首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
肽核酸(peptide nucleic acid,PNA)阵列   总被引:1,自引:0,他引:1  
鲁艳芹  韩金祥 《生命科学》2003,15(4):200-202
肽核酸(PNA)以N—(2—氨基乙基)甘氨酸替代DNA分子中的磷酸戊糖骨架。它能特异性地识别与DNA、RNA所形成的杂交体。PNA—DNA、PNA—RNA的热稳定性要比相应的DNA—DNA、DNA—RNA高,而且PNA识别单碱基的能力强于DNA和RNA,使之在微阵列,尤其是SNP检测领域有着广泛的应用前景。本文简述了PNA阵列从探针设计、阵列合成、杂交和检测的全过程。  相似文献   

3.
In view of a better understanding of chiral selection of oligonucleotides, we have studied the hybridization of D- and L-CNA (cyclohexane nucleic acids) and D- and L-DNA, with chiral D-beta-homo-DNA and achiral PNA (peptide nucleic acids). PNA hybridizes as well with D-DNA, L-DNA as with D-beta-homo-DNA. The structure of the PNA x D-beta-homo-DNA complex is different from the PNA x DNA duplexes. D-CNA prefers D-DNA as hybridization partner, while L-CNA prefers D-beta-homo-DNA as hybridization partner. The conformation of the enantiomeric oligonucleotides D-CNA and L-CNA in the supramolecular complex with D-DNA and D-beta-homo-DNA, respectively, is different. These data may contribute to the confirmation of a hypothesis of the existence of achiral informative polymers as RNA predecessor, and to the understanding of homochirality of nucleic acids.  相似文献   

4.
费一楠  张飞雄 《遗传》2006,28(5):623-630
肽核酸(PNA)是具有类多肽骨架的DNA类似物,PNA的主链骨架是由N(2-氨基乙基)-甘氨酸与核酸碱基通过亚甲基羰基连接而成的。PNA可以特异性地与DNA或RNA杂交,形成稳定的复合体。PNA由于其自身的特点可以对DNA复制、基因转录、翻译等进行有针对的调控,同时作为杂交探针大大提高了遗传学检测和医疗诊断的效率和灵敏度。肽核酸(PNA)特异性地识别和结合互补核酸序列被引进用于医学和生物学的研究,展示了其独特的生化属性,成为了基因奥秘的探索者。  相似文献   

5.
6.
何冬梅 《生命科学》1999,11(3):107-110
肽核酸是以肽为骨架的一种新型DNA模拟物。已经证明肽核酸具有与DNA和RNA结合的高度亲合性、良好的稳定性及能方便地固相合成等特性。在反义技术和基因治疗中有着很好的前景。本文综述了肽核酸的生物化学特性及其在反义技术方面的应用。  相似文献   

7.
The potential pharmacologic benefits of using peptide nucleic acid (PNA) as an antisense agent are tempered by its incapacity to activate RNase H. The mixed backbone oligonucleotide (ON) (or gapmer) approach, in which a short internal window of RNAse H-competent residues is embedded within an RNase H-incompetent ON has not been applied previously to PNA because PNA and DNA hybridize to RNA with very different helical structures, creating structural perturbations at the two PNA-DNA junctions. It is demonstrated here for the first time that a short internal phosphodiester window within a PNA is sufficient to evoke the RNase H-dependent cleavage of a targeted RNA and to abrogate translation elongation in a well-characterized in vitro assay.  相似文献   

8.
PNAs are DNA analogues in which the nucleic acid's backbone is replaced by a chiral or achiral pseudopeptide backbone and nucleobases are attached to the backbone by methylene carbonyl linkers. The easy to modify PNA structure gives the possibility to obtain monomers, and subsequently oligomers, with improved properties. We have synthesised several new PNA monomers, starting from a series of 2'-substituted methyl N-(2-Boc-aminoethyl)glycinates. The pseudodipeptides were obtained using modified Kosynkina's method, based on the reductive amination of N-Boc-protected alpha-amino aldehydes [glycinal, isoleucinal, valinal, tryptophanal, serinal(Bzl), prolinal] with methyl glycinate. The compounds were then acylated with nucleic acid base derivatives by simplified procedure, and the purification was limited to the last step of the synthesis. The applied procedure is useful in synthesis of various chiral PNA monomers.  相似文献   

9.
It is proposed that the primordial genetic material could have been peptide nucleic aicds,i.e., DNA analogues having a peptide backbone. PNA momomers based on the amino acid, , -diaminobutyric acid or ornithine are suggested as compounds that could have been formed in the prebiotic soup. Finally, the possibility of a PNA/RNA world is presented, in which PNA constitutes the stable genetic material, while RNA which may be polymerized using the PNA as template accounts for enzymatic activities including PNA replication.  相似文献   

10.
11.
The possibilities of pseudo-peptide-DNA mimics like PNA (peptide nucleic acid) having a role for the prebiotic origin of life prior to an RNA world is discussed on the basis of literature data showing that this type of molecules might have formed on the primitive earth (or other places in the universe), as well as data indicating the possibilities of template-directed PNA chemical replication and ligation. In particular, the merits of an achiral prebiotic genetic material is discussed.  相似文献   

12.
肽核酸在分子生物学技术中的应用   总被引:1,自引:0,他引:1  
肽核酸(PNA)作为一种人工合成的核酸类似物,以中性的肽链酰胺2-氨基乙基甘氨酸键取代了DNA中的戊糖磷酸二酯键骨架,其余部分与DNA相同。PNA可通过Watson-Crick碱基配对的形式识别并结合DNA或RNA序列,形成稳定的双螺旋结构。与传统的DNA或RNA相比,PNA具有生物学稳定性高、杂交特异性强、杂合体的稳定性高和杂交速度快等明显优点,使PNA具有良好的物理化学性质和生物学特性,在检测目的核酸序列中单碱基突变、PCR基因分子诊断与检测、荧光原位杂交定量分析、基因芯片和生物传感器技术等调控水平和临床应用上有自己的特点。简要综述了近年来肽核酸在上述分子生物学技术中的运用以及应用前景的展望。  相似文献   

13.
PNA technology     
Peptide nucleic acids (PNA) are deoxyribonucleic acid (DNA) mimics with a pseudopeptide backbone. PNA is an extremely good structural mimic of DNA (or of ribonucleic acid [RNA]), and PNA oligomers are able to form very stable duplex structures with Watson-Crick complementary DNA and RNA (or PNA) oligomers, and they can also bind to targets in duplex DNA by helix invasion. Therefore, these molecules are of interest in many areas of chemistry, biology, and medicine, including drug discovery, genetic diagnostics, molecular recognition, and the origin of life. Recent progress in studies of PNA properties and applications is reviewed.  相似文献   

14.
肽核酸是人工合成的寡核苷酸类似物,以N-(2-氨乙基)甘氨酸结构单元替代DNA分子中的戊糖-磷酸结构。与天然核酸相比,肽核酸可以更高效地与DNA或RNA特异性杂交,在分子生物学和基因药物领域具有良好的应用前景。但是,肽核酸骨架呈电中性,难以高效穿过细胞膜,这成为工程应用的最大障碍。为了改善肽核酸的细胞转运性能,对肽核酸进行化学修饰是近年来的研究热点。结合近十年来文献报道和本实验室的工作,对肽核酸的骨架修饰和配合物结合修饰两类增强细胞转运的修饰方法进行综述,并对修饰性肽核酸细胞转运研究中存在的问题以及未来的研究趋势及其应用提出了见解。  相似文献   

15.
Peptide nucleic acid (PNA), a synthetic DNA mimic that is devoid of the (deoxy)ribose-phosphate backbone yet still perfectly retains the ability to recognize natural nucleic acids in a sequence-specific fashion, can be employed as a tool to modulate gene expressions via several different mechanisms. The unique strength of PNA compared to other oligonucleotide analogs is its ability to bind to nucleic acid targets with secondary structures such as double-stranded and quadruplex DNA as well as RNA. This digest aims to introduce general readers to the advancement in the area of modulation of DNA/RNA functions by PNA, its current status and future research opportunities, with emphasis on recent progress in new targeting modes of structured DNA/RNA by PNA and PNA-mediated gene editing.  相似文献   

16.
Peptide nucleic acids (PNA) are one of many synthetic mimics of DNA and RNA that have found applications as biological probes, as nano-scaffold components, and in diagnostics. In an effort to use PNA as constructs for cellular delivery we investigated the possibility of installing a biologically susceptible disulfide bond in the backbone of a PNA oligomer. Here we report the synthesis of a new abasic Fmoc monomer containing a disulfide bond that can be incorporated into a PNA oligomer (DS-PNA) using standard solid phase peptide synthesis. The disulfide bond survives cleavage from the resin and DS-PNA forms duplexes with complementary PNA oligomers. Initial studies aimed at determining if the disulfide bond is cleavable to reducing agents while in a duplex are explored using UV thermal analysis and HPLC.  相似文献   

17.
A systematic analysis of peptide nucleic acid (PNA) complexes deposited in the Protein Data Bank has been carried out using a set of contiguous atom torsion angle definitions. The analysis is complemented by molecular mechanics adiabatic potential energy calculations on hybrid PNA-nucleic acid model systems. Hitherto unobserved correlations in the values of the (alpha and epsilon) dihedral angles flanking the backbone secondary amide bond are found. This dihedral coupling forms the basis of a PNA backbone conformation classification scheme. Six conformations are thus characterised in experimental structures. Helix morphology is found to exert a significant influence on backbone conformation and flexibility: Watson-Crick PNA strands in complexes with DNA and RNA, that possess A-like base-pair stacking, adopt backbone conformations distinct from those in PNA.DNA-PNA triplex and PNA-PNA duplex P-helix forms. Solvation effects on Watson-Crick PNA backbone conformation in heterotriplexes are discussed and the possible involvement of inter-conformational transitions and dihedral angle uncoupling in asymmetric heteroduplex base-pair breathing is suggested.  相似文献   

18.
Two peptide nucleic acids (PNAs) containing three adjacent modified chiral monomers (chiral box) were synthesized. The chiral monomers contained either a C2- or a C5-modified backbone, synthesized starting from D- and L-arginine, respectively (2D- and 5L-PNA). The C2-modified chiral PNA was synthesized using a submonomeric strategy to avoid epimerization during solid-phase synthesis, whereas for the C5-derivative, the monomers were first obtained and then used in solid-phase synthesis. The melting temperature of these PNA duplexes formed with the full-match or with single-mismatch DNA were measured both by UV and by CD spectroscopy and compared with the unmodified PNA. The 5L-chiral-box-PNA showed the highest T(m) with full-match DNA, whereas the 2D-chiral-box-PNA showed the highest sequence selectivity. The PNA were spotted on microarray slides and then hybridized with Cy5-labeled full match and mismatched oligonucleotides. The results obtained showed a signal intensity in the order achiral >2D-chiral box >5L-chiral box, whereas the full-match/mismatch selectivity was higher for the 2D chiral box PNA.  相似文献   

19.
Peptide nucleic acids (PNAs) are uncharged analogs of DNA and RNA in which the ribose-phosphate backbone is substituted by a backbone held together by amide bonds. PNAs are interesting as models of alternative genetic systems because they form potentially informational base paired helical structures. A PNA C10 oligomer has been shown to act as template for efficient formation of oligoguanylates from activated guanosine ribonucleotides. In a previous paper we used heterosequences of DNA as templates in sequence-dependent polymerization of PNA dimers. In this paper we show that information can be transferred from PNA to RNA. We describe the reactions of activated mononucleotides on heterosequences of PNA. Adenylic, cytidylic and guanylic acids were incorporated into the products opposite their complement on PNA, although less efficiently than on DNA templates.  相似文献   

20.
In an attempt to improve physico-chemical and biological properties of peptide nucleic acids (PNAs), particularly water solubility and cellular uptake, the synthesis of chimeric oligomers consisted of PNA and phosphono-PNA analogues (pPNAs) bearing the four natural nucleobases has been accomplished. To produce these chimeras, pPNA monomers of two types containing N-(2-hydroxyethyl)phosphonoglycine, or N-(2-aminoethyl)phosphonoglycine backbone, were used in conjunction with PNA monomers representing derivatives of N-(2-aminoethyl)glycine, or N-(2-hydroxyethyl)glycine. The oligomers obtained were composed of either PNA and pPNA stretches or alternating PNA and pPNA monomers. The examination of hybridization properties of PNA-pPNA chimeras to DNA and RNA complementary strands in comparison with pure PNAs, and pPNAs as well as DNA-pPNA hybrids and DNA fragments confirmed that these chimeras form stable complexes with complementary DNA and RNA fragments. They were found to be resistant to degradation by nucleases. All these properties together with good solubility in water make PNA-pPNA hybrids promising for further evaluation as potential therapeutic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号