首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sexual antagonism and the evolution of X chromosome inactivation   总被引:2,自引:0,他引:2  
In most female mammals, one of the two X chromosomes is inactivated early in embryogenesis. Expression of most genes on this chromosome is shut down, and the inactive state is maintained throughout life in all somatic cells. It is generally believed that X-inactivation evolved as a means of achieving equal gene expression in males and females (dosage compensation). Following degeneration of genes on the Y chromosome, gene expression on X chromosomes in males and females is upregulated. This results in closer to optimal gene expression in males, but deleterious overexpression in females. In response, selection is proposed to favor inactivation of one of the X chromosomes in females, restoring optimal gene expression. Here, we make a first attempt at shedding light on this intricate process from a population genetic perspective, elucidating the sexually antagonistic selective forces involved. We derive conditions for the process to work and analyze evolutionary stability of the system. The implications of our results are discussed in the light of empirical findings and a recently proposed alternative hypothesis for the evolution of X-inactivation.  相似文献   

2.
3.
Several hypotheses have been elaborated to account for the evolutionary decay commonly observed in full-fledged Y chromosomes. Enhanced drift, background selection and selective sweeps, which are expected to result from reduced recombination, may all share responsibilities in the initial decay of proto-Y chromosomes, but little empirical information has been gathered so far. Here we take advantage of three markers that amplify on both of the morphologically undifferentiated sex chromosomes of the European tree frog (Hyla arborea) to show that recombination is suppressed in males (the heterogametic sex) but not in females. Accordingly, genetic variability is reduced on the Y, but in a way that can be accounted for by merely the number of chromosome copies per breeding pair, without the need to invoke background selection or selective sweeps.  相似文献   

4.
In many insects, X‐linked inversions fix at a higher rate and are much less polymorphic than autosomal inversions. Here, we report that in Drosophila, X‐linked inversions also capture 67% more genes. We estimated the number of genes captured through an approximate Bayesian computational analysis of gene orders in nine species of Drosophila. X‐linked inversions fixed with a significantly larger gene content. Further, X‐linked inversions of intermediate size enjoy highest fixation rate, while the fixation rate of autosomal inversions decreases with size. A less detailed analysis in Anopheles suggests a similar pattern holds in mosquitoes. We develop a population genetic model that assumes the fitness effects of inversions scale with the number of genes captured. We show that the same conditions that lead to a higher fixation rate also produce a larger size for inversions on the X.  相似文献   

5.
It has long been known that processes occurring within a species may impact the interactions between species. For example, as competitive ability is sensitive to parameters including reproductive rate, carrying capacity and competition efficiency, the outcome of interspecific competition may be influenced by any process that alters these attributes. Although several such scenarios have been discussed, the influence of selfish genetic elements within one species on competition between species has not received theoretical treatment. We show that, with strong competition, sex‐ratio meiotic drive systems can result in a significant shift in community composition because the effective birth rate in the population may be increased by a female‐biased sex ratio. Using empirical data, we attempt to estimate the magnitude of this effect in several Drosophila species. We infer that meiotic drive elements, selfish genetic elements within species, can provide a substantial competitive advantage to that species within a community.  相似文献   

6.
Most meiotic drivers, such as the t‐haplotype in Mus and the segregation distorter (SD) in Drosophila, act in a sex‐specific manner, gaining a transmission advantage through one sex although suffering only the fitness costs associated with the driver in the other. Their inheritance is thus more likely through one of the two sexes, a property they share with sexually antagonistic alleles. Previous theory has shown that pairs of linked loci segregating for sexually antagonistic alleles are more likely to remain polymorphic and that linkage disequilibrium accrues between them. I probe this similarity between drive and sexual antagonism and examine the evolution of chromosomes experiencing these selection pressures simultaneously. Reminiscent of previous theory, I find that: the opportunity for polymorphism increases for a sexually antagonistic locus that is physically linked to a driving locus; the opportunity for polymorphism at a driving locus also increases when linked to a sexually antagonistic locus; and stable linkage disequilibrium accompanies any polymorphic equilibrium. Additionally, I find that drive at a linked locus favours the fixation of sexually antagonistic alleles that benefit the sex in which drive occurs. Further, I show that under certain conditions reduced recombination between these two loci is selectively favoured. These theoretical results provide clear, testable predictions about the nature of sexually antagonistic variation on driving chromosomes and have implications for the evolution of genomic architecture.  相似文献   

7.
Most studies of behaviour examine traits whose proximate causes include sensory input and neural decision-making, but conflict and collaboration in biological systems began long before brains or sensory systems evolved. Many behaviours result from non-neural mechanisms such as direct physical contact between recognition proteins or modifications of development that coincide with altered behaviour. These simple molecular mechanisms form the basis of important biological functions and can enact organismal interactions that are as subtle, strategic and interesting as any. The genetic changes that underlie divergent molecular behaviours are often targets of selection, indicating that their functional variation has important fitness consequences. These behaviours evolve by discrete units of quantifiable phenotypic effect (amino acid and regulatory mutations, often by successive mutations of the same gene), so the role of selection in shaping evolutionary change can be evaluated on the scale at which heritable phenotypic variation originates. We describe experimental strategies for finding genes that underlie biochemical and developmental alterations of behaviour, survey the existing literature highlighting cases where the simplicity of molecular behaviours has allowed insight to the evolutionary process and discuss the utility of a genetic knowledge of the sources and spectrum of phenotypic variation for a deeper understanding of how genetic and phenotypic architectures evolve.  相似文献   

8.
The sex‐ratio X‐chromosome (SR) is a selfish chromosome that promotes its own transmission to the next generation by destroying Y‐bearing sperm in the testes of carrier males. In some natural populations of the fly Drosophila neotestacea, up to 30% of the X‐chromosomes are SR chromosomes. To investigate the molecular evolutionary history and consequences of SR, we sequenced SR and standard (ST) males at 11 X‐linked loci that span the ST X‐chromosome and at seven arbitrarily chosen autosomal loci from a sample of D. neotestacea males from throughout the species range. We found that the evolutionary relationship between ST and SR varies among individual markers, but genetic differentiation between SR and ST is chromosome‐wide and likely due to large chromosomal inversions that suppress recombination. However, SR does not consist of a single multilocus haplotype: we find evidence for gene flow between ST and SR at every locus assayed. Furthermore, we do not find long‐distance linkage disequilibrium within SR chromosomes, suggesting that recombination occurs in females homozygous for SR. Finally, polymorphism on SR is reduced compared to that on ST, and loci displaying signatures of selection on ST do not show similar patterns on SR. Thus, even if selection is less effective on SR, our results suggest that gene flow with ST and recombination between SR chromosomes may prevent the accumulation of deleterious mutations and allow its long‐term persistence at relatively high frequencies.  相似文献   

9.
Driving X chromosomes (XDs) bias their own transmission through males by killing Y‐bearing gametes. These chromosomes can in theory spread rapidly in populations and cause extinction, but many are found as balanced polymorphisms or as “cryptic” XDs shut down by drive suppressors. The relative likelihood of these outcomes and the evolutionary pathways through which they come about are not well understood. An XD was recently discovered in the mycophagous fly, Drosophila testacea, presenting the opportunity to compare this XD with the well‐studied XD of its sister species, Drosophila neotestacea. Comparing features of independently evolved XDs in young sister species is a promising avenue towards understanding how XDs and their counteracting forces change over time. In contrast to the XD of D. neotestacea, we find that the XD of D. testacea is old, with its origin predating the radiation of three species: D. testacea, D. neotestacea and their shared sister species, Drosophila orientacea. Motivated by the suggestion that older XDs should be more deleterious to carriers, we assessed the effect of the XD on both male and female fertility. Unlike what is known from D. neotestacea, we found a strong fitness cost in females homozygous for the XD in D. testacea: a large proportion of homozygous females failed to produce offspring after being housed with males for several days. Our male fertility experiments show that although XD male fertility is lower under sperm‐depleting conditions, XD males have comparable fertility to males carrying a standard X chromosome under a free‐mating regime, which may better approximate conditions in wild populations of D. testacea. Lastly, we demonstrate the presence of autosomal suppression of X chromosome drive. Our results provide support for a model of XD evolution where the dynamics of young XDs are governed by fitness consequences in males, whereas in older XD systems, both suppression and fitness consequences in females likely supersede male fitness costs.  相似文献   

10.
The mechanism of sex determination in mammals appears highly conserved: the presence of a Y chromosome triggers the male developmental pathway, whereas the absence of a Y chromosome results in a default female phenotype. However, if the Y chromosome fails to initiate the male pathway (referred to as Y*), XY* females can result, as is the case in several species of South American field mice (genus Akodon). The breeding genetics in this system inherently select against the Y* chromosome such that the frequency of XY* females should decrease rapidly to very low frequencies. However, in natural populations of Akodon, XY* females persist at substantial frequencies; for example, 10% of females are XY* in A. azarae and 30% in A. boliviensis. We develop a mathematical model that considers the potential roles of three evolutionary forces in maintaining XY* females: Y-to-Y* chromosome transitions (mutation), chromosome segregation distortion (meiotic drive), and differential fecundity (selection). We then test the predictions of our model using data from breeding colonies of A. azarae. We conclude that any single force is inadequate to maintain XY* females. However, a combination of segregation bias of the male and female Y chromosomes during spermatogenesis/oogenesis and increased fecundity in XY* females could account for the observed frequencies of XY* females.  相似文献   

11.
Haplodiploid inheritance systems, characterized by male transmission of only their maternally inherited genomic elements, have evolved more than 20 times within the animal kingdom. A number of theoretical studies have argued that infection with certain male‐killing endosymbionts can potentially lead to the evolution of haplodiploidy. By explicitly investigating the coevolutionary dynamics between host and endosymbiont, we show that the assumptions of current models cannot explain the evolution of haplodiploidy very well, as the endosymbiont will often go extinct in the long term. Here, we provide two additional mechanisms that can explain the stable evolution of haplodiploidy by male‐killing endosymbionts. First of all, a spatially structured population can facilitate the long‐term persistence of haplodiploidy, but this applies only when levels of inbreeding are very high. By contrast, endosymbionts that are mutualistic with their hosts provide a much more general and promising route to the stable evolution of haplodiploidy. This model is the first to provide a formal explanation of the supposed association between the evolution of haplodiploidy and the highly inbred lifestyles of some ancestors, while it also provides a hypothesis for the evolution of haplodiploidy in more outbred ancestors.  相似文献   

12.
Multilocus hybrid zone (HZ) studies predate genomics by decades. The power of early methods is becoming apparent and now large datasets are commonplace. Relating introgression along a chromosome to evolutionary process is challenging: although reduced introgression regions may indicate speciation genes, this pattern may be obscured by asymmetric introgression of linked invasive genes. Further, HZ movement may form salients and leave islands in its wake. Barton's concordance was proposed 24 years ago for assessing introgression where geographic patterns are complex. The geographic axis of introgression is replaced with the hybrid index. We compare this, a recently proposed genomic clines approach, and two-dimensional (2D) geographic analyses, for 24 X chromosome loci of 2873 mice from the central-European house mouse HZ. In 2D, 14 loci show linear contact, seven precisely matching previous studies. Four show introgression islands to the east of the zone, suggesting past westward zone movement, two show westward salients. Barton's concordance both recovers and refines this information. A region of reduced introgression on the central X is supported, despite X centromere-proximal male-biased westward introgression matching a westward 2D geographic salient. Genomic clines results are consistent regarding introgression asymmetries, but otherwise more difficult to interpret. Evidence for genetic conflict is discussed.  相似文献   

13.
14.
Topoisomerase IIβ-binding protein 1 (TopBP1) is BRCT domain-containing protein that is required for DNA double-strand break (DSB) repair and DNA damage responses; however, its function during the early stage of spermatogenesis is still unclear. To investigate the physiological role of TopBP1, we have generated germ cell-specific TopBP1-depleted mouse model. TopBP1-deleted mice were infertile, showed a loss of germ cells and had meiotic defects. Conditional TopBP1 deletion resulted in reduced testis size, reduced number of epididymal sperm, increased apoptosis, and severely compromised fertility. TopBP1 deficiency caused defects in DMC1 and Rad51 foci formation, abnormal synaptonemal complexes and meiotic chromosome defects. Collectively, these results suggest that TopBP1 deficiency during spermatogenesis impairs the localization of proteins involved in early recombination at DSBs, results in meiotic chromosome defects and leads to infertility.  相似文献   

15.
The ratio of genetic diversity on X chromosomes relative to autosomes in organisms with XX/XY sex chromosomes could provide fundamental insight into the process of genome evolution. Here we report this ratio for 24 cynomolgus monkeys (Macaca fascicularis) originating in Indonesia, Malaysia, and the Philippines. The average X/A diversity ratios in these samples was 0.34 and 0.20 in the Indonesian–Malaysian and Philippine populations, respectively, considerably lower than the null expectation of 0.75. A Philippine population supposed to derive from an ancestral population by founding events showed a significantly lower ratio than the parental population, suggesting a demographic effect for the reduction. Taking sex-specific mutation rate bias and demographic effect into account, expected X/A diversity ratios generated by computer simulations roughly agreed with the observed data in the intergenic regions. In contrast, silent sites in genic regions on X chromosomes showed strong reduction in genetic diversity and the observed X/A diversity ratio in the genic regions cannot be explained by mutation rate bias and demography, indicating that natural selection also reduces the level of polymorphism near genes. Whole-genome analysis of a female cynomolgus monkey also supported the notion of stronger reduction of genetic diversity near genes on the X chromosome.  相似文献   

16.
The hypothesis that sexual selection drives the evolution of condition dependence is not firmly supported by empirical evidence, and the process remains poorly understood. First, even though sexual competition typically involves multiple traits, studies usually compare a single sexual trait with a single "control" trait, ignoring variation among sexual traits and raising the possibility of sampling bias. Second, few studies have addressed the genetic basis of condition dependence. Third, even though condition dependence is thought to result from a form of sex-specific epistasis, the evolution of condition dependence has never been considered in relation to intralocus sexual conflict. We argue that condition dependence may weaken intersexual genetic correlations and facilitate the evolution of sexual dimorphism. To address these questions, we manipulated an environmental factor affecting condition (larval diet) and examined its effects on four sexual and four nonsexual traits in Prochyliza xanthostoma adults. As predicted by theory, the strength of condition dependence increased with degree of exaggeration among male traits. Body shape was more condition dependent in males than in females and, perhaps as a result, genetic and environmental effects on body shape were congruent in males, but not in females. However, of the four male sexual traits, only head length was significantly larger in high-condition males after controlling for body size. Strong condition dependence was associated with reduced intersexual genetic correlation. However, homologous male and female traits exhibited correlated responses to condition, suggesting an intersexual genetic correlation for condition dependence itself. Our findings support the role of sexual selection in the evolution of condition dependence, but reveal considerable variation in condition dependence among sexual traits. It is not clear whether the evolution of condition dependence has mitigated or exacerbated intralocus sexual conflict in this species.  相似文献   

17.
Because selection is often sex-dependent, alleles can have positive effects on fitness in one sex and negative effects in the other, resulting in intralocus sexual conflict. Evolutionary theory predicts that intralocus sexual conflict can drive the evolution of sex limitation, sex-linkage, and sex chromosome differentiation. However, evidence that sex-dependent selection results in sex-linkage is limited. Here, we formally partition the contribution of Y-linked and non-Y-linked quantitative genetic variation in coloration, tail, and body size of male guppies (Poecilia reticulata)-traits previously implicated as sexually antagonistic. We show that these traits are strongly genetically correlated, both on and off the Y chromosome, but that these correlations differ in sign and magnitude between both parts of the genome. As predicted, variation in attractiveness was found to be associated with the Y-linked, rather than with the non-Y-linked component of genetic variation in male ornamentation. These findings show how the evolution of Y-linkage may be able to resolve sexual conflict. More generally, they provide unique insight into how sex-specific selection has the potential to differentially shape the genetic architecture of fitness traits across different parts of the genome.  相似文献   

18.
Several hypotheses have been proposed for the evolution of sexual cannibalism by females. Newman and Elgar (1991) suggested that sexual cannibalism prior to mating by virgin female spiders may have evolved as a result of female foraging considerations. According to this model, an adult female's decision to mate or cannibalize a courting male should be based on an assessment of the male's value as a meal versus his value as a mate. The current study provides an empirical test of the assumptions and predictions of this model in the sexually cannibalistic fishing spider. Adult females were subjected to different food treatments, and exposed to adult males in the laboratory. However, only one of the assumptions of the model and none of its five predictions were upheld. We failed to find any effects of female foraging, female mating status, female size, male size or time of the season on females' behaviour towards courting males. Females behaved stereotypically, and many females were left unmated despite numerous mating opportunities. We also demonstrate costs of sexual cannibalism in a natural population. We propose that the act of sexual cannibalism in the fishing spider is non-adaptive, and develop a model for the evolution of premating sexual cannibalism in spiders based on genetic constraints. According to this hypothesis, sexual cannibalism by adult females may have evolved as an indirect result of selection for high and non-discriminate aggression during previous ontogenetic stages. Genetic covariance between different components of aggressive behaviour may constrain the degree to which (1) juvenile and adult aggression and/or (2) aggression towards conspecifics and heterospecifics can vary independently. We briefly review the support for our model, and suggest several critical tests that may be used to assess the assumptions and predictions of the model.  相似文献   

19.
The pseudoautosomal region (PAR) of bovine chromosome X (BTA X) has a particularly low representation of genes and markers, making comparative gene mapping in this region difficult. We describe the localization of three genes, colony-stimulating factor 2 receptor alpha (CSF2RA), ADP/ATP translocase 3 (ANT3) and steroid sulphatase (STS) on PAR of BTA X using a 5000 rad whole-genome radiation hybrid panel. The relationship of these genes to a number of previously mapped simple sequence repeat (microsatellite) markers is determined by physical and radiation hybrid mapping methods. The resulting radiation hybrid map resolves a discrepancy between the two major bovine linkage maps in the PAR of BTA X.  相似文献   

20.
The use of paracentric inversions as genetic markers in the Anopheles gambiae group of mosquitoes is described. The gene for dieldrin resistance is assigned to chromosome 2 which in turn is correlated to the previous assignment of the gene to linkage group II. The locus of the enzyme phosphoglucomutase 2 (Pgm 2) is similarly assigned to chromosome 2 and evidence is presented for possible linkage between Pgm 2 and dieldrin resistance. There was no linkage or correlation of chromosome 2 and loci of the enzymes superoxide dismutase (Sod) and octanol dehydrogenase (Odh). These genes are therefore assumed to be on chromosome 3 (linkage group III). Evidence that such gene linkage group/chromosome correlations may extend to other species for which chromosome maps and homologies have been worked out is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号