首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The anticancer drug taxol (paclitaxel) inhibits tumors through multiple cytotoxic and cytostatic mechanisms. Independently of these mechanisms, taxol induces distinct immunological efficacy when it acts as a second signal for activation of tumoricidal activity by interferon-γ(IFNγ)-primed murine normal host macrophages. We reported that tumor-distal macrophages, which mediate immunosuppression through dysregulated nitric oxide (NO) and tumor necrosis factor α (TNFα) production, are differentially regulated by taxol. Because taxol influences tumor cell growth dynamics and activates immune cell populations, we assessed the ex vivo immunosuppressive and antitumor activities of taxol-treated normal host and tumor-bearing host (TBH) macrophages. Pretreatment of such cells with taxol partly reconstituted T cell alloantigen reactivity, suggesting that taxol mediates a limited reversal of TBH macrophage immunosuppressive activity. Taxol-treated TBH macrophages significantly suppressed the growth of fibrosarcoma cells (Meth-KDE) through soluble effector molecules and promoted direct cell-mediated cytotoxicity, indicating that taxol enhanced tumor-induced macrophage antitumor activities. Tumor-induced helper T cells, however, showed a higher sensitivity to direct taxol-induced suppression. These data demonstrate that taxol exerts pleiotropic effects on antitumor immune responses with the capacity to abate the immunosuppressive activities of macrophages and promote macrophage-mediated antitumor activities simultaneously, but also directly modulating T cell reactivity. Collectively, these studies suggest that the antineoplastic drug taxol may impart antitumor activity through an immunotherapeutic capacity. Received: 31 December 1996 / Accepted: 1 July 1997  相似文献   

2.
Murine peritoneal macrophages activated for cytotoxicity by trehalose dimycolate in vivo and lipopolysaccharide in vitro released cytostatic factor(s) against EMT6 target cells, in 8-hr conditioned medium (CM). The cytostatic factor(s) completely blocked DNA synthesis by EMT6 cells within 16 hr. Other cell lines are less sensitive (P815 and R-L929) or resistant (KB and HT29) to the cytostatic effect of CM. The anti-proliferative activity of CM had a MW greater than 10,000 Da, as judged by ultrafiltration. It was destroyed by proteases and strongly inhibited by P815 cell product(s). Conditioned media from nonactivated macrophages were not cytostatic against EMT6 cells. No relationship was found between cytostatic factor(s) in CM and interleukin 1 (IL-1), tumor necrosis factor alpha (TNF-alpha), and interferon-alpha/beta (IFN-alpha/beta): the growth of EMT6 cells was unaffected by Hu.r.IL-is and Hu.r.TNF-alpha and was only slightly inhibited by IFN-alpha/beta. Furthermore, cytostatic CM contained low levels of TNF and IFN activities. Finally, antibodies raised against murine IFN-alpha/beta had no effect on the cytostatic activity of CM.  相似文献   

3.
The effector mechanism of immune spleen cells against syngeneic TMT mammary tumor cells was analyzed in vitro. C3H/He mice were first inoculated with TMT tumor cells, and then the tumors were x-irradiated with 2000 rad 1 wk after the inoculation. Spleen cells from these treated mice inhibited the growth of tumor cells in vitro when assessed by (3H)-TdR incorporation by tumor cells (cytostatic activity). The same spleen cells did not have any cytotoxic activity on TMT tumor cells detected by a 51Cr-release assay. The cytostatic activity was mediated by Lyt-1+23- T cells. The purified T cells alone could not inhibit the growth of tumor cells, but accessory cells were required for the induction of cytostatic T cell activity. The accessory cells were Ia-positive, macrophage-like adherent cells. Furthermore, both T cells and macrophages were also required for the inhibition of tumor growth even after the spleen cells were activated in vitro. These results suggest T cells and macrophages play an important role in the effector mechanism against TMT mammary tumor cells. The mechanism of cytostasis by T cells and macrophages was discussed from the standpoint of the cellular interaction.  相似文献   

4.
Peritoneal macrophages from proteose peptone and Corynebacterium parvum (CP)-treated Lewis and Brown Norway rats were separated into subpopulations by centrifugation on discontinuous gradients of Ficoll. Four macrophage subpopulations were prepared and tested for cytostatic and cytotoxic activity against syngeneic and allogeneic Moloney sarcoma tumor cells. Macrophages were cocultured with tumor cells for 48 hr, whereupon either the inhibition of [125I]iododeoxyuridine uptake was measured (cytostasis) or the tumor monolayers were observed for cytotoxic effects. CP-Activated macrophages from heavy-density portions of the gradient (8–10% and 10%-pellet) were highly cytostatic and cytotoxic to both the syngeneic and allogeneic tumor cells while macrophages from the light-density portions (4–6 and 6–8% Ficoll bands) were not. Proteose peptone-stimulated macrophages from the heavy-density portions of the gradient were cytostatic but not cytotoxic to the tumor cells. The effector macrophages from the CP-activated pool were large, well-differentiated cells as determined by electron microscopic examinations and had enhanced phagocytic activity when contrasted with the noncytotoxic, less dense macrophages.  相似文献   

5.
We have shown previously that agonistic anti-CD40 mAb induced T cell-independent antitumor effects in vivo. In this study, we investigated mechanisms of macrophage activation with anti-CD40 mAb treatment, assessed by the antitumor action of macrophages in vitro. Intraperitoneal injection of anti-CD40 mAb into C57BL/6 mice resulted in activation of peritoneal macrophages capable of suppressing B16 melanoma cell proliferation in vitro, an effect that was greatly enhanced by LPS and observed against several murine and human tumor cell lines. Anti-CD40 mAb also primed macrophages in vitro to mediate cytostatic effects in the presence of LPS. The tumoristatic effect of CD40 ligation-activated macrophages was associated with apoptosis and killing of tumor cells. Activation of macrophages by anti-CD40 mAb required endogenous IFN-gamma because priming of macrophages by anti-CD40 mAb was abrogated in the presence of anti-IFN-gamma mAb, as well as in IFN-gamma-knockout mice. Macrophages obtained either from C57BL/6 mice depleted of T and NK cells by Ab treatment, or from scid/beige mice, were still activated by anti-CD40 mAb to mediate cytostatic activity. These results argued against the role of NK and T cells as the sole source of exogenous IFN-gamma for macrophage activation and suggested that anti-CD40 mAb-activated macrophages could produce IFN-gamma. We confirmed this hypothesis by detecting intracytoplasmic IFN-gamma in macrophages activated with anti-CD40 mAb in vivo or in vitro. IFN-gamma production by macrophages was dependent on IL-12. Taken together, the results show that murine macrophages are activated directly by anti-CD40 mAb to secrete IFN-gamma and mediate tumor cell destruction.  相似文献   

6.
Summary Changes in the cytostatic and cytotoxic activity of macrophages from tumor-bearing (TBM) and control mice were studied in a murine model of malignant melanoma. Syngeneic macrophages from TBM were initially noncytotoxic, but became cytotoxic and achieved their maximum destructive ability after 14 days of tumor growth. With continued tumor growth these macrophages either lost or had reduced cytotoxic activity. In contrast, macrophages from the same melanoma-bearing animals were significantly cytostatic at an earlier stage of tumor growth, but with continued melanoma growth these macrophages were no more cytostatic than controls. Moreover, melanomas grew slowly during the time when macrophages were observed to be cytostatic but grew rapidly at those stages when macrophages had a reduced ability to inhibit melanoma DNA synthesis. When these effector cells became cytotoxic melanomas were growing rapidly and changes in cytotoxicity had little effect on tumor mass. Thus, macrophages do not completely suppress melanoma proliferation and, although exhibiting cytotoxicity they were relatively ineffective in controlling a large mass of tumor cells.  相似文献   

7.
Peritoneal exudate cells from immunized and nonimmunized animals were separated into subpopulations by centrifugation on discontinuous bovine serum albumin (BSA) density gradients. Cells in the several subpopulations were then tested for their cytostatic or cytotoxic activity against syngeneic and xenogeneic tumor cells. Nonimmune macrophages isolated at the 8 to 11% BSA interface were highly inhibitory to the growth of syngeneic and xenogeneic tumor cells during coculture for 24 to 48 hr. A second macrophage subpopulation of heavier density was not as effective in preventing tumor growth and frequently augmented it. Cytotoxic activity against (C58NT) D tumor cells could not be detected with macrophages or subpopulations of macrophages from immune as well as nonimmune animals, as determined by a 4-hr chromium release assay. The cytotoxic activity of the immune peritoneal exudate cells observed by this assay could be accounted for by the small percentage of lymphocytes present.  相似文献   

8.
Summary DBA/2 mice were immunized i.p. against syngeneic SL2 lymphosarcoma cells. At various days after the last immunization peritoneal and spleen lymphocytes were collected. The lymphocyte suspensions were enriched for T-cells by nylon wool filtration.The peritoneal T-cells from immunized mice (a) expressed direct specific antitumor cytotoxicity in vitro, (b) induced macrophage cytotoxicity in vitro, and (c) exerted tumor neutralization measured in a Winn-type assay. Spleen T-cells from these immunized mice (a) expressed no direct specific antitumor cytotoxicity in vitro, (b) only induced moderate macrophage cytotoxicity in vitro, but (c) exerted tumor neutralization in a Winn assay.For effective tumor neutralization in vivo effector target cell ratios of 1000:1 were required. When the effector/target ratio of 1000:1 was maintained but the absolute numbers of effector and target cells were lowered from 106 to 105 lymphocytes and 103 to 102 target cells respectively, no tumor neutralization was obtained.The major effect of the sensitized-transferred T-lymphocytes seemed to be the induction of cytotoxic macrophages in the (naive) recipient mice, as the peritoneal macrophages collected from the recipient mice 7 days after i.p. injection of a mixture of sensitized T-cells and tumor cells were cytotoxic. Purified peritoneal T-lymphocytes collected from these recipient mice were able to induce macrophage cytotoxicity in vitro but expressed no cytotoxic T-cell activity.In conclusion, our results show that in the tumor system used, tumor neutralization after transfer of sensitized lymphocytes is not dependent on the presence of cytotoxic T-lymphocytes. Lymphocytes with the strongest potency to render macrophages cytotoxic (in vitro and in vivo) also induce the best tumor neutralization in vivo, suggesting an important role for host macrophages as antitumor effector cells.  相似文献   

9.
Culture of spleen cells for 5 days has previously been shown to result in the generation of strongly adherent cells from nonadherent precursors. In the current report it is shown that the majority (85-95%) of adherent cells are Mac-1+, FcR+, Thy 1.2- macrophages. Expression of effector activity by these macrophages requires exposure to activating signals. Coculture of the macrophages with Con A-stimulated spleen cells results in the expression of cytostatic activity against lymphocytic and monocytic tumor cell lines. Significant cytostatic activity is apparent within 6 hr after addition of the activating cells. Culture supernates of Con A-stimulated spleen cells (CAS-CM) are not effective in inducing cytostatic activity in the adherent macrophage population either alone or in the presence of additional Con A. However, stimulation of the culture generated macrophages with LPS in the presence of CAS-CM does induce cytostatic activity. The effector cell must be metabolically active in order to effect cytostasis insofar as heat fixation of the culture generated macrophage population eliminates effector activity. Proliferation of the tumor cells is significantly reduced after a 4-hr incubation period with the activated macrophages and is reduced two- to threefold after an 8- to 12-hr incubation period. The cytostatic effect is rapidly reversible. Proliferative activity of the tumor cells returned to control level within 12-24 hr after removal from activated macrophages. Cell cycle analysis indicated that the target cells were not arrested in a single stage of cell cycle, although an increase in frequency of cells in G1-phase was observed. Fluorescence analysis of bromodeoxyuridine (BrdU) incorporation rate demonstrated that the rate of DNA synthesis was reduced in all of the cells in the target population and that the mean rate of BrdU incorporation of the inhibited cells was three- to fivefold lower than control cells. RNA and protein synthesis were not affected to the same degree as DNA synthesis. The cytostatic effect was not mediated by prostaglandins or thymidine insofar as addition of indomethacin and 2-deoxycytidine did not prevent the cytostatic activity of the macrophages. The supernates of activated macrophages contained little inhibitory activity especially when indomethacin was included in the culture medium (19% inhibition of tumor cell proliferation by 1:1 dilution of supernate). The activity that was present could be eliminated by dialysis against fresh culture medium using Spectropor membranes with a 1000-Da molecular cutoff.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
在六十年代Mathe就用卡介苗来治疗小儿白血病,并获得了良好的效果。以后人们开始重视如何利用微生物佐剂刺激机体的防御机制,增强机体对肿瘤的排斥能力,来达到提高肿瘤治疗效果的目的。  相似文献   

11.
We examined the cytolytic mechanisms of activated macrophages by using proteose peptone- or thioglycollate broth-induced mouse peritoneal macrophages or mouse macrophage hybridomas as effector cells, L.P3 cells, a clone of L929 cells, and P815 cells as target cells, and IFN-gamma and LPS as activators. It was determined that TNF is the main cytolytic molecule against L.P3 cells from the following results: 1) activated macrophages can produce TNF; 2) TNF shows cytotoxic activity against L.P3 cells; 3) the addition of anti-TNF antibody inhibited most of the cytolytic activity of activated macrophages against L.P3 cells. On the other hand, it was concluded that the main cytolytic mechanism against P815 cells is the production of NO2-/NO3- from L-arginine, from the following results: 1) activated macrophages can produce NO2-; 2) NaNO2 shows high cytotoxic activity against P815 cells; 3) the depletion of L-arginine from the medium inhibited most of the cytolytic activity of activated macrophages against P815 cells and NO2- production by activated macrophages. In this study, however, cytostatic effects of L-arginine-dependent effector mechanism were not studied. Thus, these results show that activated macrophages can express at least two cytolytic mechanisms independently, namely, the one that appears to be mediated by the L-arginine-dependent effector mechanism and the second that appears to be mediated directly by TNF. Furthermore, it was demonstrated that TNF and L-arginine-dependent NO2- production act synergistically as killing mechanisms of activated macrophages. These mechanisms can explain the cytolytic activity of activated macrophages against a variety of target cells.  相似文献   

12.
The antitumor effect of lipopolysaccharides (LPS) has been observed in several experimental models and is likely to be mediated by macrophages. Stimulation of macrophages with LPS results in the release of several cytokines, including tumor necrosis factor, interleukin-1 and neutrophil-activating peptide-1/interleukin-8 (IL-8), which activates polymorphonuclear leukocytes (PMN) in vitro. Since PMN have an antitumor activity, we tested the in vivo effect of IL-8 on the growth of peritoneal carcinomatoses induced by PROb colon cancer cells in syngeneic rat. IL-8 induced a significant regression of tumors measuring 1–5 mm, and a complete regression was observed in 8 out of 40 rats in four independent experiments. IL-8 was not directly cytotoxic in vitro for tumor cells and was effective in vivo in a narrow range of doses. IL-8 had a significant chemotactic effect for peritoneal PMN in both normal and tumor-bearing rats. PMN taken from the peritoneum of tumor-bearing rats during IL-8 treatment had the same cytotoxic activity against PROb tumor cells as PMN from untreated control rats. Microscopic examinations of tumors during the treatment showed poor infiltrating by PMN. We conclude that the antitumor activity of IL-8 in this model is not mediated by PMN cytotoxicity.  相似文献   

13.
In this study, we examined the possible role of TNF-alpha and lymphotoxin (TNF-beta) as cofactors of macrophage activation. The results demonstrate that both TNF were capable of enhancing the cytostatic and cytolytic activity of murine peritoneal macrophages against Eb lymphoma cells. The potentiation of tumor cytotoxicity became apparent when macrophages from DBA/2 mice were suboptimally activated by either a T cell clone-derived macrophage-activating factor or by IFN-gamma plus LPS. Neither TNF-alpha nor TNF-beta could induce tumor cytotoxicity in IFN-gamma-primed macrophages, indicating that TNF cannot replace LPS as a triggering signal of activation. In LPS-resistant C3H/HeJ macrophages, which were unresponsive to IFN-gamma plus LPS, a supplementation with TNF fully restored activation to tumor cytotoxicity. Furthermore, TNF-alpha potentiated a variety of other functions in low-level activated macrophages such as a lactate production and release of cytotoxic factors. At the same time, TNF-alpha produced a further down-regulation of pinocytosis, tumor cell binding and RNA synthesis observed in activated macrophages. These data demonstrate new activities for both TNF-alpha and TNF-beta as helper factors that facilitate macrophage activation. In particular, the macrophage product TNF-alpha may serve as an autocrine signal to potentiate those macrophage functions that were insufficiently activated by lymphokines.  相似文献   

14.
Virulizin, a novel biological response modifier, has demonstrated significant antitumor efficacy in a variety of human tumor xenograft models including melanoma, pancreatic cancer, breast cancer, ovarian cancer and prostate cancer. The significant role of macrophages and NK (Natural killer) cells was implicated in the antitumor mechanism of Virulizin where expansion as well as increased activity of macrophages and NK cells were observed in mice treated with Virulizin. Depletion of macrophages compromised Virulizin-induced NK1.1+ cell infiltration into xenografted tumors and was accompanied by reduced antitumor efficacy. In the present study, involvement of macrophages in NK cell activation was investigated further. We found that depletion of NK cells in CD-1 nude mice by anti-ASGM1 antibody significantly compromised the antitumor activity of Virulizin. Cytotoxicity of NK cells isolated from Virulizin-treated mice was enhanced against NK-sensitive YAC-1 cells and C8161 human melanoma cells, but not against NK-insensitive P815 cells. An increased level of IL-12 was observed in the serum of mice treated with Virulizin. IL-12 mRNA and protein levels were also increased in peritoneal macrophages isolated from Virulizin-treated mice. Moreover, Virulizin-induced cytotoxic activity of NK cells isolated from the spleen was abolished when an IL-12 neutralizing antibody was co-administered. In addition, depletion of macrophages in mice significantly impaired Virulizin-induced NK cell cytotoxicty. Taken together, the results suggest that Virulizin induces macrophage IL-12 production, which in turn stimulates NK cell-mediated antitumor activity.  相似文献   

15.
We have previously shown that macrophages (Mphi) can be activated by CD40 ligation to become cytotoxic against tumor cells in vitro. Here we show that treatment of mice with agonistic anti-CD40 mAb (anti-CD40) induced up-regulation of intracellular TLR9 in Mphi and primed them to respond to CpG-containing oligodeoxynucleotides (CpG), resulting in synergistic activation. The synergy between anti-CD40 and CpG was evidenced by increased production of IFN-gamma, IL-12, TNF-alpha, and NO by Mphi, as well as by augmented apoptogenic effects of Mphi against tumor cells in vitro. The activation of cytotoxic Mphi after anti-CD40 plus CpG treatment was dependent on IFN-gamma but not TNF-alpha or NO, and did not require T cells and NK cells. Anti-CD40 and CpG also synergized in vivo in retardation of tumor growth in both immunocompetent and immunodeficient mice. Inactivation of Mphi in SCID/beige mice by silica treatment abrogated the antitumor effect. Taken together, our results show that Mphi can be activated via CD40/TLR9 ligation to kill tumor cells in vitro and inhibit tumor growth in vivo even in immunocompromised tumor-bearing hosts, indicating that this Mphi-based immunotherapeutic strategy may be appropriate for clinical testing.  相似文献   

16.
Summary The antitumor and immunological effects of a pyridine extractable fraction of Propionibacterium acnes were tested in a murine ovarian teratocarcinoma (MOT) model. Previous studies have demonstrated that tumor rejection in this model depends upon sequential activation of tumoricidal neutrophils (PMNs) followed by cytostatic macrophages. The pyridine extract significantly prolonged the survival of mice challenged with 103 or 104 MOT cells but had little impact on a 105 tumor inoculum. In vivo cytoreduction occurred within the first 24 h following IP treatment which correlated temporally with the influx of tumoricidal PMNs into the peritoneal cavity. Immunotherapy failure in mice challenged with 105 MOT cells occurred between 48 and 72 h after treatment when macrophage chemotaxis into the peritoneal cavity was initiated. Although injection of unfractionated bacteria activated MOT-cytostatic macrophages, the pyridine extract was deficient in this regard. Intraperitoneal injection of the pyridine extract resulted in an early (day +1) depression and late (day +5) enhancement of peritoneal NK cytotoxicity. These data suggest that the retention of neutrophil-activating moieties in the pyridine extract are sufficient for antitumor effects against low tumor inocula while the depletion of macrophage-activating determinants results in diminished effects against larger tumor cell challenges.  相似文献   

17.
Ribonucleases (RNases) are ubiquitously distributed nucleases that cleave RNA into smaller pieces. They are promising drugs for different cancers based on their concrete antitumor activities in vitro and in vivo. Here we report for the first time purification and characterization of a 14-kDa RNase, designated as RNase MC2, in the seeds of bitter gourd (Momordica charantia). RNase MC2 manifested potent RNA-cleavage activity toward baker’s yeast tRNA, tumor cell rRNA, and an absolute specificity for uridine. RNase MC2 demonstrated both cytostatic and cytotoxic activities against MCF-7 breast cancer cells. Treatment of MCF-7 cells with RNase MC2 caused nuclear damage (karyorrhexis, chromatin condensation, and DNA fragmentation), ultimately resulting in early/late apoptosis. Further molecular studies unveiled that RNase MC2 induced differential activation of MAPKs (p38, JNK and ERK) and Akt. On the other hand, RNase MC2 exposure activated caspase-8, caspase-9, caspase-7, increased the production of Bak and cleaved PARP, which in turn contributed to the apoptotic response. In conclusion, RNase MC2 is a potential agent which can be exploited in the worldwide fight against breast cancer.  相似文献   

18.
Onconase (Onc), is a novel amphibian cytotoxic ribonuclease with antitumor activity, and is currently in a confirmatory phase III clinical trial for the treatment of malignant mesothelioma. It was recently reported that Rana pipiens oocytes contain still another ribonuclease, named Amphinase (Amph). Amph shows 38 – 40 % amino acid sequence identity with Onc; presents as four variants varying between themselves from 87 to 99 % in amino acid sequence identity and has a molecular mass ~ 13,000. In the present study we describe the effects of Amph on growth of several tumor cell lines. All four variants demonstrated cytostatic and cytotoxic activity against human promyelocytic HL-60-, Jurkat T-cell- and U-937 monocytic leukemia cells. The pattern of Amph activity to certain extent resembled that of Onc. Thus, cell proliferation was suppressed at 0.5 – 10.0 µg/ml (40 – 80 nM) Amph concentration with distinct accumulation of cells in G1 phase of the cell cycle. In addition, the cells were undergoing apoptosis, which manifested by DNA fragmentation (presence of “sub-G1” cells, TUNEL-positivity), caspases and serine proteases activation as well as activation of transglutaminase. The cytotostatic and cytotoxic effects of Amph required its ribonuclease activity: the enzymatically inactive Amph-2 having histidine at the active site alkylated was ineffective. The effectiveness and cell cycle specificity was generally similar for all four Amph variants and at the equimolar concentrations was somewhat more pronounced than that of Onc. The observed cytostatic and cytotoxic activity of Amph against tumor cell lines suggests that similar to Onc this cytotoxic ribonuclease may have antitumor activity and find an application in clinical oncology.  相似文献   

19.
Resident peritoneal macrophages incubated with 3.5 x 10(-7) M Calcium ionophore A23187 in tumor cell growth medium (TGM) release large amounts of leukotriene (LT)E4 and an unidentified 5-lipoxygenase product, whereas A23187-stimulated macrophages produce in serum free medium LTD4, predominately. LTC4 and 3H-LTC4 incubated for 20 min at 37 degree C in serum containing TGM, convert into LTE4 and 3H-LTE4, respectively. Thus, LTC4 released from A23187-stimulated macrophages is an intermediate in TGM which rapidly converts into LTE4, probably because of the presence of gamma-glutamyl transpeptidase and cystenylglycinase in TGM. Macrophages express antitumor cytostatic activity towards P815 cells (49-53%) in a cocultured ratio (macrophage: tumor cell) 2:1 when stimulated with 3.5 x 10(-7) M A23187 in TGM. The 5-lipoxygenase inhibitor AA861 reverses the cytostatic activity by 42-58% and it inhibits also the formation of A23187-induced 5-lipoxygenase products from macrophages. Restoration of 38% macrophage- antitumor cytostatic activity by exogenous LTC4 (10(-8) M) indicates that LTC4 is an essential 5-lipoxygenase intermediate in the pathway of required signals underlying A23187-induced macrophage antitumor cytostatic activity. Macrophages not stimulated by A23187 do not express cytostatic activity in the presence of LTC4. This implies that besides LTC4, increased cytosolic [Ca2+] is required for A23187 induction of macrophage cytostatic activity.  相似文献   

20.
Small concentrations of recombinant murine interferon-gamma (MuIFN-gamma), recombinant human interleukin 1 (HuIL-1), and recombinant murine tumor necrosis factor (MuTNF), added separately to cultures of thioglycolate-elicited peritoneal macrophages, produced no cytotoxic activity against L5178Y cells, a tumor cell line which is resistant to the direct toxic effects of these cytokines, either alone or in combination. However, small concentrations of MuIFN-gamma when combined with small concentrations of either HuIL-1 or MuTNF activated these macrophages to produce cytotoxic effects against L5178Y cells; small concentrations of HuIL-1 and MuTNF in combination had no macrophage activating activity. Specific antibody to MuTNF blocked the macrophage-activating synergistic effects of MuIFN-gamma + HuIL-1, and specific antibody to HuIL-1 blocked the macrophage-activating activity of MuIFN-gamma + MuTNF, indicating that MuTNF was induced in macrophage cultures treated with MuIFN-gamma + HuIL-1, and that murine IL-1 was induced in macrophage cultures treated with MuIFN-gamma + MuTNF. These results indicate that all three cytokines are required for induction of antitumor cytotoxic activation of macrophages. Experiments with a concentration of MuIFN-gamma which alone could activate macrophages revealed that both MuTNF and murine IL-1 were required for this activation. The demonstration that small concentrations of these three cytokines can act synergistically, but not separately, to activate macrophages indicates the importance of cytokine combinations in immunoregulation and in anti-tumor cell-mediated immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号