首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In plants, selfing and outcrossing may be affected by maternal mate choice and competition among pollen and zygotes. To evaluate this in Silene nutans, we pollinated plants with mixtures of (1) self‐ and outcross pollen and (2) pollen from within a population and from another population. Pollen fitness and zygote survival was estimated from the zygote survival and paternity of seeds. Self pollen had a lower fitness than outcross pollen, and selfed zygotes were less likely, or as likely, to develop into seeds. Hybrid zygotes survived as frequently or more than local zygotes, and pollen from one of the populations fertilized most ovules in both populations. Our results thus indicate strong maternal discrimination against selfing, whereas the success of outbreeding seems mostly affected by divergent pollen performance. The implications for the evolution of maternal mate choice are discussed.  相似文献   

2.
M Ferriol  C Pichot  F Lefèvre 《Heredity》2011,106(1):146-157
We investigated the variation and short-term evolution of the selfing rate and inbreeding depression (ID) across three generations within a cedar forest that was established from admixture ca 1860. The mean selfing rate was 9.5%, ranging from 0 to 48% among 20 seed trees (estimated from paternally inherited chloroplast DNA). We computed the probability of selfing for each seed and we investigated ID by comparing selfed and outcrossed seeds within progenies, thus avoiding maternal effects. In all progenies, the germination rate was high (88–100%) and seedling mortality was low (0–12%). The germination dynamics differed significantly between selfed and outcrossed seeds within progenies in the founder gene pool but not in the following generations. This transient effect of selfing could be attributed to epistatic interactions in the original admixture. Regarding the seedling growth traits, the ID was low but significant: 8 and 6% for height and diameter growth, respectively. These rates did not vary among generations, suggesting minor gene effects. At this early stage, outcrossed seedlings outcompeted their selfed relatives, but not necessarily other selfed seedlings from other progenies. Thus, purging these slightly deleterious genes may only occur through within-family selection. Processes that maintain a high level of genetic diversity for fitness-related traits among progenies also reduce the efficiency of purging this part of the genetic load.  相似文献   

3.
    
Outcrossing rates varied from 0% to 69% among Jamaican populations of Turnera ulmifolia. A correlation between increasing herkogamy and outcrossing rate occurred among populations. Predictions from sex-allocation theory were tested by estimating allocation to reproductive functions. Significant differences in allocation patterns occurred among populations, but they were not correlated with outcrossing rates. The fitness consequences of inbreeding were assessed in high- and low-density greenhouse experiments for nine populations with variable outcrossing rates. No evidence for inbreeding depression occurred in early portions of the life history, but multiplicative fitness functions provide evidence for inbreeding depression. We tested the prediction that selfing populations have lower levels of inbreeding depression than outcrossing populations but found no significant correlation.  相似文献   

4.
5.
    
Many species have fragmented distribution with small isolated populations suffering inbreeding depression and/or reduced ability to evolve. Without gene flow from another population within the species (genetic rescue), these populations are likely to be extirpated. However, there have been only ~ 20 published cases of such outcrossing for conservation purposes, probably a very low proportion of populations that would potentially benefit. As one impediment to genetic rescues is the lack of an overview of the magnitude and consistency of genetic rescue effects in wild species, I carried out a meta‐analysis. Outcrossing of inbred populations resulted in beneficial effects in 92.9% of 156 cases screened as having a low risk of outbreeding depression. The median increase in composite fitness (combined fecundity and survival) following outcrossing was 148% in stressful environments and 45% in benign ones. Fitness benefits also increased significantly with maternal ΔF (reduction in inbreeding coefficient due to gene flow) and for naturally outbreeding versus inbreeding species. However, benefits did not differ significantly among invertebrates, vertebrates and plants. Evolutionary potential for fitness characters in inbred populations also benefited from gene flow. There are no scientific impediments to the widespread use of outcrossing to genetically rescue inbred populations of naturally outbreeding species, provided potential crosses have a low risk of outbreeding depression. I provide revised guidelines for the management of genetic rescue attempts.  相似文献   

6.
    
Pollen limitation negatively impacts endangered and endemic plants with small fragmented populations, such as Sinocalycanthus chinensis, an endangered plant endemic to China. In this study, we analyzed the pollen limitation of the S. chinensis Damingshan (DMS) population in 2006, 2009, and 2010, and crossed plants with mates separated by different distances, both within and between populations. The DMS population exhibited strong pollen limitation in fruit set, seed set, and seeds per fruit in 2006, 2009, and 2010. The average accumulated pollen limitation (for fruit set times seeds per fruit) was 0.510 ± 0.180. Progeny crossed with pollen from intermediate neighboring plants within the same population (separated by 30–50 m from pollen recipients) had the lowest fitness. No optimal outcrossing distance was found within the DMS population. Progeny from crosses with the Shunxiwu (SXW) and Daleishan (DLS) populations performed relatively better, while those from crosses with Qingliangfeng (QLF) and Longxushan (LXS) populations performed worse. Compared with average reproductive success, outbreeding depression was found in progeny from crosses with the LXS and QLF populations. Reproductive success from pure self‐pollination indicated S. chinensis is self‐compatible. Geitonogamous selfing increased reproductive success. Based on geitonogamous selfing, the proportion of selfed offspring was relatively high. These results provide basic references for the conservation of this species.  相似文献   

7.
    
In mixed-mating plant populations, one can estimate the relative fitness of selfed progeny w by measuring the inbreeding coefficient F and selfing rate s of adults of one generation, together with F of adults in the following generation (after selection). In the first application of this multigenerational method, we estimated F and s for adults over three consecutive generations in adjacent populations of two annual Mimulus taxa: the outbreeding M. guttatus and the inbreeding M. platycalyx. This gave estimates of w for the last two generations. Although average multilocus selfing rates were high in both taxa (0.63 in M. guttatus; 0.84 in M. platycalyx), the relative fitness of selfed progeny averaged only 0.19 in M. guttatus and 0.32 in M. platycalyx. An alternative estimator for w that incorporates biparental inbreeding gave even lower estimates of w. These values are significantly below the 0.5 threshold thought to favor selfing, and show that partially selfing populations can harbor substantial genetic load. In accordance with the purging hypothesis, the more highly selfing M. platycalyx showed marginally lower inbreeding depression than M. guttatus in both years (P = 0.08). Inbreeding depression and selfing rates also varied among years in concert among taxa. Several sources of bias are discussed, but computer simulations indicate it is unlikely that w is biased downwards by linkage of marker loci to load loci.  相似文献   

8.
In diploids, F(1) offspring performance is expected to increase with increasing genetic dissimilarity between the parents until an optimum is reached because outbreeding mitigates inbreeding depression and maximizes heterosis. However, many flowering plant species are derived through allopolyploidization, i.e. interspecific hybridization with genome doubling. This mode of plant speciation can be expected to considerably alter the consequences of inbreeding and outbreeding. We investigated the F1 fitness consequences of mating over a range of (genetic) distances in the allohexaploid plant species Geum urbanum. Offspring was raised under controlled conditions (632 plants). The performance of outcrossed progeny was not significantly better than that of their selfed half-siblings and did not increase with parental genetic dissimilarity (0-0.83). Our findings support low, if any, inbreeding depression and heterosis. We attribute this to the peculiar state of quasi-permanent heterozygosity in allopolyploids and frequent selfing.  相似文献   

9.
    
How females establish in populations of cosexuals is central to understanding the evolution of gender dimorphism in angiosperms. Inbreeding avoidance hypotheses propose that females can establish and be maintained if cosexual fitness is reduced because they self-fertilize, and their progeny express inbreeding depression. Here we assess the role of inbreeding avoidance in maintaining sexual system variation in Wurmbea biglandulosa. We estimated costs of self-pollination, mating patterns, and inbreeding depression in gender monomorphic (cosexuals only) and dimorphic (males and females) populations. Costs of selfing, estimated from seed set of experimentally self- and cross-pollinated flowers, were severe in both males and cosexuals (inbreeding depression, sigma = 0.86). In a field experiment, intact males that could self produced fewer seeds than both emasculated males and females, whereas seed set of intact and emasculated cosexuals did not differ. Thus, pollinator-mediated selfing reduces fitness of males but not cosexuals under natural conditions. Outcrossing rates of males revealed substantial selfing (t = 0.68), whereas females and cosexuals were outcrossed (0.92 and 0.97). For males, progeny inbreeding coefficients exceeded parental coefficients (0.220 vs. 0.009), whereas for females and cosexuals these coefficients did not differ and approached zero. Differences in coefficients between males and their progeny indicate that selfed progeny express severe inbreeding depression (sigma = 0.93). Combined with inbreeding depression for seed set, cumulative sigma = 0.99, indicating that most or all selfed zygotes fail to reach reproductive maturity. We propose that present sexual system variation in W. biglandulosa is maintained by high inbreeding depression coupled with differences in selfing rates among monomorphic and dimorphic populations.  相似文献   

10.
This paper examines several aspects of the expression of inbreeding depression in an outcrossing, obligately biennial plant, Hydrophyllum appendiculatum (Hydrophyllaceae). The amount of inbreeding depression detected was small during the first year of life but increased with age and had significant effects on adult size and reproductive traits. The lack of significant inbreeding depression during early growth is likely due to the overriding influence of maternal environmental effects on seed size and seedling growth. However, as maternal effects decreased with age, the seedling's own genotype became a more important determinant of its fate. To examine whether the expression of inbreeding depression was sensitive to ecological conditions, selfed and outcrossed seedlings were grown alone or with other H. appendiculatum seedlings. No inbreeding depression was detected in the plants grown alone. In contrast, under competitive conditions, outcrossed seedlings were significantly larger than selfed seedlings by the end of the first growing season. To address whether parental mating history influences the amount of inbreeding depression expressed, I examined the consequences of two successive generations of selfing on seed set and seed weight. The amount of inbreeding depression increased following the second generation of selfing. In the first generation, seed set and seed weight differed by less than 5% between selfed and outcrossed progeny. However, both traits were 15% greater for outcrossed plants after two generations. These results indicate that the alleles responsible for the reductions in these traits were not purged and suggest the action of multiple loci with deleterious effects.  相似文献   

11.
As populations become increasingly fragmented, managers are often faced with the dilemma that intentional hybridization might save a population from inbreeding depression but it might also induce outbreeding depression. While empirical evidence for inbreeding depression is vastly greater than that for outbreeding depression, the available data suggest that risks of outbreeding, particularly in the second generation, are on par with the risks of inbreeding. Predicting the relative risks in any particular situation is complicated by variation among taxa, characters being measured, level of divergence between hybridizing populations, mating history, environmental conditions and the potential for inbreeding and outbreeding effects to be occurring simultaneously. Further work on consequences of interpopulation hybridization is sorely needed with particular emphasis on the taxonomic scope, the duration of fitness problems and the joint effects of inbreeding and outbreeding. Meanwhile, managers can minimize the risks of both inbreeding and outbreeding by using intentional hybridization only for populations clearly suffering from inbreeding depression, maximizing the genetic and adaptive similarity between populations, and testing the effects of hybridization for at least two generations whenever possible.  相似文献   

12.
Inbreeding adversely affects fitness traits in many plant and animal species, and the magnitude, stability and genetic basis of inbreeding depression (ID) will have short- and long-term evolutionary consequences. The effects of four degrees of inbreeding (selfing, f=50%; full- and half-sib matings, f=25 and 12.5%; and unrelated outcrosses, f=0%) on survival and growth of an island population of Eucalyptus globulus were studied at two sites for over 14 years. For selfs, ID in survival increased over time, reaching a maximum of 49% by age 14 years. However, their inbreeding depression for stem diameter remained relatively stable with age, and ranged from 28 to 36% across years and sites. ID for survival was markedly greater on the more productive site, possibly due to greater and earlier onset of inter-tree competition, but was similar on both sites for the diameter of survivors. The deleterious trait response to increasing inbreeding coefficients was linear for survival and diameter. Non-significant quadratic effects suggested that epistasis did not contribute considerably to the observed ID at the population level. Among- and within-family coefficients of variation for diameter increased with inbreeding degree, and the variance among the outcrossed families was significant only on the more productive site. The performance of self-families for diameter was highly stable between sites. This suggests that, for species with mixed mating systems, environmentally stable inbreeding effects in open-pollinated progenies may tend to mask the additive genotype-by-environment interaction for fitness traits and the adaptive response to the environment.  相似文献   

13.
Inbreeding depression and selfing rates were investigated in Schiedea membranacea (Caryophyllaceae), a hermaphroditic species endemic to the Hawaiian Islands. Most theoretical models predict high inbreeding depression in outcrossing hermaphroditic species and low inbreeding depression in inbreeding species. Although high outcrossing rates and high levels of inbreeding depression are characteristic of many species of Schiedea, self- fertilization is common among relatives of hermaphroditic S. membranacea, and high selfing rates and low levels of inbreeding depression were predicted in this species. Sixteen individuals grown in the greenhouse were used to produce selfed and outcrossed progeny. Inbreeding depression, which was evident throughout the stages measured (percentage viable seeds per capsule, mean seed mass, percentage seed germination, percentage seedling survival, and biomass after 8 mo), averaged 0.70. Inbreeding depression among maternal families varied significantly for all measured traits and ranged from −0.12 to 0.97. Using isozyme analysis, the multilocus selfing rate varied from 0.13 to 0.38 over 4 yr. Contrary to the initial prediction of high selfing and low inbreeding depression based on phylogenetic relationships within Schiedea, low selfing rates and high levels of inbreeding depression were found in S. membranacea. These results indicate that outcrossing is stable in this species and maintained by high levels of inbreeding depression.  相似文献   

14.
Abstract Levels of selfing and resource allocation patterns were investigated in Schiedea salicaria (Caryophyllaceae), a gynodioecious species with high levels of inbreeding depression and nuclear control of male sterility. Selfing levels were higher in hermaphrodites than females, especially when adjusted for early acting inbreeding depression. The sexes of S. salicaria were similar in most allocation patterns including number of flowers and capsules per inflorescence, seeds per flower, and seed mass. Seeds produced by females had higher levels of germination than seeds of hermaphrodites, a likely result of high selfing levels and the expression of inbreeding depression in the progeny of hermaphrodites. Invasion of females in populations of S. salicaria is probably related to the expression of inbreeding depression at germination and in later life history stages. Comparisons with related species of Schiedea that also have nuclear control of male sterility suggest that reallocation of resources in hermaphrodites to male function occurs as females increase in frequency, but that resource reallocation is not important for the success of females when they first invade populations.  相似文献   

15.
    
The effects of one and two generations of inbreeding were studied in plants from four natural populations of the annual plant, Collinsia heterophylla, using inbred and outcrossed plants generated by hand pollinations to create expected inbreeding coefficients ranging from 0–0.75. The selfing rates of the populations were estimated using allozyme markers to range from 0.37–0.69. Inbreeding depression was mild, ranging from 5–40%, but significant effects were detected for characters measured at all stages of the life cycle. Fitness components declined significantly with the inbreeding coefficient, and regression of fitness characters on inbreeding coefficients gave no evidence of any strongly synergistic effects attributable to the different genetic factors that contribute to decline in fitness under inbreeding. The magnitude of inbreeding depression did not clearly decrease with the populations' levels of inbreeding. This is not surprising because the selfing rates are similar enough that it is unlikely that the populations have been characterized for long periods of time by these different inbreeding levels.  相似文献   

16.
    
The nematode Caenorhabditis elegans reproduces primarily by self-fertilization of hermaphrodites, yet males are present at low frequencies in natural populations (androdioecy). The ancestral state of C. elegans was probably gonochorism (separate males and females), as in its relative C. remanei. Males may be maintained in C. elegans because outcrossed individuals escape inbreeding depression. The level of inbreeding depression is, however, expected to be low in such a highly selfing species, compared with an outcrosser like C. remanei. To investigate these issues, we measured life-history traits in the progeny of inbred versus outcrossed C. elegans and C. remanei individuals derived from recently isolated natural populations. In addition, we maintained inbred lines of C. remanei through 13 generations of full-sibling mating. Highly inbred C. remanei showed dramatic reductions in brood size and relative fitness compared to outcrossed individuals, with evidence of both direct genetic and maternal-effect inbreeding depression. This decline in fitness accumulated over time, causing extinction of nearly 90% of inbred lines, with no evidence of purging of deleterious mutations from the remaining lines. In contrast, pure strains of C. elegans performed better than crosses between strains, indicating outbreeding depression. The results are discussed in relation to the evolution of androdioecy and the effect of mating system on the level of inbreeding depression.  相似文献   

17.
    
In many gynodioecous species, females produce more viable seeds than hermaphrodites. Knowledge of the relative contribution of inbreeding depression in hermaphrodites and maternal sex effects to the female fertility advantage and the genetic basis of variation in female fertility advantage is central to our understanding of the evolution of gender specialization. In this study we examine the relative contribution of inbreeding and maternal sex to the female fertility advantage in gynodioecious Thymus vulgaris and quantify whether there is genetically based variation in female fertility advantage for plants from four populations. Following controlled self and outcross (sib, within-population, and between-population) pollination, females had a more than twofold fertility advantage (based on the number of germinating seeds per fruit), regardless of the population of origin and the type of pollination. Inbreeding depression on viable seed production by hermaphrodites occurred in two populations, where inbreeding had been previously detected. Biparental inbreeding depression on viable seed production occurred in three of four populations for females, but in only one population for hermaphrodites. Whereas the maternal sex effect may consistently enhance female fertility advantage, inbreeding effects may be limited to particular population contexts where inbreeding may occur. A significant family x maternal sex interaction effect on viable seed production was observed, illustrating that the extent of female fertility advantage varies significantly among families. This result is due to greater variation in hermaphrodite (relative to female) seed fertility between families. Despite this genetic variation in female fertility advantage and the highly female biased sex ratios in populations of T. vulgaris, gynodioecy is a stable polymorphism, suggesting that strong genetic and/or ecological constraints influence the stability of this polymorphism.  相似文献   

18.
    
Hermaphroditic individuals can produce both selfed and outcrossed progeny, termed mixed mating. General theory predicts that mixed-mating populations should evolve quickly toward high rates of selfing, driven by rapid purging of genetic load and loss of inbreeding depression (ID), but the substantial number of mixed-mating species observed in nature calls this prediction into question. Lower average ID reported for selfing than for outcrossing populations is consistent with purging and suggests that mixed-mating taxa in evolutionary transition will have intermediate ID. We compared the magnitude of ID from published estimates for highly selfing (r > 0.8), mixed-mating (0.2 ≤ r ≥ 0.8), and highly outcrossing (r < 0.2) plant populations across 58 species. We found that mixed-mating and outcrossing taxa have equally high average lifetime ID (δ= 0.58 and 0.54, respectively) and similar ID at each of four life-cycle stages. These results are not consistent with evolution toward selfing in most mixed-mating taxa. We suggest that prevention of purging by selective interference could explain stable mixed mating in many natural populations. We identify critical gaps in the empirical data on ID and outline key approaches to filling them.  相似文献   

19.
20.
The ability of plants to respond to natural enemies might depend on the availability of genetic variation for the optimal phenotypic expression of defence. Selfing can affect the distribution of genetic variability of plant fitness, resistance and tolerance to herbivores and pathogens. The hypothesis of inbreeding depression influencing plant defence predicts that inbreeding would reduce resistance and tolerance to damage by natural enemies relative to outcrossing. In a field experiment entailing experimentally produced inbred and outcrossed progenies, we assessed the effects of one generation of selfing on Datura stramonium resistance and tolerance to three types of natural enemies, herbivores, weevils and a virus. We also examined the effect of damage on relative growth rate (RGR), flower, fruit, and seed production in inbred and outcrossed plants. Inbreeding significantly reduced plant defence to natural enemies with an increase of 4% in herbivore damage and 8% in viral infection. These results indicate inbreeding depression in total resistance. Herbivory increased 10% inbreeding depression in seed number, but viral damage caused inbred and outcrossed plants to have similar seed production. Inbreeding and outcrossing effects on fitness components were highly variable among families, implying that different types or numbers of recessive deleterious alleles segregate following inbreeding in D. stramonium. Although inbreeding did not equally alter all the interactions, our findings indicate that inbreeding reduced plant defence to herbivores and pathogens in D. stramonium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号