflict and a co‐evolutionary morphological arms race between sexes is not likely to exist in most species of Strepsiptera. We then review the non‐genitalic structures that play a role during sexual communication, and present details of copulatory behaviour. We conclude that Strepsiptera fall within the synchronous sensory exploitation model where short‐lived males take advantage of a pre‐existing sensory system involving pheromone signals emitted by females.  相似文献   

15.
Macrolarviparous reproduction in Ameniinae (Diptera: Calliphoridae)   总被引:2,自引:0,他引:2  
Female flies of the subfamily Ameniinae were found by dissection to be macrolarviparous. The two ovaries each comprise two ovarioles, and a single egg passes at a time intoa large, muscular uterus, where it hatches and develops through the soft and rather featureless first larval instar. The larva moults in utero to a strongly spined, active second instar, with long, curved mandibular hooks and this stage is presumed to parasitize snails. Details are given of the larval morphology of Amenia and Paramenia spp., and the indications that these give about taxonomic affinities. The posterior spiracles are sunk in a deep pit, as is found amongst Sarcophagidae. It is concluded that on the basis of adult and larval characters the Ameniinae is a somewhat specialized group of flies, most closely related to Calliphoridae and with some affinity to Sarcophagidae.  相似文献   

16.
17.
18.
The thorax of Mengenilla was examined using traditional morphological techniques and its features were documented in detail using scanning electron microscopy and computer-based 3D reconstructions. The results were compared to conditions found in other holometabolan insects. The implications for the systematic placement of Strepsiptera are discussed. The observations are interpreted in the light of the recently confirmed sistergroup relationship between Strepsiptera and Coleoptera (Coleopterida). The synapomorphies of the thorax of Strepsiptera and Coleoptera are partly related with posteromotorism (e.g., increased size of the metathorax), partly with a decreased intrathoracic flexibility (e.g., a fused pronotum and propleurum), and partly independent from these two character complexes (e.g., not connected profurca and propleuron). Strepsiptera are more derived than Coleoptera in some thoracic features (e.g., extremely enlarged metathorax) but have also preserved some plesiomorphic conditions (e.g., tegulae in both pterothoracic segments). All potential apomorphies of Mecopterida are missing in Strepsiptera. The last common ancestor of Coleopterida had already acquired posteromotorism but the wings were still largely unmodified. Several reductions in the mesothorax likely occurred independently.  相似文献   

19.
An evolutionary scenario for the enigmatic group Strepsiptera is provided, based on the results of a comprehensive cladistic analysis of characters of all life stages. A recently described fossil--+Protoxenos janzeni--the most archaic strepsipteran, sheds new light on the early evolution of the group and reduces the "morphological gap" between Strepsiptera and other insects. It weakens both current hypotheses--Coleoptera+Strepsiptera and Diptera+Strepsiptera (="Halteria"). The splitting into +Protoxenos (Protoxenidae) and the remaining Strepsiptera was linked with a distinct size reduction and many morphological changes. Unlike males of extant strepsipteran species, +Protoxenos was still able to process food. Mengeidae (+Mengea), with two small species, is the sister group of extant Strepsiptera. A unique characteristic of extant males (Strepsiptera s. str.) is the mouthfield sclerite. It is part of an air uptake apparatus which belongs to an extremely modified air-filled "balloon gut". Besides this, male strepsipterans possess specialised antennae and compound eyes, a strongly developed flight apparatus, large testes, and a sperm pump, whereas other organ systems are strongly reduced (e.g., fat body, malpighian tubules). Males are designed to find females within a few hours and to copulate. A dramatic change is linked with the split into Mengenillidae and Stylopidia. The change to pterygote hosts and the permanent endoparasitism of the females are evolutionary novelties acquired by the latter clade, and linked with far-reaching morphological transformations, e.g. the presence of unique brood organs. Hairy tarsal adhesive devices are present in males and guarantee efficient attachment to the host during copulation. A well-founded clade within Stylopidia is Stylopiformia, which are characterised by a unique fissure-shaped birth opening. The evolutionary development towards the most specialised and successful forms (parasites of aculeate Hymenoptera [e.g., Xenidae+Stylopidae], ca. 46% of the species) is a stepwise process. The presented evolutionary scenario comprises a complex network of functionally correlated morphological changes in primary larvae, secondary larvae, females and males.  相似文献   

20.
The egg complement (total number of eggs produced by a single female) differs greatly among the species of Strepsiptera. The maximum is found in Stichotrema dallatorreanum (750,000 eggs), and the minimum in Triozocera minor (984 eggs). Based on the egg complement of 31 species in 11 genera, the following conclusions were drawn: (1) The egg complement is generally smaller in those species whose hosts gregariously cohabit in a very limited area, or are distinct flower-visitors, compared with those whose hosts display the above two traits weakly; (2) The egg complement is determined by the size of the maternal body. The size of female strepsipterans is reduced when they parasitize smaller host such as males and workers, as compared with those that parasitize larger host such as females and queens; likewise, the size of the strepsipterans becomes larger on increase in size of hosts, showing that their egg complements are principally determined by the size of host species; (3) The increase in the egg complement is compensated for by the reduction in egg size. The relative egg size (length of the firstinstar larva/length of maternal body) is conspicuously reduced according to an increase in the size of the female strepsipterans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号