首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pollination syndromes are defined as suites of floral traits evolved in response to selection imposed by a particular group of pollinators (e.g., butterflies, hummingbirds, bats). Although numerous studies demonstrated their occurrence in plants pollinated by radically different pollinators, it is less known whether it is possible to identify them within species pollinated by one functional pollinator group. In such a framework, we expect floral traits to evolve also in response to pollinator subgroups (e.g., species, genera) within that unique functional group. On this, specialised pollination systems represent appropriate case studies to test such expectations. Calceolaria is a highly diversified plant genus pollinated by oil‐collecting bees in genera Centris and Chalepogenus. Variation in floral traits in Calceolaria has recently been suggested to reflect adaptations to pollinator types. However, to date no study has explicitly tested that observation. In this paper, we quantitatively test that hypothesis by evaluating the presence of pollination syndromes within the specialised pollination system formed by several Calceolaria and their insect pollinators. To do so, we use multivariate approaches and explore the structural matching between the morphology of 10 Calceolaria taxa and that of their principal pollinators. Our results identify morphological matching between floral traits related to access to the reward and insect traits involved in oil collection, confirming the presence of pollinator syndromes in Calceolaria. From a general perspective, our findings indicate that the pollination syndrome concept can be also extended to the intra‐pollinator group level.  相似文献   

2.
Assembly of microbial communities is the result of neutral and selective processes. However, the relative importance of these processes is still debated. Microbial communities of flowers, in particular, have gained recent attention because of their potential impact to plant fitness and plant‐pollinator interactions. However, the role of selection and dispersal in the assembly of these communities remains poorly understood. Here, we evaluated the role of pollinator‐mediated dispersal on the contribution of neutral and selective processes in the assembly of floral microbiomes of the yellow monkeyflower (Mimulus guttatus). We sampled floral organs from flowers in the presence and absence of pollinators within five different serpentine seeps in CA and obtained 16S amplicon data on the epiphytic bacterial communities. Consistent with strong microenvironment selection within flowers we observed significant differences in community composition across floral organs and only a small effect of geographic distance. Pollinator exposure affected the contribution of environmental selection and depended on the rate and intimacy of interactions with flower visitors. This study provides evidence of the importance of dispersal and within‐flower heterogeneity in shaping epiphytic bacterial communities of flowers, and highlights the complex interplay between pollinator behaviour, environmental selection and additional abiotic factors in shaping the epiphytic bacterial communities of flowers.  相似文献   

3.
The effects of climate change on species interactions are poorly understood. Investigating the mechanisms by which species interactions may shift under altered environmental conditions will help form a more predictive understanding of such shifts. In particular, components of climate change have the potential to strongly influence floral volatile organic compounds (VOCs) and, in turn, plant–pollinator interactions. In this study, we experimentally manipulated drought and herbivory for four forb species to determine effects of these treatments and their interactions on (1) visual plant traits traditionally associated with pollinator attraction, (2) floral VOCs, and (3) the visitation rates and community composition of pollinators. For all forbs tested, experimental drought universally reduced flower size and floral display, but there were species‐specific effects of drought on volatile emissions per flower, the composition of compounds produced, and subsequent pollinator visitation rates. Moreover, the community of pollinating visitors was influenced by drought across forb species (i.e. some pollinator species were deterred by drought while others were attracted). Together, these results indicate that VOCs may provide more nuanced information to potential floral visitors and may be relatively more important than visual traits for pollinator attraction, particularly under shifting environmental conditions.  相似文献   

4.
de Jager ML  Dreyer LL  Ellis AG 《Oecologia》2011,166(2):543-553
The co-occurrence of plant species within a community is influenced by local deterministic or neutral processes as well as historical regional processes. Floral trait distributions of co-flowering species that share pollinators may reflect the impact of pollinator preference and constancy on their assembly within local communities. While pollinator sharing may lead to increased visitation rates for species with similar flowers, the receipt of foreign pollen via interspecific pollinator movements can decrease seed set. We investigated the pattern of community flower colour assembly as perceived by native honeybee pollinators within 24 local assemblages of co-flowering Oxalis species within the Greater Cape Floristic Region, South Africa. To explore the influence of pollinators on trait assembly, we assessed the impact of colour similarity on pollinator choices and the cost of heterospecific pollen receipt. We show that flower colour is significantly clustered within Oxalis communities and that this is not due to historical constraint, as flower colour is evolutionarily labile within Oxalis and communities are randomly structured with respect to phylogeny. Pollinator observations reveal that the likelihood of pollinators switching between co-flowering species is low and increases with flower colour similarity. Interspecific hand pollination significantly reduced seed set in the four Oxalis species we investigated, and all were dependant on pollinators for reproduction. Together these results imply that flower colour similarity carries a potential fitness cost. However, pollinators were highly flower constant, and remained so despite the extreme similarity of flower colour as perceived by honeybees. This suggests that other floral traits facilitate discrimination between similarly coloured species, thereby likely resulting in a low incidence of interspecific pollen transfer (IPT). If colour similarity promotes pollinator attraction at the community level, the observed clustering of flower colour within communities might result from indirect facilitative interactions.  相似文献   

5.
Floral traits have largely been attributed to phenotypic selection in plant–pollinator interactions. However, the strength of this link has rarely been ascertained with real pollinators. We conducted pollinator observations and estimated selection through female fitness on flowering phenology and floral traits between two Primula secundiflora populations. We quantified pollinator‐mediated selection by subtracting estimates of selection gradients of plants receiving supplemental hand pollination from those of plants receiving open pollination. There was net directional selection for an earlier flowering start date at populations where the dominant pollinators were syrphid flies, and flowering phenology was also subjected to stabilized quadratic selection. However, a later flowering start date was significantly selected at populations where the dominant pollinators were legitimate (normal pollination through the corolla tube entrance) and illegitimate bumblebees (abnormal pollination through nectar robbing hole which located at the corolla tube), and flowering phenology was subjected to disruptive quadratic selection. Wider corolla tube entrance diameter was selected at both populations. Furthermore, the strength of net directional selection on flowering start date and corolla tube entrance diameter was stronger at the population where the dominant pollinators were syrphid flies. Pollinator‐mediated selection explained most of the between‐population variations in the net directional selection on flowering phenology and corolla tube entrance diameter. Our results suggested the important influence of pollinator‐mediated selection on floral evolution. Variations in pollinator assemblages not only resulted in variation in the direction of selection but also the strength of selection on floral traits.  相似文献   

6.
Floral traits are adapted by plants to attract pollinators. Some of those plants that have different pollinators in different regions adapt to each pollinator in each region to maximize their pollination success. Mucuna macrocarpa (Fabaceae) limits the pollinators using its floral structure and is pollinated by different mammals in different regions. Here, we examine the relationships between floral traits of M. macrocarpa and the external morphology of mammalian pollinators in different regions of its distribution. Field surveys were conducted on Kyushu and Okinawajima Island in Japan, and in Taiwan, where the main pollinators are the Japanese macaque Macaca fuscata, Ryukyu flying fox Pteropus dasymallus, and red‐bellied squirrel Callosciurus erythraeus, respectively. We measured the floral shapes, nectar secretion patterns, sugar components, and external morphology of the pollinators. Results showed that floral shape was slightly different among regions and that flower sizes were not correlated with the external morphology of the pollinators. Volume and sugar rate of nectar were not significantly different among the three regions and did not change throughout the day in any of the regions. However, nectar concentration was higher in Kyushu than in the other two regions. These results suggest that the floral traits of M. macrocarpa are not adapted to each pollinator in each region. Although this plant limits the number of pollinators using its flower structure, it has not adapted to specific mammals and may attract several species of mammals. Such generalist‐like pollination system might have evolved in the Old World.  相似文献   

7.
Introduced plants may be important foraging resources for honey bees and wild pollinators, but how often and why pollinators visit introduced plants across an entire plant community is not well understood. Understanding the importance of introduced plants for pollinators could help guide management of these plants and conservation of pollinator habitat. We assessed how floral abundance and pollinator preference influence pollinator visitation rate and diversity on 30 introduced versus 24 native plants in central New York. Honey bees visited introduced and native plants at similar rates regardless of floral abundance. In contrast, as floral abundance increased, wild pollinator visitation rate decreased more strongly for introduced plants than native plants. Introduced plants as a group and native plants as a group did not differ in bee diversity or preference, but honey bees and wild pollinators preferred different plant species. As a case study, we then focused on knapweed (Centaurea spp.), an introduced plant that was the most preferred plant by honey bees, and that beekeepers value as a late‐summer foraging resource. We compared the extent to which honey bees versus wild pollinators visited knapweed relative to coflowering plants, and we quantified knapweed pollen and nectar collection by honey bees across 22 New York apiaries. Honey bees visited knapweed more frequently than coflowering plants and at a similar rate as all wild pollinators combined. All apiaries contained knapweed pollen in nectar, 86% of apiaries contained knapweed pollen in bee bread, and knapweed was sometimes a main pollen or nectar source for honey bees in late summer. Our results suggest that because of diverging responses to floral abundance and preferences for different plants, honey bees and wild pollinators differ in their use of introduced plants. Depending on the plant and its abundance, removing an introduced plant may impact honey bees more than wild pollinators.  相似文献   

8.
Climate change is predicted to result in increased occurrence and intensity of drought in many regions worldwide. By increasing plant physiological stress, drought is likely to affect the floral resources (flowers, nectar and pollen) that are available to pollinators. However, little is known about impacts of drought at the community level, nor whether plant community functional composition influences these impacts. To address these knowledge gaps, we investigated the impacts of drought on floral resources in calcareous grassland. Drought was simulated using rain shelters and the impacts were explored at multiple scales and on four different experimental plant communities varying in functional trait composition. First, we investigated the effects of drought on nectar production of three common wildflower species (Lathyrus pratensis, Onobrychis viciifolia and Prunella vulgaris). In the drought treatment, L. pratensis and P. vulgaris had a lower proportion of flowers containing nectar and O. viciifolia had fewer flowers per raceme. Second, we measured the effects of drought on the diversity and abundance of floral resources across plant communities. Drought reduced the abundance of floral units for all plant communities, irrespective of functional composition, and reduced floral species richness for two of the communities. Functional diversity did not confer greater resistance to drought in terms of maintaining floral resources, probably because the effects of drought were ubiquitous across component plant communities. The findings indicate that drought has a substantial impact on the availability of floral resources in calcareous grassland, which will have consequences for pollinator behaviour and populations.  相似文献   

9.
The reproductive‐assurance hypothesis predicts that mating‐system traits will evolve towards increased autonomous self‐pollination in plant populations experiencing unreliable pollinator service. We tested this long‐standing hypothesis by assessing geographic covariation among pollinator reliability, outcrossing rates, heterozygosity and relevant floral traits across populations of Dalechampia scandens in Costa Rica. Mean outcrossing rates ranged from 0.16 to 0.49 across four populations, and covaried with the average rates of pollen arrival on stigmas, a measure of pollinator reliability. Across populations, genetically based differences in herkogamy (anther–stigma distance) were associated with variation in stigmatic pollen loads, outcrossing rates and heterozygosity. These observations are consistent with the hypothesis that, when pollinators are unreliable, floral traits promoting autonomous selfing evolve as a mechanism of reproductive assurance. Extensive covariation between floral traits and mating system among closely related populations further suggests that floral traits influencing mating systems track variation in adaptive optima generated by variation in pollinator reliability.  相似文献   

10.
The occurrence and extent of multiple paternity is an important component of variation in plant mating dynamics. However, links between pollinator activity and multiple paternity are generally lacking, especially for plant species that attract functionally diverse floral visitors. In this study, we separated the influence of two functionally distinct floral visitors (hawkmoths and solitary bees) and characterized their impacts on multiple paternity in a self‐incompatible, annual forb, Oenothera harringtonii (Onagraceae). We also situated pollinator‐mediated effects in a spatial context by linking variation in multiple paternity to variation in plant spatial isolation. We documented pronounced differences in the number of paternal sires as function of pollinator identity: on average, the primary pollinator (hawkmoths) facilitated mating with nearly twice as many pollen donors relative to the secondary pollinator (solitary bees). This effect was consistent for both isolated and nonisolated individuals, but spatial isolation imposed pronounced reductions on multiple paternity regardless of pollinator identity. Considering that pollinator abundance and pollen dispersal distance did not vary significantly with pollinator identity, we attribute variation in realized mating dynamics primarily to differences in pollinator morphology and behaviour as opposed to pollinator abundance or mating incompatibility arising from underlying spatial genetic structure. Our findings demonstrate that functionally distinct pollinators can have strongly divergent effects on polyandry in plants and further suggest that both pollinator identity and spatial heterogeneity have important roles in plant mating dynamics.  相似文献   

11.
Convergent reproductive traits in non‐related plants may be the result of similar environmental conditions and/or specialised interactions with pollinators. Here, we documented the pollination and reproductive biology of Bionia coriacea (Fabaceae), Esterhazya splendida (Orobanchaceae) and Ananas ananassoides (Bromeliaceae) as case studies in the context of hummingbird pollination in Cerrado, the Neotropical savanna of Central South America. We combined our results with a survey of hummingbird pollination studies in the region to investigate the recently suggested association of hummingbird pollination and self‐compatibility. Plant species studied here differed in their specialisation for ornithophily, from more generalist A. ananassoides to somewhat specialist B. coriacea and E. splendida. This continuum of specialisation in floral traits also translated into floral visitor composition. Amazilia fimbriata was the most frequent pollinator for all species, and the differences in floral display and nectar energy availability among plant species affect hummingbirds' behaviour. Most of the hummingbird‐pollinated Cerrado plants (60.0%, n = 20), including those studied here, were self‐incompatible, in contrast to other biomes in the Neotropics. Association to more generalist, often territorial, hummingbirds, and resulting reduced pollen flow in open savanna areas may explain predominance of self‐incompatibility. But it is possible that mating system is more associated with the predominance of woody hummingbird plants in the Cerrado plant assemblage than to the pollination system itself.  相似文献   

12.
  • Floral visitors differ in their efficacy as pollinators, and the impact of different pollinator species on pollen flow and plant reproduction has been frequently evaluated. In contrast, the impact of intraspecific behavioural changes on their efficacy as pollinators has seldom been quantified.
  • We studied a self‐incompatible shrub Palicourea rigida (Rubiaceae) and its hummingbird pollinators, which adjust their behaviour according to floral resource availability. Fluorescence microscopy was used to access pollen tube growth and incompatibility reaction in pistils after a single visit of territorial or intruder hummingbirds in two populations. To characterise the plant populations and possible differences in resource availability between areas we used a three‐term quadrat variance method to detect clusters of floral resources.
  • Within‐species variation in foraging behaviour, but not species identity, affected pollinator efficacy. Effectively, hummingbirds intruding into territories deposited more compatible pollen grains on P. rigida stigmas than territory holders in both study areas. Additionally, territory holders deposited more incompatible than compatible pollen grains.
  • Our results imply that intraspecific foraging behaviour variation has consequences for pollination success. Quantifying such variation and addressing the implications of intraspecific variability contribute to a better understanding of the dynamics and consequences of plant–pollinator interactions.
  相似文献   

13.
Large‐scale spatial variability in plant–pollinator communities (e.g. along geographic gradients, across different landscapes) is relatively well understood. However, we know much less about how these communities vary at small scales within a uniform landscape. Plants are sessile and highly sensitive to microhabitat conditions, whereas pollinators are highly mobile and, for the most part, display generalist feeding habits. Therefore, we expect plants to show greater spatial variability than pollinators. We analysed the spatial heterogeneity of a community of flowering plants and their pollinators in 40 plots across a 40‐km2 area within an uninterrupted Mediterranean scrubland. We recorded 3577 pollinator visits to 49 plant species. The pollinator community (170 species) was strongly dominated by honey bees (71.8% of the visits recorded). Flower and pollinator communities showed similar beta‐diversity, indicating that spatial variability was similar in the two groups. We used path analysis to establish the direct and indirect effects of flower community distribution and honey bee visitation rate (a measure of the use of floral resources by this species) on the spatial distribution of the pollinator community. Wild pollinator abundance was positively related to flower abundance. Wild pollinator visitation rate was negatively related to flower abundance, suggesting that floral resources were not limiting. Pollinator and flower richness were positively related. Pollinator species composition was weakly related to flower species composition, reflecting the generalist nature of flower–pollinator interactions and the opportunistic nature of pollinator flower choices. Honey bee visitation rate did not affect the distribution of the wild pollinator community. Overall, we show that, in spite of the apparent physiognomic uniformity, both flowers and pollinators display high levels of heterogeneity, resulting in a mosaic of idiosyncratic local communities. Our results provide a measure of the background of intrinsic heterogeneity within a uniform habitat, with potential consequences on low‐scale ecosystem function and microevolutionary patterns.  相似文献   

14.
Closely related species often differ in traits that influence reproductive success, suggesting that divergent selection on such traits contribute to the maintenance of species boundaries. Gymnadenia conopsea ss. and Gymnadenia densiflora are two closely related, perennial orchid species that differ in (a) floral traits important for pollination, including flowering phenology, floral display, and spur length, and (b) dominant pollinators. If plant–pollinator interactions contribute to the maintenance of trait differences between these two taxa, we expect current divergent selection on flowering phenology and floral morphology between the two species. We quantified phenotypic selection via female fitness in one year on flowering start, three floral display traits (plant height, number of flowers, and corolla size) and spur length, in six populations of G. conopsea s.s. and in four populations of G. densiflora. There was indication of divergent selection on flowering start in the expected direction, with selection for earlier flowering in two populations of the early‐flowering G. conopsea s.s. and for later flowering in one population of the late‐flowering G. densiflora. No divergent selection on floral morphology was detected, and there was no significant stabilizing selection on any trait in the two species. The results suggest ongoing adaptive differentiation of flowering phenology, strengthening this premating reproductive barrier between the two species. Synthesis: This study is among the first to test whether divergent selection on floral traits contribute to the maintenance of species differences between closely related plants. Phenological isolation confers a substantial potential for reproductive isolation, and divergent selection on flowering time can thus greatly influence reproductive isolation and adaptive differentiation.  相似文献   

15.
Understanding the evolution of specialization in host plant use by pollinators is often complicated by variability in the ecological context of specialization. Flowering communities offer their pollinators varying numbers and proportions of floral resources, and the uniformity observed in these floral resources is, to some degree, due to shared ancestry. Here, we find that pollinators visit related plant species more so than expected by chance throughout 29 plant–pollinator networks of varying sizes, with “clade specialization” increasing with community size. As predicted, less versatile pollinators showed more clade specialization overall. We then asked whether this clade specialization varied with the ratio of pollinator species to plant species such that pollinators were changing their behavior when there was increased competition (and presumably a forced narrowing of the realized niche) by examining pollinators that were present in at least three of the networks. Surprisingly, we found little evidence that variation in clade specialization is caused by pollinator species changing their behavior in different community contexts, suggesting that clade specialization is observed when pollinators are either restricted in their floral choices due to morphological constraints or innate preferences. The resulting pollinator sharing between closely related plant species could result in selection for greater pollinator specialization.  相似文献   

16.
Failures in the process of pollen transfer among conspecific plants can severely impact female reproductive success. Thus, pollen limitation can cause selection on plant mating systems and floral traits. The relationships between pollen limitation and floral traits might be partly mediated by the quantity and identity of pollinator visits. However, very little is known about the relationship between pollinator visits and pollen limitation. We examined the relationships between pollen limitation and floral traits at the community level to connect them to community ecology processes. We used 48 plant species from two contrasting communities: one species‐rich lowland community and one species‐poor alpine community. In addition, we calculated visitation rates and ecological pollination generalization for 38 of the species to examine the relationship between pollinator visitation and pollen limitation at the community level. We found low overall levels of pollen limitation that did not differ significantly between the alpine and the lowland community. In both communities, species with evolutionary specialized flowers were more pollen limited than species with unspecialized flowers. Species’ visitation rates and selfing capability were negatively related to pollen limitation in the alpine community, where pollinators are scarcer. However, flower size/number, ecological generalization of plants and flowering onset had greater effects on pollen limitation levels at the lowland community, indicating that the identity of the visitors and plant‐plant competitive interactions are more decisive for plant reproduction in this species‐rich community. There, pollen limitation increased with flower size and flowering onset, and decreased with ecological generalization, but only in species with evolutionary specialized flowers. Our study suggests that selection on plant mating system and floral traits may be idiosyncratic to each particular community and highlights the benefits of conducting community‐level studies for a better understanding of the processes underlying evolutionary responses to pollen limitation.  相似文献   

17.

Questions

In animal‐mediated pollination, pollinators can be regarded as a limiting resource for which entomophilous plant species might interact to assure pollination, an event pivotal for their reproduction and population maintenance. At community level, spatially aggregated co‐flowering species can thus be expected to exhibit suitable suites of traits to avoid competition and ensure pollination. We explored the problem by answering the following questions: (1) are co‐flowering species specialized on different guilds of pollinators; (2) do co‐flowering pollinator‐sharing species segregate spatially; and (3) do co‐flowering pollinator‐sharing species that diverge in anther position spatially aggregate more than those that converge in anther position?

Study Site

Euganean Hills, NE Italy.

Methods

Plant composition, flowering phenology and interactions between each entomophilous plant species and pollinating insects were monitored every 15 days in 40 permanent plots placed in an area of 16 ha. We quantified the degree of flowering synchrony, pollinator‐sharing and spatial aggregation between each pair of entomophilous species. We then tested the relationship between the degree of co‐flowering, pollinator‐sharing and spatial aggregation, and between spatial aggregation and anther position.

Results

Entomophilous species converged, at least partially in flowering time, and the phenological synchronization of flowering was significantly associated with the sharing of pollinator guilds. Co‐flowering pollinator‐sharing species segregated spatially. Furthermore, co‐flowering pollinator‐sharing species that diverged in anther position aggregated more than those that converged in anther position.

Conclusions

Reproductive traits that facilitate the co‐existence of co‐flowering species include specialization on different pollinator guilds and a phenological displacement of the flowering time. Furthermore, in circumstances of increased competition due to phenological synchronization, pollinator‐sharing and spatial aggregation, the chance of effective pollination might depend on differences in anther position, resulting in a divergent pollen placement on pollinator bodies. One of the most interesting results we obtained is that the presence of one mechanism does not preclude the operation of others, and each plant species can simultaneously exhibit different strategies. Although more studies are needed, our results can provide additional information about plant–plant interactions and provide new insights into mechanisms allowing the co‐existence of a high number of plant species in local communities.
  相似文献   

18.
The interplay between insect and plant traits outlines the patterns of pollen transfer and the subsequent plant reproductive fitness. We studied the factors that affect the pollination efficiency of a pollinator community of Dictamnus albus L. by evaluating insect behaviour and morphological characteristics in relation to flowering phenology. In order to extrapolate the pollinator importance of single taxa and of the whole pollinator guild, we calculated an index distinguishing between potential (PPI) and realized (RPI) pollinator importance. Although the pollinator species spectrum appeared rather constant, we found high intra‐ and inter‐annual variability of pollinator frequency and importance within the insect community. Flower visitation rate strictly depended on insect abundance and on the overlap between their flying period and flower blooming. All the pollinators visited flowers from the bottom to the top of the racemes, excluding intra‐plant geitonogamous pollination, and most of them showed high pollen fidelity. Only medium large‐sized bees could contact the upward bending stiles while feeding on nectar, highlighting a specialisation of the plant towards bigger pollinators. Moreover, we found evidence of functional specialisation, since all pollinators were restricted to a single taxonomic group (order: Hymenoptera; superfamily: Apoidea). Both the PPI and RPI indices indicate Habropoda tarsata as the most important pollinator of D. albus. Following hand cross‐pollination experiments we revealed the presence of pollination limitation in 1 of the 3 years of field study. We discuss this result in relation to flowering abundance and to possible mismatches of phenological periods between plants and insects.  相似文献   

19.
Pollinator foraging behavior has direct consequences for plant reproduction and has been implicated in driving floral trait evolution. Exploring the degree to which pollinators exhibit flexibility in foraging behavior will add to a mechanistic understanding of how pollinators can impose selection on plant traits. Although plants have evolved suites of floral traits to attract pollinators, flower color is a particularly important aspect of the floral display. Some pollinators show strong innate color preference, but many pollinators display flexibility in preference due to learning associations between rewards and color, or due to variable perception of color in different environments or plant communities. This study examines the flexibility in flower color preference of two groups of native butterfly pollinators under natural field conditions. We find that pipevine swallowtails (Battus philenor) and skippers (family Hesperiidae), the predominate pollinators of the two native Texas Phlox species, Phlox cuspidata and Phlox drummondii, display distinct patterns of color preferences across different contexts. Pipevine swallowtails exhibit highly flexible color preferences and likely utilize other floral traits to make foraging decisions. In contrast, skippers have consistent color preferences and likely use flower color as a primary cue for foraging. As a result of this variation in color preference flexibility, the two pollinator groups impose concordant selection on flower color in some contexts but discordant selection in other contexts. This variability could have profound implications for how flower traits respond to pollinator‐mediated selection. Our findings suggest that studying dynamics of behavior in natural field conditions is important for understanding plant–pollinator interactions.  相似文献   

20.
1. In many flowering plants, bumble bees may forage as both pollinators and nectar robbers. This mixed foraging behaviour may be influenced by community context and consequently, potentially affect pollination of the focal plant. 2. Salvia przewalskii is both pollinated and robbed exclusively by bumble bees. In the present study area, it was legitimately visited by two species of bumble bees with different tongue length, Bombus friseanus and Bombus religiosus, but it was only robbed by Bombus friseanus, the shorter‐tongued bumble bee. The intensity of nectar robbing and pollinator visitation rate to the plant were investigated across 26 communities in the Hengduan Mountains in East Himalaya during a 2‐year project. For each of these communities, the floral diversity, and the population size and floral resource of S. przewalskii were quantified. The abundances of the two bumble bee species were also recorded. 3. Both nectar robbing and pollinator visitation rate were influenced by floral diversity. However, pollinator visitation rate was not affected by nectar robbing. The results revealed that relative abundance of the two bumble bee species significantly influenced the incidence of nectar robbing but not the pollinator visitation rate. Increased abundance of B. religiosus, the legitimate visitors, exacerbated nectar robbing, possibly by causing B. friseanus to shift to robbing; however, pollinator visitation remained at a relatively high level. 4. The results may help to explain the persistence of both nectar robbing and pollination, and suggest that, in comparison to pollination, nectar robbing is a more unstable event in a community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号