首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of 1 h/day restraint in plastic tubes for 24 days on the levels of serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), tryptophan (TP), and noradrenaline (NA) in six regions of rat brain 20 h after the last restraint period were investigated. The levels of 5-HT, 5-HIAA, and NA but not TP increased in several regions. The effects of 1 h of immobilization on both control and chronically restrained rats were also studied. Immobilization per se did not alter brain 5-HT, 5-HIAA, and TP levels, but decreased NA in the pons plus medulla oblongata and hypothalamus. However, immobilization after chronic restraint decreased 5-HT, increased 5-HIAA, and decreased NA in most brain regions in comparison with values for the chronically restrained rats. We suggest that chronic restraint leads to compensatory increases of brain 5-HT and NA synthesis and sensitizes both monoaminergic systems to an additional acute stress. These changes may affect coping with stress demands.  相似文献   

2.
In addition to its insulinotropic action, exogenously administered glucagon-like peptide (GLP-1) inhibits gastropancreatic motility and secretion via central pathways. The aims of the present study were to evaluate the effects of exogenous GLP-1-(7-36) amide on fecal output and to investigate the role of endogenous GLP-1 on stress-induced colonic activity. With the use of a stereotaxic instrument, adult male Sprague-Dawley rats weighing 200-250 g were fitted with stainless steel cerebroventricular guide cannulas under ketamine anesthesia. A group of rats were placed in Bollman-type cages to induce restraint stress. Fecal output monitored for 2 h was increased significantly by intracerebroventricular GLP-1 to 500, 1, 000, and 3,000 pmol/rat (P < 0.05-0.01), whereas intraperitoneal GLP-1 had no effect. Intracerebroventricular administration of the GLP-1 receptor antagonist exendin-(9-39) (10 nmol/rat) reversed the increases induced by GLP-1 (500 pmol/rat; P<0.01). Similar results were also observed with the injection of corticotropin-releasing factor receptor antagonist astressin (10 microg/rat icv). The significant increase in fecal pellet output induced by restraint stress was also decreased by both intracerebroventricular exendin (10 nmol/rat) and astressin (10 microg/rat; P<0.01-0.001). These results suggest that GLP-1 participates in the central, but not peripheral, regulation of colonic motility via its own receptor and that GLP-1 is likely to be a candidate brain-gut peptide that acts as a physiological modulator of stress-induced colonic motility.  相似文献   

3.
We investigated the inhibitory effect of para-masticatory activity, namely biting, on restraint stress-induced oxidative stress. A blood brain barrier-permeable nitroxyl spin probe, 3-methoxycarbonyl-2,2,5,5,-tetramethylpyrrolidine-1-oxyl (MC-PROXYL), was administered to rats and L-band electron spin resonance (ESR) and ESR-computerized tomography (ESR-CT) imaging were used to show that the decay rate constant of MC-PROXYL in the hypothalamus of isolated brain after 30 min of restraint stress was more rapid than in unrestrained control rats, suggesting that restraint was associated with oxidative stress. Interestingly, biting during restraint stress caused the decay rate constant of MC-PROXYL in isolated brain to approach that of the control group. These observations suggest that biting suppresses oxidative stress induced by restraint stress, and that the anti-stress effect of masticatory motor activity movements, such as biting, are important for reducing the adverse effects associated with exposure to psychological stressors.  相似文献   

4.
5.
Previous studies have demonstrated that repeated restraint stress in rodents produces increases in depression and anxietylike behaviors and alters the expression of corticotrophinreleasing factor (CRF) in the hypothalamus. The current study focused on the impact of Bupleurum falcatum (BF) extract administration on repeated restraint stress-induced behavioral responses using the forced swimming test (FST) and elevated plus maze (EPM) test. Immunohistochemical examinations of tyrosine hydroxylase (TH) expression in rat brain were also conducted. Male rats received daily doses of 20, 50, or 100 mg/kg (i.p.) BF extract for 15 days, 30 min prior to restraint stress (4 h/day). Hypothalamicpituitary- adrenal axis activation in response to repeated restraint stress was confirmed base on serum corticosterone levels and CRF expression in the hypothalamus. Animals that were pre-treated with BF extract displayed significantly reduced immobility in the FST and increased open-arm exploration in the EPM test in comparison with controls. BF also blocked the increase in TH expression in the locus coeruleus of treated rats that experienced restraint stress. Together, these results demonstrate that BF extract administration prior to restraint stress significantly reduces depression and anxiety-like behaviors, possibly through central adrenergic mechanisms, and they suggest a role for BF extract in the treatment of depression and anxiety disorders.  相似文献   

6.
Cold-restrained stress increased rat pineal melatonin and N-acetylserotonin content. This effect was partially prevented by lorazepam. Serotonergic turnover (ratio of 5-hydroxyindole acetic acid to serotonin) was significantly decreased in stressed but not in stressed rats pretreated with lorazepam, suggesting stress-induced inhibition of monoamine oxidase (MAO). Literature data indicate that the same type of stress increases the production of the endogenous MAO inhibitor. The implication of stress-induced MAO inhibition on melatonin synthesis in anxiety and drug withdrawal is discussed.  相似文献   

7.
We investigated whether inhalation of green odor (a mixture of equal amounts of trans-2-hexenal and cis-3-hexenol) prevents the skin-barrier disruption induced by chronic restraint stress in rats. To this end, transepidermal water loss (TEWL) was measured as an index of the disruption of skin-barrier function, whereas light- and electron-microscope examinations were performed to observe histological changes in the skin of the stressed animals. In addition, the effects on TEWL induced by chronic administration of a glucocorticoid, dexamethasone (DEX), were examined. Chronic restraint stress (8 h per day for 14 days) increased TEWL (vehicle + stress group). This effect (and the chronic stress-induced increase in adrenal weight) was prevented in rats that inhaled green odor at the beginning of each day's restraint (2 h each day for 14 days; green odor + stress group). Electron-microscope studies revealed that rats in the green odor + stress group possessed sufficient intercorneocyte lipids to create an effective skin barrier, although these had apparently been decreased in the vehicle + stress group. Daily administration of DEX for 14 days increased TEWL. The present results suggest that chronic stress-induced disruption of the skin barrier in rats can be reduced or prevented by green odor (possibly at least in part through an inhibitory effect on the stress-induced activation of the hypothalamo-pituitary-adrenocortical axis).  相似文献   

8.
The influence of chronic stress (footshock combined with randomized light flashes) on acute stress-induced (immobilization) release of noradrenaline, dopamine and serotonin in rat lateral hypothalamus was assessed by microdialysis. The chronic stress resulted in an increase and prolongation of the acute stress-induced release of noradrenaline but not of dopamine and serotonin. The increased rate of accumulation of dioxyphenylacetic acid and unchanged accumulation of homovanillic acid (dopamine metabolites) and dopamine during and after the acute stress in chronically stressed animals reflect a rise of synthetic activity of catecholaminergic systems in response to acute stress and reuptake increase. Marked stress-induced increase in hydroxyindoleacetic acid in chronically stressed rats without any changes in the ST dynamics may be regarded in a similar way. A significant increase in potassium-stimulated release of all the studied monoamines was found while their basal level remained unchanged. The conclusions was made that the hyperergic release of neurotransmitters may be the basis of an inadequate response of animals to acute stress, i.e., one of the neurotic symptoms.  相似文献   

9.
Mastication, which includes biting, is of great importance not only for the intake of food but also for the mental, physical and physiological functioning of the body. For example, biting suppresses the stress response. Although biting and nitric oxide (NO) appear to modulate brain dynamics during stress, the underlying mechanisms have not been elucidated. In this study, we examined the effect of biting during restraint stress on NO levels in the rat hypothalamus. To this end, we used NO-selective electrodes that were calibrated by electron spin resonance (ESR) spectroscopy. We implanted the electrodes and probes for perfusion of solutions into the brain of rats, near the hypothalamus. Saline containing 10 mM N-nitro-L-arginine methyl ester (L-NAME), which is one of the most commonly used inhibitors of nitric oxide synthase (NOS), was employed as the perfusate. L-NAME prevented increases in NO levels in the rat hypothalamus that were induced by restraint stress and biting. Hypothalamic NO levels in rats under restraint stress for 180 min were increased above levels observed in unrestrained control rats. The increase in hypothalamic NO (from 2.123 muM to 4.760 muM) during restraint stress was reduced after biting for 30 min. The decay rate of NO levels after biting was -0.584 pA/min (-0.071 muM/min). We conclude that: (i) it is possible to evaluate NO levels in vivo in rat brain; (ii) NO levels are increased by restraint stress; and (iii) this increase is prevented by biting behavior.  相似文献   

10.
Sleep is generally considered to be a recovery from prior wakefulness. The architecture of sleep not only depends on the duration of wakefulness but also on its quality in terms of specific experiences. In the present experiment, we studied the effects of restraint stress on sleep architecture and sleep electroencephalography (EEG) in different strains of mice (C57BL/6J and BALB/cJ). One objective was to determine if the rapid eye movement (REM) sleep-promoting effects of restraint stress previously reported for rats would also occur in mice. In addition, we examined whether the effects of restraint stress on sleep are different from effects of social defeat stress, which was found to have a non-REM (NREM) sleep-promoting effect. We further measured corticosterone and prolactin levels as possible mediators of restraint stress-induced changes in sleep. Adult male C57BL/6J and BALB/cJ mice were subjected to 1 h of restraint stress in the middle of the light phase. To control for possible effects of sleep loss per se, the animals were also kept awake for 1 h by gentle handling. Restraint stress resulted in a mild increase in NREM sleep compared with baseline, but, overall, this effect was not significantly different from sleep deprivation by gentle handling. In contrast, restraint stress caused a significant increase in REM sleep compared with handling in the C57BL/6J mice but not in BALB/cJ mice. Corticosterone levels were significantly and similarly elevated after restraint in both strains, but prolactin was increased only in the C57BL/6J mice. In conclusion, this study shows that the restraint stress-induced increase in REM sleep in mice is strongly strain dependent. The concomitant increases in prolactin and REM sleep in the C57BL/6J mice, but not in BALB/cJ mice, suggest prolactin may be involved in the mechanism underlying restraint stress-induced REM sleep. Furthermore, this study confirms that different stressors differentially affect NREM and REM sleep. Whereas restraint stress promotes REM sleep in C57BL/6J mice, we previously found that in the same strain, social defeat stress promotes NREM sleep. As such, studying the consequences of specific stressful stimuli may be an important tool to unravel both the mechanism and function of different sleep stages.  相似文献   

11.
应激对同型半胱氨酸代谢的负性调节   总被引:8,自引:0,他引:8  
Wu SQ  Qian LJ 《生理学报》2004,56(4):521-524
基于应激对高同型半胱氨酸血症具有诱导作用,本文探索了应激致同型半胱氨酸(homocysteine,HCY)代谢变化的关键环节,并初步揭示了该作用的意义。以束缚应激法建立大鼠应激模型,采用高压液相-荧光检测法测定血浆HCY水平,用放射性酶学法检测不同组织中胱硫醚β合成酶(cystathionine beta-synthase,CBS)活性的变化,以及RT-PCR法和Northern blot法检测CBS mRNA水平的变化。结果可见,束缚应激可导致大鼠高同型半胱氨酸血症的发生;CBS在肝脏具有最强的代谢活性,肾脏其次,而心脏和血液中活性极低;应激大鼠肝脏CBS活性和mRNA水平均显著降低(P<0.05),应激3周时分别为对照组的70.6%±5.9%和55.9%±4.3%。以上研究结果表明,应激对HCY转硫代谢途径存在负性调节作用,其对肝脏CBS基因转录水平的调控是应激所致高同型半胱氨酸血症发生的重要诱因;肝脏是应激对HCY代谢调节的主要场所。  相似文献   

12.
Abstract: Aging in rats is associated with a loss of hippocampal neurons, which may contribute to age-related cognitive deficits. Several lines of evidence suggest that stress and glucocorticoids may contribute to age-related declines in hippocampal neuronal number. Excitatory amino acids (EAAs) have been implicated in the glucocorticoid endangerment and stress-induced morphological changes of hippocampal neurons of young rats. Previously, we have reported that acute immobilization stress can increase extracellular concentrations of the endogenous excitatory amino acid, glutamate, in the hippocampus. The present study examined the effect of an acute bout of immobilization stress on glutamate levels in the hippocampus and medial prefrontal cortex of young (3–4-month) and aged (22–24-month) Fischer 344 rats. In addition, the effect of stress on spectrin proteolysis in these two brain regions was also examined. Spectrin is a cytoskeleton protein that contributes to neuronal integrity and proteolysis of this protein has been proposed as an important component of EAA-induced neuronal death. There was no difference in basal glutamate levels between young and old rats in the hippocampus or medial prefrontal cortex. During the period of restraint stress a modest increase in glutamate levels in the hippocampus of young and aged rats was observed. After the termination of the stress procedure, hippocampal glutamate concentrations continued to rise in the aged rats, reaching a level approximately five times higher than the young rats, and remained elevated for at least 2 h after the termination of the stress. A similar pattern was also observed in the medial prefrontal cortex with an augmented post-stress-induced glutamate response observed in the aged rats. There was no increase in spectrin proteolysis in the hippocampus or medial prefrontal cortex of young or aged rats after stress or under basal nonstress conditions. The enhanced poststress glutamate response in the aged rats may contribute to the increased sensitivity of aged rats to neurotoxic insults.  相似文献   

13.
In experiments on vagotomized and intact rats with the use of two models of experimental gastric ulceration (injection of serotonin and stress) it was demonstrated that the inhibitory action of vagotomy on haemorrhagic gastric effectiveness was more pronounced in stress than after serotonin application. Vagotomy decreased stress-induced erosive lesions but increased serotonin-induced erosions that may be a result of the increase of gastric tissue sensitivity to this amine which developed simultaneously with significant decrease of its level in gastric wall after vagotomy. Serotonin-antagonist peritol decreased stress-induced gastric disturbances in vagotomized rats more significantly than in intact rats; this suggested the great role of serotonin in anti-ulcerogenic effect of vagotomy.  相似文献   

14.
Glutamatergic mechanisms are thought to be involved in stress-induced changes of brain function, especially in the hippocampus. We hypothesized that alterations caused by the hormonal changes associated with chronic and acute stress may affect glutamate uptake and release from hippocampal synaptosomes in Wistar rats. It was found that [3H]glutamate uptake and release by hippocampal nerve endings, when measured 24 h after 1 h of acute restraint, presented no significant difference. The exposure to repeated restraint stress for 40 days increased neuronal presynaptic [3H]glutamate uptake as well as basal and K+-stimulated glutamate release when measured 24 h after the last stress session. Chronic treatment also caused a significant decrease in [3H]glutamate binding to hippocampal membranes. We suggest that changes in the glutamatergic system are likely to take part in the mechanisms involved in nervous system plasticity following repeated stress exposure.  相似文献   

15.
The dose response and time course effects of L-tryptophan and restraint stress on the metabolism of serotonin and release of thyroid stimulating hormone (TSH) and prolactin (PRL) were tested in male rats. Both treatments increased serotonin turnover in the hypothalamus (H) and remaining brain tissue minus the cerebellum (brain) as determined by enhanced accumulation of serotonin following monoamine oxidase (MAO) inhibition. L-tryptophan but not restraint stress elevated levels of tryptophan in the cerebellum. Both L-tryptophan and restraint stress inhibited TSH release and stimulated PRL release. These findings indicate that enhanced rates of serotonin turnover produced by L-tryptophan and physical restraint are associated with inhibition of TSH and stimulation of PRL release from the anterior pituitary.  相似文献   

16.
A chromosome 1 blood pressure quantitative trait locus (QTL) was introgressed from the stroke-prone spontaneously hypertensive rats (SHRSP) to Wistar-Kyoto (WKY) rats. This congenic strain (WKYpch1.0) showed an exaggerated pressor response to both restraint and cold stress. In this study, we evaluated cardiovascular and sympathetic response to an air-jet stress and also examined the role of the brain renin-angiotensin system (RAS) in the stress response of WKYpch1.0. We measured mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) responses to air-jet stress in WKYpch1.0, WKY, and SHRSP. We also examined effects of intracerebroventricular administration of candesartan, an ANG II type 1 receptor blocker, on MAP and HR responses to air-jet stress. Baseline MAP in the WKYpch1.0 and WKY rats were comparable, while it was lower than that in SHRSP rats. Baseline HR did not differ among the strains. In WKYpch1.0, air-jet stress caused greater increase in MAP and RSNA than in WKY. The increase in RSNA was as large as that in SHRSP, whereas the increase in MAP was smaller than in SHRSP. Intracerebroventricular injection of a nondepressor dose of candesartan inhibited the stress-induced pressor response to a greater extent in WKYpch1.0 than in WKY. Intravenous injection of phenylephrine caused a presser effect comparable between WKYpch1.0 and WKY. These results suggest that the chromosome 1 blood pressure QTL congenic rat has a sympathetic hyperreactivity to an air-jet stress, which causes exaggerated pressor responses. The exaggerated response is at least partly mediated by the brain RAS.  相似文献   

17.
It is well known that a variety of stressors induces a significant alteration in various putative neurotransmitters in the mammalian CNS. However, relatively little attention has been paid on the alteration of central glutamate neurotransmission, which is a major excitatory neurotransmitter in the brain. The present study aimed to determine whether acute restraint stress induces the changes in neurotransmitter level, especially glutamate, in rat brain and to examine whether 1-h recovery time after the termination of stress can revert to its pre-stress state. In vivo 1H-NMR spectra were acquired from the cerebral cortex and hippocampus (control: N = 10, stress: N = 10, stress + 1 h rest: N = 10) immediately or after 1 h rest from restraint stress. All in vivo proton spectra were automatically analyzed using LCModel. We found that acute restraint stress induced significant increase in glutamate concentrations in the cerebral cortex and the hippocampus of rat. However, the level could not revert to its pre-stress state by the end of 1-h recovery period in cerebral cortex of rats. In addition, glutamine/glutamate ratio, which may function as an index of the glutamatergic neurotransmission, was significantly lower in the cerebral cortex of both stress and 1 h stress + 1 h recovery groups, as compared to control. Our finding may provide important evidence for altered glutamatergic activity after the stress and suggest a potential biochemical marker for eventual diagnosis and/or therapy monitoring in mood disorder.  相似文献   

18.
The purpose of the present study was to assess whether, and to what extent prior handling, restraint or social crowding stress during 3-10 days affects the hypothalamic-pituitary-adrenocortical (HPA) response to an acute short-lasting restraint stress. Also the effect of a feedback inhibitory mechanism of corticosterone in the impairment of HPA axis by these stressors was investigated. Male Wistar rats were pretreated with handling 1 min/day for 3-10 days, restraint 2 times daily for 3-7 days and crowding stress for 7 days before exposure to acute restraint stress in metal tubes for 10 min. Some group of rats received exogenous s.c. corticosterone either once 25 mg/kg or 2 times daily 10 mg/kg for 3-10 days before restraint stress. After the last restraint the rats were decapitated and their trunk blood was collected for the measurement of plasma ACTH and serum corticosterone levels. Handling for 3-7 days, restraint for 3-7 days, and crowding for 7 days and a single pretreatment with corticosterone--all significantly and to a similar extent inhibited the restraint stress-induced increase in ACTH and corticosterone secretion. Chronic pretreatment with corticosterone blunted the restraint stress-induced increase in HPA axis activity. These results indicate that repeated short-lasting stress induced by handling, restraint, or crowding potently attenuates the acute restraint stress-induced stimulatory action of the HPA axis. They also indicate adaptive action of moderate stress on the HPA axis response to acute stress. The results also suggest that a short-lasting hypersecretion of corticosterone during psychological stress may induce a prolonged feedback inhibition of the HPA axis activity. The attenuation of HPA axis response by prior handling has also obvious methodological implications.  相似文献   

19.
大鼠脑内5-羟色胺在应激性溃疡形成中的作用   总被引:9,自引:0,他引:9  
杨红  张席锦 《生理学报》1985,37(5):416-424
通过神经化学和神经药理学的方法,在大鼠观察了冷冻加束缚应激性溃疡的形成过程中,脑内5-羟色胺(5-HT)的作用。结果如下:1.在应激过程中,脑内5-HT 及其主要代谢产物5-羟吲哚乙酸(5-HIAA)的含量明显升高,特别是5-HIAA 的含量随着应激时间的延长持续上升,说明5-HT 的代谢加快。2.脑内5-HT 或5-HIAA 含量在应激45min 时与溃疡指数呈明显的负相关,而在应激180min 时则与溃疡指数呈明显的正相关。3.侧脑室注射5-HT或其前体5-羟色氨酸(5-HTP),对应激性溃疡的形成呈双重作用,小剂量时减轻而大剂量时加重溃疡的形成。4.腹腔注射5-HT 合成阻断剂对氯苯丙氨酸(pCPA)可降低大鼠脑内5-HT 和5-HIAA 含量,使应激60min 鼠的溃疡形成加重,而使应激180min 鼠的溃疡形成减轻。以上结果提示,在大鼠的冷冻加束缚应激性溃疡的形成过程中,脑内5-HT 起着一定的作用,它很可能在应激早期减轻而在应激晚期加重溃疡的形成。  相似文献   

20.
Chronic restraint stress causes spatial learning and memory deficits, dendritic atrophy of the hippocampal pyramidal neurons and alterations in the levels of neurotransmitters in the hippocampus. In contrast, intracranial self-stimulation (ICSS) rewarding behavioral experience is known to increase dendritic arborization, spine and synaptic density, and increase neurotransmitter levels in the hippocampus. In addition, ICSS facilitates operant and spatial learning, and ameliorates fornix-lesion induced behavioral deficits. Although the effects of stress and ICSS are documented, it is not known whether ICSS following stress would ameliorate the stress-induced deficits. Accordingly, the present study was aimed to evaluate the role of ICSS on stress-induced changes in hippocampal morphology, neurochemistry, and behavioral performance in the T-maze. Experiments were conducted on adult male Wistar rats, which were randomly divided into four groups; normal control, stress (ST), self-stimulation (SS), and stress + self-stimulation (ST + SS). Stress group of rats were subjected to restraint stress for 6 h daily over 21 days, SS group animals were subjected to SS from ventral tegmental area for 10 days and ST + SS rats were subjected to restraint stress for 21 days followed by 10 days of SS. Interestingly, our results show that stress-induced behavioral deficits, dendritic atrophy, and decreased levels of neurotransmitters were completely reversed following 10 days of SS experience. We propose that SS rewarding behavioral experience ameliorates the stress-induced cognitive deficits by inducing structural and biochemical changes in the hippocampus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号